Search Results

1 - 2 of 2 items :

  • Author: Grzegorz Zolnierkiewicz x
  • Biotechnology x
  • Industrial Chemistry x
Clear All Modify Search


The iron diet supplements: AproFER 1000 and AproTHEM were subjected to various chemical, microbial and magnetic analysis. The microbial analysis revealed no presence of pathogenic bacteria in the studied products. No significant changes in iron content or forms (bivalent/trivalent) were observed in EPR analysis of supplements stored at different conditions for a long period of time. The chemical and magnetic analysis showed that both AproFER 1000 and AproTHEM contain a high concentration of bivalent iron so they can be used as an iron diet supplements.


Superparamagnetic iron oxide nanoparticles were obtained in the polyethylene glycol environment. An effect of precipitation and drying temperatures on the size of the prepared nanoparticles was observed. Superparamagnetic iron oxide Fe3O4, around of 15 nm, was obtained at a precipitation temperature of 80°C and a drying temperature of 60°C. The presence of functional groups characteristic for a polyethylene glycol surfactant on the surface of nanoparticles was confirmed by FTIR and XPS measurements. Silver nanoparticles were introduced by the impregnation. Fe3O4-Ag nanostructure with bactericidal properties against Escherichia coli species was produced. Interesting magnetic properties of these materials may be helpful to separate the bactericidal agent from the solution.