Search Results

1 - 4 of 4 items :

  • Author: Dorota Grygoruk x
  • Plant Science x
Clear All Modify Search
Root vitality of Fagus sylvatica L., Quercus petraea Liebl. and Acer pseudoplatanus L. in mature mixed forest stand

Abstract

The main task of the present study was to investigate the root vitality of common beech Fagus sylvatica L., sessile oak Quercus petraea Liebl. and sycamore maple Acer pseudoplatanus L. in the optimal g rowth conditions in south-western Poland. The study was carried out in 130-year-old mixed stand located within natural range of studied tree species. The density of roots (g/100 cm3 of soil) and biomass of fine roots (g/m2) in topsoil layers (0-5 cm, 5-15 cm) were determined in the tree biogroups of the same species. The mean total root density ranged from 0.248 to 0.417 g/100 cm3 in the 0-5 cm soil layer, and it decreased in the deeper soil layer (5-15 cm). There were found no statistically significant differences of total root densities between tree biogroups in topsoil layers. Diversity of fine root biomass was comparable in the tree biogroups (H’ = 1.5), but common beech showed more intensive growth of fine roots in the topsoil 0-15 cm when compared to sessile oak and sycamore maple. The results of the study point out the stability of the multi-species structure of the mixed stand studied, and consequently - the ability of beech, sessile oak and sycamore maple trees to coexist in the mixed stands - in the area of natural range of these species.

Open access
Open Data in Scientific Communication

Abstract

The development of information technology makes it possible to collect and analyse more and more data resources. The results of research, regardless of the discipline, constitute one of main sources of data. Currently, the research results are increasingly being published in the Open Access model. The Open Access concept has been accepted and recommended worldwide by many institutions financing and implementing research. Initially, the idea of openness concerned only the results of research and scientific publications; at present, more attention is paid to the problem of sharing scientific data, including raw data. Proceedings towards open data are intricate, as data specificity requires the development of an appropriate legal, technical and organizational model, followed by the implementation of data management policies at both the institutional and national levels. The aim of this publication was to present the development of the open data concept in the context of open access idea and problems related to defining data in the process of data sharing and data management.

Open access
Root biomass of Fagus sylvatica L. stands depending on the climatic conditions

Abstract

Fine root biomass of forest trees is a recognised indicator of environmental changes in the conditions of global climate change. The present study was carried out in six old-growth beech forests (112-140 years) located in different climatic conditions on the range border of Fagus sylvatica L. in Poland. The root biomass was investigated by soil coring method in the upper soil layers (0-5 cm, 5-15 cm and total layer 0-15 cm). The significantly greater total root biomass was found in the beech stands, which characterised by higher average precipitation and lower average annual temperatures in the period 2000-2005. The share of roots of diameter > 5 mm increased with increasing depth of top soils. Biomass of fine roots (diameter ≤ 2 mm) decreased with increasing depth of upper soil layers. The average biomass of fine roots ranged from 175.36 to 418.16 g m-2 in the soil layer 0-15 cm. The significant differences of fine root biomass were found between studied stands in the soil layers 0-5 cm and 0-15 cm. Also, it was found significant positive correlation between fine root biomass in the soil layer 0-15 cm and precipitation during the growing season in 2006. Precipitation in the study period was connected with very high rainfall in August 2006, repeatedly exceeding the long-term monthly levels. Regional climatic conditions, in that extreme weather events in growing seasons can significantly to affect changes of fine root biomass of forest trees, consequently, changes of relationships between the growth of above- and below-ground of the old-growth forest stands.

Open access