Search Results

1 - 5 of 5 items :

  • Author: D. Merkulovs x
Clear All Modify Search
Measurement of Low Concentration of Nanosized Objects Suspended in a Liquid Medium

Abstract

The new optical scheme of refractometer with temperature stabilisation 10−2 °C is developed, which allows measuring a refractive index of the sample with accuracy not worse than 10−5; dependence of refraction index on concentration of SiO2 nanoparticles in liquid suspension is obtained within the framework of the research.

Open access
Determination of Two-Liquid Mixture Composition by Assessing Dielectric Parameters 1. Precise Measuring System / Divu Šķidrumu Maisījuma Sastāva Noteikšana, Izvērtējot to Dielektriskos Parametrus 1. Precīza Mērīšanas Sistēma

Abstract

Concentration measurements are important in bioethanol industries, in the R&D areas, for chemical, medical and microbiological analyses and processing as well as for diagnostics, manufacturing, etc. The overview shows development of the structural design of a system for measuring the concentration of solutions and mixtures consisting of two dielectric liquids. The basic principles of the system's design are given along with relevant equations. The concentration of dielectric liquids is measured using devices with capacitive sensors (1-300 pF). The operational frequency of the developed measuring system is 100.000 kHz. Configuration of the system excludes some errors usually arising at measurements, and broadens its applicability. For testing, the system was calibrated for measuring the concentration of anhydrous ethanol + de-ionized water mixture. Experimental results have shown a stable resolution of ±0.005 pF at measuring the sensor capacitance and a reproducible resolution better than ±0.01% at measuring the ethanol volume concentration

Open access
Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

Abstract

The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

Open access
Determination of Contact Potential Difference by the Kelvin Probe (Part I) I. Basic Principles of Measurements

Abstract

Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measurement system to determine potential difference in real time and at high measurement resolution. Furthermore, using the electrode of a reference probe, the Kelvin method leads to both the indirect measurement of an electronic work function, or a contact potential of sample, and of a surface potential for insulator type samples.

In the article, the first part of the research, i.e., the basic principles and prerequisites for establishment of such a measurement system are considered.

Open access
Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

Abstract

In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF), which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

Open access