Search Results

1 - 1 of 1 items :

  • Author: Cristian Mitrescu x
  • Social Sciences x
Clear All Modify Search
Shielding Efficiency of a Fabric Based on Amorphous Glass-Covered Magnetic Microwires to Radiation Emitted by a Mobile Phone in 2G and 3G Communication Technologies

Abstract

A dual band mobile phone model was used to check the shielding properties of an amorphous ferromagnetic textile against the radiation emitted by the handset. Two frequencies belonging to the 2nd and 3rd generation of mobile emission technologies were used, 897 MHz and 1950 MHz. The specific absorption rate (SAR) of energy deposition in a human head phantom was measured in standardized conditions. The textile contained micrometric-diameter wires of a ferromagnetic mixture embedded in a thin glass coat and weaved in a specific way. A set of fabric orientations and configurations (layering) were provided in the experiment in order to achieve a better shielding to the phone’s radiation. Compared with the non-shielded handset, SAR deposited in the head while using the fabric-covered phone could be decreased up to 30 % of its initial value – in case of 2G technology and up to 24 % – in case of 3G technology. This type of material shows one of the highest shielding efficiencies of the electric-field component in near-field exposure conditions reported until now. A cubic curve of SAR decrease in depth of the head was revealed in both uncovered and covered handset, the effect of shielding being larger at the higher frequency.

Open access