Search Results

1 - 2 of 2 items :

  • Author: Andrzej Ubysz x
  • Porous Materials x
Clear All Modify Search

Abstract

This paper presents an experimental investigation of the discharge flow pressure in the vertical silo and the hopper due to the use of insert (top cone with trunk cone bottom). Using the Insert inside the silos is one of the proposed solutions to avoid the problems of having funnel flow pattern, which has a significant effect on the distribution of flow pressure exerted on the silo wall and the hopper. The experiments were performed on a metal cylinder prototype; corn was used as a granular material, and the wall and hopper pressure distribution was measured by a special pressure transducer. The experiments revealed an important result in the flow pressure due to the change in the location of the insert. The experiments were conducted in Damascus University laboratories.

Abstract

This paper presents a methodology based on the finite element method to simulate the flow of granular materials. Moreover, it allows proper estimation of dynamic pressure during silo discharge since this subject is still under discussion, especially for designing silos with an insert (an input element). A 2-D simulation of the discharge process of a cylindrical silo with cone and a central discharging orifice was performed. Two cases were studied, with and without using insert in silo. Numerical analysis was carried out with the help of the uncoupled arbitrary Lagrangian–Eulerian (ALE) approach. The resulting dynamic pressure distribution on the silo wall for each of the two cases was inferred numerically. The resulting values of pressure were compared with the results of the experimental study on a cylindrical metal silo to demonstrate the accuracy of the numerical model in determining the dynamic wall pressure, especially in the case of using an insert in silo during discharge.