Search Results

1 - 2 of 2 items :

  • Author: Agnieszka Kalbarczyk-Jedynak x
  • Tools and Methods x
Clear All Modify Search


The development of new technologies, the use and transport of LNG increases the number of investments that may mutually affect their safety on account of a domino effect. It means that a breakdown caused by one of the business entities may contribute to the escalation of a problem through thermal energy emission in another entity. The energy absorbed in an adjacent technological process line may cause irreparable damage despite the security measures employed. When planning an investment of a pioneering nature, one ought to consider not only the modern technologies used in a newly designed installation, but one must also pay attention to the direct neighbourhood of other industrial plants and the planned infrastructure, e.g. for gas transport or transhipment. Such a synergistic approach guarantees the safety of undertaken activities and ensures a stable, breakdown-free operation of all the business entities located in a given area. This paper discusses the issue of mutual influence exerted by two independent entities located within a small distance of one another, i.e. salt processing plant and a vessel transporting an LNG mixture. The authors considered a situation in which a breakdown occurs in an industrial plant and in which the released energy causes damage to a tank shell of an LNG carrying vessel on an inland fairway. In the examined situation the types of risks arising from LNG tank shell damage on-board an inland vessel were defined and the dimensions of the resulting danger zones were determined in a function of concentration of individual LNG components as well as the pressure and temperature generated inside the tank. The shape of the tank was also taken into consideration, since it affects fractioning in the course of the release of the substance accumulated in it. The analysis was conducted on the basis of DNV Phast 7.11 software.


Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application - significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.