Suchergebnisse

Ergebnisse 1 - 6 von 6

  • Autor: Iwona Radkowska x
Alle zurücksetzen Suche ändern

Abstract

The aim of the study was to determine the yield and chemical composition of milk from TMR-(group I) and pasture-fed Simmental cows (group II). The study was conducted with second and third lactation Simmental cows between 30 and 200 days of lactation. The present research showed that compared to TMR feeding, the use of summer pasture feeding and proper supplementation with high-energy feeds allow for higher milk yield and higher nutritive value of the milk. Compared to TMR-fed cows (group I), milk from pastured cows (group II) was characterized by a more beneficial composition of protein fractions, and a higher content of α-lactalbumin, β-lactoglobulin and lactoferrin. It also contained more vitamins A and E, calcium, magnesium and iodine, and had a significantly (P≤0.05) lower cholesterol content. The milk of cows from group II contained over twice as much CLA (1.59% of all acids) and 35% more n-3 PUFA, which resulted in a more beneficial n-6/n-3 fatty acids ratio of 2.88. In addition, this milk contained significantly (P≤0.05) less saturated fatty acids (SFA) and significantly more (P≤0.05) mono-(MUFA) and polyunsaturated fatty acids (PUFA). Consequently, the MUFA:SFA and PUFA:SFA ratios in this group were more favourable at 0.448 and 0.066, respectively. Also the content of desirable fatty acids (DFA) with hypocholesterolemic effects was higher in group II, which resulted in a more beneficial DFA:OFA ratio of 0.8 in this group. In conclusion, the use of summer pasture feeding and a proper supplemented feeding ration in Simmental cows with high-energy feeds allow for high milk yield and high nutritive value of the milk.

Abstract

A field experiment was conducted in the years 2012-2014, at the Plant Breeding Station in Polanowice near Krakow (220 m a.s.l.). The aim of the study was to investigate the effect of silicon (Si) on seed yield and quality of timothy-grass (Phleum pratense L.) of “Egida” cultivar. A univariate field experiment in randomized block design was repeated four times, and the area of the experimental plots was 10 m2. The soil on the experimental plots was a loess derived haplic phaeozem of bonitation class I. The experimental factor was spraying with a silicon formulation in the form of Optysil® fertilizer at three doses: 0.2, 0.5 and 0.8 dm3·ha−1. During the growing season, the plants were evaluated for their height, leaf greenness index (SPAD) and general condition. After harvesting, the seed yield and quality were assessed. The study revealed a significant effect of silicon on plant height, general condition and yield and quality of the seeds. The plants treated with silicon showed lower infestation rate with pathogens and pests than the control ones. Foliar fertilization with the highest dose of the silicon formulation (0.8 dm3·ha−1) caused a significant increase in seed yield as compared with control. The effects were also satisfactory in the plants treated with the formulation at 0.5 dm3·ha−1. The seeds obtained from silicon-treated plants were bigger, as revealed by the weight of 1000 seeds, and exhibited higher germination ability than the control seeds.

Abstract

The effect of three forms of active species protection in the Roman snail were studied. On the “source plot” the natural population was supported by introducing hatchlings of farmed Roman snails aged 1+, bred from adult specimens of this population. These hatchlings (age 1+) from “source plot” population were also introduced to the following two natural plots: to the “empty plot”, where the population was formed by introduction of farmed Roman snails in the second year of life (1+) into a selected area which had been emptied of the natural population; to the “inhabited plot”, where farmed Roman snails aged 1+, originating from breeding snails of the foreign population from a “source plot”, were introduced to the local natural population. It was established that introducing Roman snails aged 1+ and bred under farm conditions has a clearly positive influence on the age structure of the natural population in the studied plots. The rate of growth of these snails adjusted to the rate of growth of the specimens in the same age group belonging to the natural population. The farmed Roman snails grew most rapidly in the “empty plot” sown with fodder vegetation, more slowly in the “source plot” with access to appropriate herbaceous vegetation, and most slowly in the “inhabited plot”. The attempt to create a naturalized population in a specially adapted “empty plot” without the natural population was successful. This was determined not only by a large number of hiding places from calcareous stones available to the Roman snails but above all by the species structure of the herb flora, which met their nutritional requirements as it contained high proportions of plants such as Brassica rapa × Brassica rapa subsp. chinensis, white clover (Trifolium repens), red clover (Trifolium pratense) and the hybrid of lucerne (Medicago × varia Martyn)

Abstract

Titanium is one of a plant biostimulators. It stimulates life processes, growth and development, as well as affects physiological and biochemical pathways, often increasing biomass production and enhancing yield. An open field experiment was conducted in the years 2011-2013 in Polanowice, Poland to investigate the effects of titanium foliar fertilization on the growth of timothy grass (Phleum pratense L.). This single-factor, randomized block design study was performed in four replicates on research plots with the area of 10 m2 each. The substrate was black loess soil (chernozem) typical for top class farmland. Titanium fertilization via leaf spray was performed with a water solution of Tytanit® at three doses of 0.2, 0.4, and 0.8 dm3 · ha−1. Foliar fertilization with the highest dose of Tytanit® significantly increased seed yield, thousand grain weight and germination capacity. Moreover, the middle dose of Tytanit® (0.4 dm3 · ha−1) was enough to observe a positive effect on the sample.

Abstract

Observations were made concerning active species protection of the Roman snail. Samples were collected from three natural plots in which 3,000 marked hatchlings of farmed origin, aged 1+ (three individuals per m2), were placed in mid-May 2011. The hatchlings originated from breeding snails of the park, or ‘source’ plot. The other plots were a forest, or ‘inhabited’ plot, occupied by a foreign population and a cultivated ‘empty’ plot, which had been emptied of its natural population. By the end of June 2012, the introduced snails were aged 2+, when snails of this species reach maturity. During this period, as part of the analysis of collected samples, the snails in their final maturation period in this age group were divided into mature and immature groups. After thirteen months of observations, a greater density was observed for the farm-originated, naturalised population in the ‘empty’ plot than in the total populations for the other two plots. In the ‘empty’ plot the percentage of somatic and sexually mature farmed snails aged 2+ was significantly higher than in the same snail groups from the other two research plots. There were no statistically significant differences between the shell diameters of the mature farmed snails in all the research plots. The Roman snails of farmed origin considerably extended their territorial range, maintaining their high percentage share in the local natural populations.

Abstract

The purpose of the experiment was to assess the effect of application of zinc ammonium acetate (ZAA) on yielding, morphological features and on selected vegetation indices of timothy cv. ‘Owacja’ cultivated for seeds. Zinc ammonium acetate that has a biostimulatory effect was used foliar in the carried out experiment. The experiment was conducted in the years 2015-2017 at the experimental station in Prusy near Krakow, a part of the Experimental Station of the Institute of Crop Production of the University of Agriculture in Krakow. The field experiment was set up in a randomized block design, in four replications, and the area of experimental plots was 10 m2. Degraded Chernozem formed from loess (classified to the first class quality soil) was present on the experimental area. The experiment consisted in applying ZAA as spray at three doses: 0.214, 0.267 and 0.400 kg(ZnNH4(CH3CO2)3)/ha. Based on the obtained preliminary results, it was found that application of foliar activator in a higher dose (0.400 kg/ha) caused a significant (p ≤ 0.05) increase in seed yield, 1000-seed weight and in germination capacity in relation to the control. Improvement in morphological properties was also observed. Leaf greenness index (SPAD) was also determined. Its highest value was found in plants from the treatment where the highest dose of the zinc ammonium acetate was applied. Seeds obtained from plants treated with ZAA were riper (ripeness was measured with 1000-seed weight) and had higher germination capacity in relation to control treatments.