Search Results

1 - 2 of 2 items

  • Author: Aryapu Raviraja x
  • BY LANGUAGE: English x
Clear All Modify Search

Lead Toxicity in a Family as a Result of Occupational Exposure

This article describes an entire family manufacturing lead acid batteries who all suffered from lead poisoning. The family of five lived in a house, part of which had been used for various stages of battery production for 14 years. Open space was used for drying batteries. They all drank water from a well located on the premises. Evaluation of biomarkers of lead exposure and/or effect revealed alarming blood lead levels [(3.92±0.94) μmol L-1], 50 % reduction in the activity of δ-aminolevulinic acid dehydratase [(24.67±5.12) U L-1] and an increase in zinc protoporphyrin [(1228±480) μg L-1]. Liver function tests showed an increase in serum alkaline phosphatase [(170.41±41.82) U L-1]. All other liver function test parameters were normal. Renal function tests showed an increase in serum uric acid [(515.81±86.29) μmol L-1] while urea and creatinine were normal. Serum calcium was low [(1.90±0.42) mmol L-1 in women and (2.09±0.12) mmol L-1 in men], while blood pressure was high in the head of the family and his wife and normal in children. Lead concentration in well water was estimated to 180 μg L-1. The family was referred to the National Referral Centre for Lead Poisoning in India, were they were received treatment and were informed about the hazards of lead poisoning. A follow up three months later showed a slight decrease in blood lead levels and a significant increase in haemoglobin. These findings can be attributed to behavioural changes adopted by the family, even though they continued producing lead batteries.

Oxidative Stress in Painters Exposed to Low Lead Levels

Lead toxicity is a public health problem particularly to the children and to occupationally exposed adults. Evidence is mounting successively regarding the adverse health effects of lead at low levels. This study was undertaken to assess the antioxidant status of lead-exposed residential and commercial painters of Lucknow city in Uttar Pradesh, India.

Thirty-five painters aged 20 to 50 years who had blood lead levels ≤400 μg L-1 were selected for the study from a population of 56 male painters initially screened for blood lead. The control group included an equal number of subjects of the same age group without any occupational exposure to lead.

We studied the association between low lead level exposure and antioxidant status and found that blood lead levels in painters were approximately seven times as high as in controls [(219.2 ± 61.9) μg L-1 vs. (30.6±10.1) μg L-1, respectively]. Among the biomarkers of lead toxicity a significant decrease in the level of delta-aminolevulinic acid dehydratase [(9.13±4.62) UL-1 vs. (39.38±5.05) UL-1] and an increase in the level of zinc protoporphyrin [(187.9±49.8) μg L-1 vs. (26.4±5.5) μg L-1] were observed in painters compared to controls. Among antioxidant enzymes, painters showed a significant decrease in catalase [(56.77±11.11) UL-1 vs. (230.30±42.55) UL-1] and superoxide dismutase [(0.64±0.19) UL-1 vs. (2.68±0.62) UL-1] compared to controls. Lipid peroxidation was monitored by measuring thiobarbituric acid reactive substances (TBARS) that were expressed in terms of malondialdehyde (MDA) equivalents. Concentration of MDA in plasma was higher in painters than in controls [(7.48±1.31) nmol mL-1 vs. (3.08±0.56) nmol mL-1]. Significant changes were also observed in reduced and oxidised glutathione levels. The strong association between blood lead levels and oxidative stress markers in this population suggests that oxidative stress should be considered in the pathogenesis of lead-related diseases among people with low level environmental exposure to lead.