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ABSTRACT. The aim of this paper is to study the connection between differ-
ent properties related to β-expansions. In particular, the relation between two
conditions, both ensuring purely discrete spectrum of the odometer, is analyzed.

The first one is the so-called Hypothesis B for the G-odometers and the second
one is denoted by (QM) and it has been introduced in the framework of tilings
associated to Pisot β-numerations.

Communicated by Werner Georg Nowak

1. Introduction

In the early 1990’s Pierre Liardet visited Graz several times and there with
Peter Grabner and the third author started an intensive cooperation on dynamic
properties of digital expansions. Their main results from that period where pub-
lished in [8]. In this work, the basic theory of odometers was developed. In the
subsequent years, these aspects of arithmetic dynamics were extended by vari-
ous authors. Several PhD students of Pierre worked in this field, in particular
we want to mention Guy Barat who received his PhD in Marseilles 1995 and his
habilitation at Graz University of Technology 2006.

A special focus lies on arithmetic conditions which guarantee purely discrete
spectrum of the odometer. In [10], and before in [8], the authors posed the ques-
tion whether Hypothesis B, introduced in [8], and the finiteness property (F),
introduced in [7], are equivalent. Hypothesis B is a condition on the carries
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of the digits in the expansion of positive integers in a base system defined by a
linear recurrence.

Let (Gk)k≥0 be an increasing sequence of positive integers, with initial value
G0 = 1. Then every positive integer can be expanded as

n =

∞∑
k=0

εk(n)Gk ,

where εk(n) ∈ {0, . . . , �Gk+1/Gk� − 1} and �x� denotes the smallest integer not
less than x ∈ R. This expansion (called G-expansion) is uniquely determined
and finite, provided that for every K,

K−1∑
k=0

εk(n)Gk< GK . (1)

For short we write εk for the k-th digit of the G-expansion; G = (Gk)k≥0 is called
numeration system and the digits εk can be computed by the greedy algorithm.

We denote by KG the subset of sequences that satisfy (1) and we call its
elements G-admissible. More precisely,

KG =
{
ε0ε1ε2 · · · : ∀j ≥ 0 , ε0G0 + · · · + εjGj< Gj+1

}
.

In order to extend the addition-by-one map τ defined on N to KG the following
subset of KG is introduced:

K0
G =

{
x ∈ KG : ∃Mx, ∀j ≥Mx,

j∑
k=0

εkGk < Gj+1 − 1

}
. (2)

Put x(j) =
∑j

k=0 εkGk, and set

τ(x) =
(
ε0
(
x(j) + 1

)
. . . εj

(
x(j) + 1

))
εj+1(x)εj+2(x) . . . , (3)

for every x ∈ K0
G and j ≥ Mx. This definition does not depend on the choice

of j ≥ Mx. We extend the definition of τ to sequences x in KG\ K0
G by τ(x) =

0 = (0∞); in this way, the transformation τ is defined on KG and it is called
G-odometer.

As in [8], we consider sequences (Gk)k≥0 associated to real numbers β > 1,
defined by

Gk =

k∑
j=1

ajGk−j + 1, (4)

where a1a2 · · · is the quasi-greedy β-expansion of 1, i.e., the smallest sequence
(w.r.t. the lexicographical order) containing infinitely many non-zero digits and
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satisfying 1 =
∑∞

j=1 ajβ
−j . By [8], the G-odometer (KG, τ) is continuous if and

only if a1a2 · · · is purely periodic. Note that, when a1a2 · · · has period length d,
we have

Gk =
d∑

j=1

ajGk−j +Gk−d for all k ≥ d.

For purely periodic a1a2 · · · , it was shown in [8] also that (KG, τ) is uniquely
ergodic, an explicit formula for the unique invariant measure μ defined on KG

is provided. For more general G-expansions, unique ergodicity follows from the
work of Barat and Grabner [3]. The following condition is used to prove that
KG has purely discrete spectrum.

��������	� 
� There exists an integer b ≥ 0 such that for all k and

N =

k−1∑
i=0

εi(N)Gi +

∞∑
j=k+b

εj(N)Gj,

the addition of Gm to N , where m ≥ k + b, does not change the first k digits in
the greedy representation, i.e.,

N +Gm =

k−1∑
i=0

εi(N)Gi +

∞∑
j=k

εj(N +Gm)Gj.

The finiteness property (F) is defined in the framework of β-expansions.
Let β > 1 be a fixed real number. A β-expansion of a real number x ∈ [0, 1)
is a representation of the form

x =

∞∑
i=1

εiβ
−i,

where εi ∈ {0, 1, . . . , �β� − 1} and �x� denotes the smallest integer not less
than x. Beta-expansions were introduced by Rényi [14] and generalize standard
representations in an integral base. These expansions can be obtained via the
iteration of the so-called β-transformation Tβ defined by

Tβ : [0, 1)→ [0, 1) , x 	→ βx− 
βx� ,
where 
x� is the largest integer not exceeding x. Taking, at each iteration of Tβ ,

εi = 
βT i−1
β (x)�, we obtain the following greedy expansion of x

x =

∞∑
k=1

εkβ
−k = 0.ε1ε2ε3 . . .
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To obtain the quasi-greedy β-expansions, one can use the transformation

T̃β : (0, 1]→ (0, 1], x 	→ βx− �βx�+ 1,

which differs from Tβ only at the points of discontinuity. Then the quasi-greedy

β-expansion of 1 is given by aj = �βT̃ j−1
β (1)� − 1. Let

Vβ =
{
T̃ k
β (1) : k ≥ 0

}
.

If Vβ is finite, then β is called a Parry number. As for G-adic expansions, not
all strings of digits in {0, 1, . . . , �β�−1} are admissible. Parry [13] observed that
a sequence ε1ε2 · · · is admissible if and only if

εjεj+1 · · · < a1a2 · · · for all j ≥ 1 . (5)

A sequence is the β-expansion of some x ∈ [0, 1) if and only if it is admissible.

A significant question in this setting is for which β is the expansion in base β
of x finite, i.e., it is important to provide a description of the set

Fin(β) = {x ∈ [0, 1) : ∃k ≥ 0, T k
β (x) = 0}.

Note that many authors rather consider x ∈ [0,∞) in the definition of Fin(β),
with the condition that T k

β (β
−nx) = 0 for x ∈ [0, βn). A number β is said to have

the finiteness property if

Fin(β) = Z[β−1] ∩ [0, 1) (F)

holds. This property was introduced by Frougny and Solomyak [7], and they
proved [7, Lemma 1] that if (F) holds, then β is a Pisot number. An algebraic
integer β > 1 is called a Pisot number if all its Galois conjugates have modulus
less than 1. However, there exist Pisot numbers that do not fullfill (F), such as
all numbers with non purely periodic quasi-greedy β-expansion of 1. In [7], it is
also shown that if a1 ≥ a2 ≥ a3 ≥ · · · , then

Z+[β
−1] ∩ [0, 1) ⊆ Fin(β) , (PF)

where Z+ = Z ∩ [0,∞). This condition is usually referred to as the positive
finiteness condition (PF), and it is equivalent to say that

⋃
n≥0 β

nFin(β) is closed

under addition. Akiyama [2, Theorem 1] proved that if β > 1 is a real number
satisfying (PF), then β satisfies (F) or a1 ≥ a2 ≥ · · · . This result will be used
in the proof of Lemma 4.

In the present paper we show that Property (F) does not imply Hypothesis B.
We show that we also need the so-called quotient mapping condition

rank
(〈Vβ − Vβ〉Z

)
= deg(β)− 1, (QM)

where 〈Vβ−Vβ〉Z denotes the Z-module spanned by differences of elements of Vβ .
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This condition was introduced by Siegel and Thuswaldner [15] in the framework
of tilings associated to Pisot substitutions, and for β-expansions in the present
form in [12]. Moreover, if we allow sequences a1a2 · · · that are not purely peri-
odic, then Hypothesis B does not imply (F) but only (PF).

������ 1� Let β > 1. Hypothesis B holds for the sequence (Gk)k≥0 associated
to β if and only if conditions (PF) and (QM) hold.

Since 〈Vβ〉Z = Z[β], condition (QM) holds when #Vβ = deg(β), i.e., when G
satisfies a linear recurrence with the minimal polynomial of β as characteristic
polynomial. A class of non-trivial examples of bases satisfying (QM) was given
in [15, 12] by β3 = tβ2 − β + 1, t ≥ 2; in this case, we have #Vβ = deg(β) + 1.
The following theorem gives a characterization of (QM) for β > 1 satisfying

#Vβ = deg(β) + 1 .

������ 2� Let β > 1 be such that

#Vβ = deg(β) + 1, with T̃
deg(β)+1
β (1) = T̃ k

β (1), 0 ≤ k ≤ deg(β),

i.e.,
a1a2 · · · = a1 · · · ak (ak+1 · · · adeg(β)+1)

∞.

Then β satisfies (QM) if and only if deg(β)− k is even.

In particular, when β is a simple Parry number with #Vβ = deg(β) + 1,
we have k = 0 and thus (QM) holds if and only if deg(β) is odd, e.g.,
for β3 = 3β2 − 2β + 2 or β3 = 3β2 − β + 1. Of course, it would be interest-
ing to know what happens if we drop the condition #Vβ = n = deg(β) + 1 and
if there still exist numbers β for which (QM) holds.

We conclude with a theorem showing that the odometer has purely discrete
spectrum when β is a Pisot number satisfying (QM), even when (PF) does not
hold. Its proof is based on recent results by Barge [5].

������ 3� Let β be a Pisot number satisfying (QM). Then the odometer
(KG, τG) associated to β has purely discrete spectrum (with respect to the unique
invariant measure).

We do not know whether (QM) is a necessary condition for purely discrete
spectrum.
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2. Quotient mapping condition

We first explain the relation of the condition (QM) above to the quotient
mapping condition defined in [15] for substitutions. Let σ be a primitive sub-
stitution on a finite alphabet A and Mσ =

(|σ(j)|i)i,j∈A
its incidence matrix,

where |σ(j)|i denotes the number of occurrences of the letter i in σ(j).

Let v = (v1, v2, . . . , vn) be a left eigenvector of Mσ to the dominant eigenvalue
β > 1, with vi ∈ Q(β), and

Lσ = 〈vi − vj : i, j ∈ A〉Z
be the Z-module generated by the differences of coordinates of v. Note that
v and Lσ are only defined up to a constant factor, which plays no role in the
following. The substitution σ satisfies the quotient mapping condition if

rank(Lσ) = deg(β)− 1.

This definition is equivalent to Definition 3.13 in [15].

Let now β > 1 be a Parry number, with #Vβ = n, and a1 · · · ak(ak+1 · · · an)ω
its quasi-greedy β-expansion of 1. Then the β-substitution σβ is defined on
A = {1, 2, . . . , n} by

σβ : i 	→ 1 1 · · · 1︸ ︷︷ ︸
ai times

( i+ 1) if 1 ≤ i < n,

n 	→ 1 1 · · · 1︸ ︷︷ ︸
an times

(k + 1).

Then
(
1, T̃β(1), . . . , T̃

n−1
β (1)

)
is a left eigenvector of σβ , and Lσβ

= 〈Vβ − Vβ〉Z,
thus (QM) holds if and only if the β-substitution satisfies the quotient mapping
condition of [15].

For an algebraic number β with r real and s complex conjugates β1, . . . , βr,
βr+1, . . . , βr+s, set

δ∞ : Q(β)→ Rr × Cs, x 	→
(
x(1), . . . , x(r), x(r+1), . . . , x(r+s)

)
,

where x 	→ x(i) is the Galois embedding Q(β)→ R or C that maps β to β(i).

�����	�	�� 1� A primitive substitution σ satisfies the quotient mapping con-
dition if and only if there exists c ∈ Q(β) such that, for the scalar product,
δ∞(c) · δ∞(vi) = 1 for all i ∈ A.

P r o o f. If the quotient mapping condition holds, then there exists c ∈ Q(β)
such that δ∞(c) · δ∞(x) = 0 for all x ∈ Lσ . This implies that

δ∞(c) · δ∞(vi) = δ∞(c) · δ∞(vj) for all i, j ∈ A, with q = δ∞(c) · δ∞(vi) ∈ Q.

Then we have δ∞(c/q) · δ∞(vi) = 1 for all i ∈ A.
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For the other direction, suppose that δ∞(c) · δ∞(vi) = 1 for all i ∈ A, thus
δ∞(c) · δ∞(x) = 0 for all x ∈ Lσ. Then Lσ has rank at most deg(β) − 1. Since
〈vi : i ∈ A〉Z has full rank deg(β), the rank of Lσ is also at least deg(β)− 1. �

Note that δ∞(c)·δ∞(vi)=1 for all i∈Ameans that the vector (1, 1, . . . , 1)∈Zn

lies in the subspace spanned by the left eigenvectors of Mσ to the eigenvalues
that are Galois conjugates of β.

We can now prove the characterization of (QM) for β with #Vβ = deg(β)+1.

P r o o f o f T h e o r e m 2. If #Vβ = n = deg(β)+1, then the eigenvalues ofMσβ

are the conjugates of β and −1. Note that 1 cannot be an eigenvalue of Mσβ

because the characteristic polynomial of Mσβ
is(

xn − a1x
n−1 − a2x

n−2 − · · · − an
)− (

xk − a1x
k−1 − a2x

k−2 − · · · − ak
)
. (6)

The right eigenspace to the eigenvalue −1 is spanned by w = t(w1, w2, . . . , wn)
with

wi =

{
(−1)i if k < i ≤ n,

(−1)i (1− (−1)n−k
)

if 1 ≤ i ≤ k.

Indeed, we have

wi + wi+1 = 0 for 1 ≤ i < k and k < i < n, and wk + wk+1 + wn = 0.

By Proposition 1, (QM) is equivalent to the vector 1 = (1, 1, . . . , 1) lying in the
subspace spanned by the left eigenvectors corresponding to the conjugates of β.
This means that 1 is orthogonal to w, i.e., that n− k is even. �

3. Equivalence of Hypothesis B and (PF) & (QM)

In this section, let (Gk)k≥0 be a sequence associated to β > 1, as defined
in (4). If β is a Parry number, then we can write

Gk = (1, 1, . . . , 1)Mk
σβ

t(1, 0, . . . , 0). (7)

����� 1� Property (QM) holds if and only if (Gk)k≥0 satisfies a recurrence
with the minimal polynomial of β as characteristic polynomial.

P r o o f. If (QM) holds, then, by (7) and Proposition 1, Gk satisfies a recurrence
with the minimal polynomial of β as characteristic polynomial.

If (QM) does not hold, then 1 = (1, 1, . . . , 1) does not lie in the subspace
spanned by the eigenvectors corresponding to the conjugates of β. Let 1 = b+c
be the decomposition in a vector b lying in this subspace and c lying in the
complementary invariant subspace. By the structure of Mσβ

, we obtain that

cMk
σβ

t(1, 0, . . . , 0) �= 0 for some k ≥ 0, thus Gj does not satisfy a recurrence

with the minimal polynomial of β as characteristic polynomial. �
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����� 2� Hypothesis B implies (PF), in particular β is a Pisot number.

P r o o f. The proof is done by contradiction. Assume that (PF) does not hold.
Then there is some y ∈ Z+[β

−1] ∩ [0, 1) with y /∈ Fin(β). We can choose y
minimal in the sense that x = y − β−n ∈ Z+[β

−1] ∩ Fin(β) for some n > 0.

Let x =
∑�

j=1 xjβ
−j be the (finite) β-expansion of x, y =

∑∞
j=1 yjβ

−j the

(infinite) β-expansion of y. Suppose that Hypothesis B holds for some b > 0.

Choose h > �+b such that yh �= 0, and set Nk =
∑�

j=1 xjGk−j , N
′
k = Nk+Gk−n

for k ≥ �. We show that yj = εk−j(N
′
k) for all 1 ≤ j ≤ h and sufficiently large k,

contradicting Hypothesis B since

Nk =

∞∑
j=k−�

εj(Nk)Gj and εk−h(Nk +Gk−n) = yh �= 0 = εk−h(Nk).

To find theG-expansion ofN ′
k, recall thatGj = c βj+O(αj) for some constant

c > 0 and 0 < α < β; see, e.g., [6, 11]. We have thus N ′
k = c y βk+O(αk)+O(1),

and

N ′
k −

i∑
j=1

yjGk−j = c T i
β(y) β

k−i +O(αk−i) +O(1)

for all 1 ≤ i ≤ k. As 0 < T i
β(y) < 1 for all i ≥ 0, we obtain that

0 ≤ N ′
k −

i∑
j=1

yjGk−j < Gk−i

for all 1 ≤ i ≤ h, provided that k is sufficiently large. This proves that y1, . . . , yh
are the digits of the greedy G-expansion of N ′

k, i.e., yj = εk−j(N
′
k) for 1 ≤ j ≤ h.

Finally, by [2, Theorem 1] and [7, Lemma 1], the condition (PF) implies that
β is a Pisot number. �

����� 1� Condition (PF) does not imply Hypothesis B. Moreover, even (F)
would not be sufficient. As an example let β be the smallest Pisot number,
β3 = β +1. Then we have a1a2 · · · = (10000)∞, and G satisfies the linear recur-
rence Gk = Gk−1 + Gk−5. Its associated characteristic polynomial is
x5−x4−1, which is reducible in the product (x3−x−1)(x2−x+1). We know that
(F) holds by [1]. However, Hypothesis B does not hold because of the following
relation among the elements of the recurrence.

Gk+3 = Gk+1 +Gk +

⎧⎪⎨
⎪⎩

0 if k ≡ 1 mod 3,

−1 if k ≡ −1, 0 mod 6,

1 if k ≡ 2, 3 mod 6 .
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This property, easily provable by induction, shows that Hypothesis B does not
hold, since if we sum up Ñ = Gn and Gn+1, then in the second case considered
above the first digit will change. More generally, we have the following lemma.

����� 3� Hypothesis B implies (QM).

P r o o f. We know from Lemma 2 that β is a Pisot number; let
∑d

i=0 piβ
i be

its minimal polynomial. Since Gk = c βk + O(αk), with c > 0 and 0 < α < β,
we have

fk =

d∑
i=0

piGk+i = O(αk).

If (QM) does not hold, then Lemma 1 implies that fk �= 0 for infinitely many k.
Assume that fk > 0, the case fk < 0 being symmetric. Hypothesis B implies that
the G-expansion of

∑
0≤i≤d: pi>0 piGk+i has no small terms, more precisely it

ends with at least k−∑1≤i≤d: pi>0 pib zeros. It also implies that the G-expansion

of
∑

1≤i≤d: pi<0 |pi|Gk+i+ fk has small terms equal to fk for sufficiently large k.

This contradicts that∑
1≤i≤d: pi>0

piGk+i =
∑

1≤i≤d: pi<0

|pi|Gk+i + fk. �

����� 4� The properties (PF) and (QM) imply Hypothesis B.

P r o o f. By (QM) and Lemma 1, arithmetic operations, that is addition and
carries, on the strings of digits defining G-expansions can be performed in the
same way as for β-expansions. As (PF) implies that β is a Pisot number, there
exists by [7, Proposition 2] some L such that, for each x ∈ Z+[β

−1]∩ [0, 1−β−n)
with T �

β(x) = 0, � ≥ n, we have

T �+L
β (x+ β−n) = 0.

This implies that addition of Gm to N =
∑∞

j=k+L εj(N)Gj, m ≥ k+L, does not

change the first k digits in the G-expansion. Let furthermore L′ be the longest
run of 0’s in the quasi-greedy β-expansion of 1. Then addition of M < Gk−L′

to N =
∑∞

j=k+L εj(N)Gj or N + Gm =
∑∞

j=k εj(N + Gm)Gj is performed by
concatenating the corresponding G-expansions. Therefore, Hypothesis B holds
with b = L+ L′. �

Lemmas 2, 3 and 4 prove Theorem 1.
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4. Purely discrete spectrum

The set Kβ of β-admissible sequences is

Kβ =

{
(εj)j≥0 ∈ {0, 1, . . . , �β� − 1}N :

k∑
j=1

εk−j

βj
∈ [0, 1) for all k ≥ 1

}

and is equal to KG. Similarly to δ∞ in Section 2, we define δ′∞ for β = β1 ∈ R as

δ′∞ : Q(β)→ Rr−1 × Cs, x 	→
(
x(2), . . . , x(r), x(r+1), . . . , x(r+s)

)
,

and

δ′β : Z[β]→ K′
β = Rr−1 × Cs × lim←−Z[β]/βnZ[β], x 	→ (

δ′∞(x), δf(x)
)

with the natural projection δf from Z[β] to the inverse limit lim←−Z[β]/βnZ[β] .
Setting

ϕβ : Kβ → K′
β , (εj)j≥0 	→

∞∑
j=0

δ′β
(
εjβ

j
)
,

the Rauzy fractal or central tile is defined by

Rβ = ϕβ(Kβ)

(see, e.g., [12]). Note that δ′β is defined differently in [12]; the relation to our

inverse limit definition is described in [9].

P r o o f o f T h e o r e m 3. For each x ∈ KG with τG(x) �= (0, 0, . . .), we have

ϕβ

(
τG(x)

)− ϕβ(x) = δ′β
(
βk − a1β

k−1 − a2β
k−2 − · · · − ak

)
= δ′β

(
T̃ k
β (1)

)
for some k ≥ 0, thus

ϕβ

(
τG(x)

)− ϕβ(x) ∈ δ′β(Vβ) ⊂ δ′β(1) + δ′β(Lβ),

with Lβ = 〈Vβ−Vβ〉Z. By [12, Theorem 4], (QM) and the weak finiteness property

∀x ∈ Z[β] ∩ [0, 1) ∃ y ∈ [0, 1− x), k ∈ N : T k
β (x+ y) = T k

β (y) = 0 (W)

imply that Rβ is a fundamental domain of Z ′/δ′β(Lβ). Moreover, the unique

invariant measure μ of (KG, τG) is given by μ = λ ◦ ϕβ , where λ is the Haar
measure on K′

β , and ϕβ is injective up to a set of μ-measure zero.

By [5], every Pisot number β satisfies (W). Therefore, τG is measurably con-
jugate to the translation by δ′β(1) on the compact group Z ′/δ′β(Lβ) and has thus
purely discrete spectrum. �
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In [10], the spectrum of cartesian products of odometers is investigated.
In particular, linear recurrences G1, . . . , Gs of the multi-nacci type

Gi
n = aiGn−1 + · · ·+ aiGi

di

of orders d1, . . . , ds with pairwise coprime positive integers ai (i = 1, . . . , s) are
considered. It is shown that under a certain assumption on the independence
of the dominating characteristic roots β1, . . . , βs of the recurrences G1, . . . , Gs

the cartesian product of the corresponding odometers is uniquely ergodic.
The correct independence condition is βi �∈ Q(βj) (for all i �= j), whereas in [10]
a wrong condition is stated. Note that in general such result does not hold.

When the third author gave a seminar talk in Luminy (2013), Pierre Liardet
was in the audience and gave interesting comments on the structure of the spec-
trum of cartesian products of odometers. This was the last time when the third
author could meet Pierre. His death is a great loss for mathematics as well as
for his family and all his friends. For a detailed obituary, see [4].

���������������� The first and third author are supported by the
Austrian Science Fund (FWF) : Project F5510, which is a part of the Special
Research Program “Quasi-Monte Carlo Methods: Theory and Applications ”.
Furthermore they have received support by the Doctoral School
“Discrete Mathematics” at TU Graz. The second author is supported by the
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Université Paris Diderot – Paris 7
Case 7014, 75205 Paris Cedex 13
FRANCE

E-mail : steiner@liafa.univ-paris-diderot.fr

Robert F. Tichy
Graz University of Technology
Institute for Analysis and Number Theory
Steyrergasse 30, 8010 Graz
AUSTRIA

E-mail : tichy@tugraz.at

186


	1. Introduction
	2. Quotient mapping condition
	3. Equivalence of Hypothesis B and (PF) & (QM)
	4. Purely discrete spectrum
	REFERENCES

