
Transport and Telecommunication Vol. 21, no.1, 2020 

47 

 
Transport and Telecommunication, 2020, volume 21, no. 1, 47–60 

Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia 

DOI 10.2478/ttj-2020-0004 

 

EXPLORING THE POTENTIAL OF WEB BASED 

INFORMATION OF BUSINESS POPULARITY FOR 

SUPPORTING SUSTAINABLE TRAFFIC MANAGEMENT 

Jorge M. Bandeira
1
, Pavlos Tafidis

2
, Eloísa Macedo

1
, João Teixeira

1
,  

Behnam Bahmankhah
1
, Cláudio Guarnaccia

3
, Margarida C. Coelho

1
 

 

1 University of Aveiro, Centre for Mechanical Technology and Automation (TEMA), Department of 

Mechanical Engineering, Campus Universitário de Santiago,  

3810-193 Aveiro, Portugal 

jorgebandeira@ua.pt, macedo@ua.pt, jpteixeira@ua.pt, 

behnam.bahmankhah@ua.pt,margarida.coelho@ua.pt 
2 Hasselt University - Campus Diepenbeek Agoralaan Gebouw H - B-3590 Diepenbeek 

Kantoor H-B103b, Belgium  

pavlos.tafidis@uhasselt.be  
3 University of Salerno, Department of Civil Engineering 

via Giovanni Paolo II 132, Fisciano, Italy 

cguarnaccia@unisa.it 

 
 

This paper explores the potential of using crowdsourcing tools, namely Google "Popular times" (GPT) as an alternative 

source of information to predict traffic-related impacts. Using linear regression models, we examined the relationships between GPT 

and traffic volumes, travel times, pollutant emissions and noise of different areas in different periods. Different data sets were 

collected: i) crowdsourcing information from Google Maps; ii) traffic dynamics with the use of a probe car equipped with a Global 

Navigation Satellite System data logger; and iii) traffic volumes. The emissions estimation was based on the Vehicle Specific Power 

methodology, while noise estimations were conducted with the use of “The Common Noise Assessment Methods in Europe” 

(CNOSSOS-EU) model. This study shows encouraging results, as it was possible to establish clear relationships between GPT and 

traffic and environmental performance.  

Keywords: ICT, Google Maps, Crowdsourcing, Noise, missions, Sustainable Transport 

1. Introduction  

Road transportation is responsible for many external effects, such as air pollution, accidents, traffic 

congestion and noise (Santos, 2017). The reduction of the aforementioned negative externalities is one of 

the key objectives of the European Commission, namely by increasing the efficiency of the transportation 

system, taking full advantage of digital technologies (EC 2019). The global financial crisis that started a 

decade ago has also affected the transportation sector. In recent years, funding for services and 

infrastructure has been significantly reduced, which resulted in the decline of the reliability and 

effectiveness of transportation systems. Under the current circumstances, the collection of high quality 

data to support their operation has become more complicated taking also into consideration that 

traditional methods are usually costly, lengthy, limited to specific areas (Tafidis et al., 2017) and the data 

have poor quality (Serna et al., 2017). However, the possibilities that arise from the recent advancements 

in communication technologies can provide alternative sources of information that will overcome the 

current barriers, offering real-time data that captures the patterns, needs and experiences of road users.  

Social media and web services can be considered both as cost efficient and effective data input, 

having valuable information to be harvested, although their use in transportation planning and 

management is still sporadic (Majumdar, 2017). This type of information has the feature to complement 

or even replace in certain cases traditional data after distinguishing the useful from the useless data and 

examining its utility and reliability. In the last years, many studies have explored the potential of using 
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web-based data sources for transportation planning, management or operation (Rashidi et al., 2017). The 

real-time information that they provide allows commuters to improve their travel experience and 

transportation authorities to enhance their services quality. More specifically, it can allow city and 

transportation planners to gain a better understanding of mobility patterns and needs, while for individuals 

to move freely and reducing travel time (Tasse & Hong, 2014). 

Human mobility is possible to be explained by 10 to 30% of social relationships and 50 to 70% by 

periodic behaviour (Cho et al., 2011). Many initiatives also tried to estimate traffic-related impacts using 

alternative sources of information. Tostes et al. (2013) tried to estimate traffic jams using information 

acquired from Bing Maps in the city of Chicago. Ni et al. (2014) developed a prediction model of short-

term traffic flow based on Twitter features and focused on traffic conditions prior to sport events. Social 

media data has also been examined as a new data source to estimate travel demand. Location-based social 

networking (LBSN) data was used to estimate origin-destination (OD) matrix and when compared to 

traditional methods it can provide much higher temporal resolution at a lower cost (Yang, 2017; Jin, 

2014). In another study, Lee et al. (2013), estimated an OD matrix based on social-media travel data 

acquired from Twitter and results were compared with those of a traditional travel demand model in the 

Greater Los Angeles metropolitan area and the preliminary findings were especially encouraging. Under 

the same context, Chaniotakis et al. (2016) examined data from different social media and compared it 

with conventional travel-diary surveys from the city of Thessaloniki, Greece, with the aim of identifying 

alternative sources of information to improve Intelligent Transportation Systems applications.  

A growing body of research also explores potential correlations between traffic-impacts and data 

from social media. For instance, Ribeiro et al. (2012) found a mentionable correlation between real traffic 

conditions and data from Twitter regarding traffic conditions in Belo Horizonte, Brazil, while Tian et al. 

(2016) validated traffic incidents mentioned by social media users by comparing them with field cameras 

data in Austin, Texas. Pereira et al. (2015) developed a probabilistic data analysis model aimed to specify 

regular and nonregular overcrowding hotspots in public transportation systems using also data from social 

networks. The results showed the potential applicability of the proposed model in different cases. Finally, 

Teixeira et al. (2017) and Tafidis et al. (2017) explored the correlations between traffic congestion, 

emissions, speeds and traffic volumes with Google Maps traffic data. The preliminary findings showed 

encouraging results in the prediction of emission impacts in urban arterials. Nair et al (2019) used Google 

APIs for managing traffic speed data. The API calculates a representative speed value from the available 

crowdsourced data on a road link at any time of the day and estimated a congestion index for 29 major 

cities. Google speed data reflects loop detector speed both at the corridor level and at smaller of road 

sections within a corridor (Nair et al., 2019). 

Popular times is a feature in Google Maps that was launched in July 2015 and allows users to have 

a better insight on a place’s busy time periods. With such information, people are assisted in their 

decision-making process regarding the best time to visit a specific place or area.  

According to the best knowledge of the authors, no research has focused on analysing the potential 

of crowdsourcing information systems such as Google Popular times (GPT) to predict traffic conditions, 

greenhouse gases, critical air pollutants and noise emissions in different contexts yet. This article intends 

to fill this research gap. This information can be an add value to existing traffic information provided (e.g. 

google traffic) given that:  

• In links with low traffic volumes (but with circumstantially high demand levels) there is still no 

traffic information, 

• Existing information reflects current values or historical trend data, not allowing to anticipate 

circumstantial short-term congestion and pollution. 

2. Methodology 

2.1. Methodological Approach 

In this paper, we empirically analyse whether GPT may be a reliable source to predict the demand 

of several attraction poles of mobility in cities, and at the same time if it can explain the variability in 

traffic activity and related environmental impacts in the surrounding areas. Specifically, this study 

focused on exploring relationships between GPT data with traffic volumes, travel times, emissions and 

traffic noise in different areas and over different periods. The methodology is based on three fundamental 

stages: 1) empirical work, 2) modelling of traffic-related impacts and, 3) statistical analysis and model 

development (see Figure 1). 
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Figure 1. Methodology overview 

2.2. Data collection 

2.2.1. Activity Data  

Google Maps presents popular times with the use of a bar chart. Popularity for any given hour is 

shown relative to the typical peak popularity for the business for the week, so no absolute values are 

provided. This information describes how busy a certain place is during different times of the day and 

based on average popularity over the last several weeks. Live visit data is updated in real-time and 

overlaid on the popular times graph. In order to obtain a discrete variable that can be correlated with the 

other parameters of the study, we developed a methodology to transform the qualitative information 

provided in GPT into a quantifiable variable. We assume that the minimum value of the bar is zero and 

the maximum is one. Then, we divided it in ten equal parts and we assigned a value between 1 (maximum 
occupancy) and 0 (minimum occupancy) for real-time bar in pink (Figure 2).  

During the experiment, a print screen of this information was stored all 15 minutes to enable a 

subsequent graphical analysis of the information. 
 

 

Figure 2. Example of information provided by GPT and decimal grid developed to assign a discrete variable  

to real-time popularity information (0.4 in the example provided) 

We explored two methodological approaches to find the aforementioned relationships based on a 

standard interval of 15 minutes. In the first approach, values of each studied variable were compared to 

GPT value in the end of the respective interval, while in the second the comparison was made with the 

value in the end of the next 15 minutes period. We only present the results regarding the first approach 

since the correlations were slightly higher. 
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Furthermore, we also examined the reliability of this tool to estimate demand in situ, by assessing 
the relationship between the parking occupancy of a specific commercial area and the popularity of that 
location provided by GPT. 

2.2.2. Traffic data 

Different traffic data were gathered in order to support the assessment of demand, and assessment 
of traffic impacts. 

i) Traffic dynamics – A light-duty vehicle equipped with a GNSS data logger was used to gather 
travel time, instantaneous speed, and acceleration. Each car performed 10 runs per hour for each link. To 
increase the heterogeneity of the driving behaviour different drivers were used (Downling et al., 2014), 
which drove according the perception of traffic flow (Turner et al., 1998). These data will serve as input 
on emission models. 

ii) Traffic volumes - with the use of cameras and manual counts 
iii) Number of vehicles in the parking lot  

2.3. Modelling traffic-related impacts 

2.3.1. Emission Estimation  

For the estimation of the emissions, we used the methodology based on the vehicle specific power 
(VSP), since it allows the estimation of instantaneous emissions from second-by-second vehicle 
dynamics. VSP accounts for the effect of different driving modes (acceleration, deceleration, cruise, 
idling), and also includes a wide range of engine displacement values and can be applied to the 
Portuguese and Spanish car fleet (US EPA, 2014). VSP is a function of acceleration and deceleration, 
instantaneous speed and slope expressed as: 

                                                      (1) 

where: v = is the vehicle speed (m/s), a is the= vehicle acceleration/deceleration rate (m/s2), and grade = 
represents the vehicle vertical rise divided by the horizontal run (%).  

VSP bins are categorized into 14 modes and each mode is defined by a range of values associated 
to an emission rate (Coelho et al., 2009). We focus on the estimation of CO2 and NOx emissions 
(respectively, a greenhouse gas and a critical local pollutant - precursor to troposphere ozone and with 
demonstrated effects in human health).  

For the purpose of this study, we considered the following distribution fleet composition:  
• 38% of light duty gasoline vehicles and 62% of light duty diesel vehicles for the Portuguese 

studied areas;  
• 44% of light duty gasoline vehicles and 56% of light duty diesel vehicles for the Spanish 

studied areas based on the respective national vehicle classification (EMISIA, 2017). 
Although some deviations may occur regarding the estimation of total emissions, the authors 

assume this approach as suitable to reflect the relative emissions variation associated to different driving 
behaviour and congestion levels in the studied road links. 

2.3.2. Noise Estimation  

Though the team performed noise measurements using a sound level meter the following noise 
results are based on numerical simulation for two main reasons:  

1) In several periods, the weather conditions (high wind speed) did not allow to collect reliable data;  
2) The background noise varies significantly and inconsistently in the study areas. 
Therefore, for the traffic noise estimation we used “The Common Noise Assessment Methods in 

Europe” (CNOSSOS-EU). This model is a uniform approach to noise assessment in European countries. 
CNOSSOS is based on the assessment of the noise produced by a single vehicle, summing the rolling and 
the propulsion noise per each frequency octave (in the range 125 Hz – 4000 Hz). The former noise has a 
log dependence by the mean speed of the traffic flow, while the latter has a linear dependence. Once the 
power of the source "vehicle" is evaluated for each category of vehicles (passenger cars, medium heavy 
vehicles, heavy-duty vehicles), the presence of a given number of vehicles per hour and the propagation 
model are implemented. A line source is assumed, and the formula can include favourable and 
homogeneous conditions. Several attenuation factors, such as reflections, diffractions, atmospheric 
effects, ground absorption, etc., can be included in the formula, in order to better simulate the phenomena 
that affect the propagation (Kephalopoulos et al., 2012). The noise emission of a traffic flow per each link 
considers the average speed recorded with the GNSS data logger, while the vehicle flow considers the 
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video data and manual counts. Finally, with the use of Equation (2), we estimated noise levels for each 
street  

                           , 

where: "Leq = is the sum of the estimated equivalent sound levels of each direction, respectively, Li and Lj." 

2.4. Regression analysis 

For each 15-minute period, the decimal value of the GPT was matched with observed traffic 
volume, and estimated system CO2, NOx and noise emissions. The relationships between the predictor 
(GPT) and the response variables were examined using linear models. Specifically, we focused on linear 
models to describe data, since they are simple and easily interpretable, and application of higher order 
polynomials (or even more complex models) may result in overfitting (James et al., 2013).  

2.5. Case Studies 

The case studies are located over 2 representative medium-sized European cities, (Aveiro, Portugal 
and Badajoz, Spain). Medium-sizes urban areas are particularly attractive test beds to explore the 
potential of web-based solutions for supporting sustainable traffic management due to three main reasons: 

1) Providing public transport in relatively low-density areas is usually cost-inefficient and the 
mobility tends to be dominated by private and individual transport (Bandeira et al., 2018), 

2) Notwithstanding the lower absolute traffic volumes when compared to large cities, road traffic 
remains a major contributor to harmful air pollution (Bandeira et al., 2011). 

3) These cities have limited financial resources to invest in advanced traffic monitoring and 
management systems. 

In a second phase, we selected cities with different characteristics related to demographics, land 
use and shopping patterns. The city of Aveiro and surrounding area has a population of 77.436 (INE, 
2017). The region is characterized by a dispersed distribution of population, for presenting an irregular 
urban form with high urban sprawl (Meneses, 2010). Some important commercial areas are located 
outside the urban core. The city of Badajoz has 150 530 (INE, 2018) inhabitants but there is a clear 
delimitation of the compact urban area. Moreover, it contains an important commercial area located in the 
city Centre. Shopping centres are closed at Sundays unlike what happens in Aveiro. 

Lastly, we examined three important commercial hotspots with different characteristics regarding 
its integration in the mentioned urban context (see Figure 3). Two of them are in the city of Aveiro in 
Portugal, while the last one is in Badajoz, Spain. The study area (a) is Aveiro Shopping Center, which is 
located in the industrial zone of the city and surrounded by four road links. Link l1 is the main entrance to 
the commercial zone, while l2 is the main exit of it. Links l3 and l4 connect the city of Aveiro with the 
industrial zone. The studied links are located between roundabouts and there are various unsignalized 
intersections with minor roads from both sides. One crosswalk interrupt both links l1 and l2.  

 

Figure 3. Aerial view of study areas and experimental set up scheme (Google Earth) a) Aveiro Shopping Center, Aveiro, Portugal, 

b) Glicínias Plaza Shopping Center, Aveiro, Portugal, c) Hypermarket, Badajoz, Spain. 
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The second study area (b) is Glicínias Plaza Shopping Center, which is within the urban area of the 

city. The main links that lead to (link l5) and out (link l6) of the shopping centre are examined. The links 

are between roundabouts, one crosswalk interrupts the links and in link l6 there is the only entrance and 

exit to a gas station. The third studied area (c) is a Hypermarket in Badajoz, Spain. Links l7 and l8 

represent, respectively, the main entrance and exit to the shopping centre located near the outer limits of 

the city. The land use of this area is mainly residential. The studied road links l7 and l8 connect two 

roundabouts and contain three crosswalks. 

3. Results and Discussion 

In this section, we summarize and discuss the main results. First, we analyse the reliability of the 

GPT to predict total demand in a commercial area. Then, we present the various relationships between 

GPT and traffic volumes, CO2 and NOX emissions. Finally, we provide a seasonal comparison of GPT's 

ability to predict traffic impacts in different periods.  

3.1. Reliability of Popular times 

As a first step of the analysis, we assess the reliability of GPT to predict overall demand in the 

case study of Aveiro Shopping Center. As already, mentioned, the commercial area is located in the 

industrial zone of the city and the low frequency level of public transport services encourage the use of 

private vehicles. To test the reliability of GPT as a predictor variable for monitoring the area’s popularity, 

we monitored the number of vehicles in the parking lot in 15 minutes intervals during the study period. 

The analysis (Figure 4) showed that there is a high correlation between the parking occupancy and GPT 

(R2= 0.89). The vehicle occupancy rate has been also recorded (1.81 persons per vehicle), which allowed 

to estimate that an increase of 0.1 in GPT scale represents an increase in demand of approximately, 142 

vehicles and 248 visitors. Understandably, this response would change in other case studies according to 

the overall attractiveness of each commercial area.  

 

 

 

Figure 4. Correlation between Popular times and parking lot occupancy; b) relative distribution of vehicle occupancy 
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3.2. Potential of GPT to predict traffic demand and environmental performance 

As it can be seen in Table 1, the majority of the examined linear correlations presented good 

results with statistically significant values (p-value<0.05), which means that the chosen models 

significantly predict the response variable. In general, higher coefficient of determination values were 

obtained for traffic volumes, CO2 and noise estimations, meaning GPT can explain their variability. 

Regarding NOx emissions, the coefficient of determination tend to be lower as NOX emissions is strongly 

affected by drivers’ behaviour. The linear relationships are not so evident for links l3 and l4 during the 

weekend maybe because there are no significant traffic flows from those links to the shopping area.  

Table 1. Regression parameters of Relationship between model response variables and GPT  

Links Study Period Variables 

Coefficients of the Model R
2
 

p-value 

a b 
(Coefficient of  

determination) 

ll1 weekday 

Traffic volumes 154.11 35.161 0.88 < 0,05 

System CO2 8450.9 256.63 0.93 < 0,05 

System NOx 29.76 -3.271 0.76 < 0,05 

ll2 
weekday 

Traffic volumes 186.39 15.599 0.85 < 0,05 

System CO2 7517.6 168.12 0.82 < 0,05 

System NOx 28.076 -2.743 0.67 < 0,05 

ll1, l2 Noise 4.982 54.503 0.85 < 0,05 

ll3 weekday 

Traffic volumes 454.17 -85.09 0.84 < 0,05 

System CO2 36971 13607 0.6 < 0,05 

System NOx 77.188 -27.36 0.59 < 0,05 

ll4 
weekday 

Traffic volumes 82.264 98.755 0.53 < 0,05 

System CO2 12396 10989 0.53 < 0,05 

System NOx 36.757 24.407 0.55 < 0,05 

ll3, l4 Noise 9.9992 54.917 0.55 < 0,05 

ll5 weekday 

Traffic volumes 323.33 -18.5 0.55 < 0,05 

System CO2 656.9 -249 0.48 < 0,05 

System NOx 12.661 0.6283 0.44 < 0,05 

ll6 
weekday 

Traffic volumes 401.89 -58.21 0.81 < 0,05 

System CO2 23681 -6430 0.52 < 0,05 

System NOx 47.497 -11.53 0.47 < 0,05 

ll5, l6 Noise 7.8001 54.922 0.69 < 0,05 

Table 2. Model Variables between Response Variables and GPT (cont.) 

Links Study Period Variables 

Coefficients of the Model R
2
 

p-value 

a b 
(Coefficient of 

 determination) 

ll1 weekend 

Traffic volumes 222.55 -9.915 0.86 <0.05 

System CO2 9271.9 21.937 0.77 <0.05 

System NOx 22.67 6.1765 0.72 <0.05 

ll2 weekend 

Traffic volumes 166.16 21.963 0.89 <0.05 

System CO2 5402.8 1479.8 0.78 <0.05 

System NOx 14.025 6.2858 0.31 <0.05 
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Links Study Period Variables 

Coefficients of the Model R
2
 

p-value 
a b 

(Coefficient of 

 determination) 

ll1, l2 
 

Noise 7.1113 57.653 0.75 <0.05 

ll3 weekend 

Traffic volumes 26.175 81.263 0.09 <0.05 

System CO2 2480.2 10958 0.06 <0.05 

System NOx 2.4859 30.514 0.01 <0.05 

ll4 
weekend 

Traffic volumes 14.398 92.259 0.01 <0.05 

System CO2 -1816 14053 0.01 <0.05 

System NOx -10.07 39.676 0.02 <0.05 

ll3, l4 Noise -2.539 61.884 0.14 <0.05 

ll7 weekday 

Traffic volumes 253.44 33.219 0.5 <0.05 

System CO2 45123 1314.9 0.62 <0.05 

System NOx 103.14 5.82 0.56 <0.05 

ll8 
weekday 

Traffic volumes 235.97 56.292 0.48 <0.05 

System CO2 37136 8180.8 0.46 <0.05 

System NOx 83.132 31.149 0.3 <0.05 

l7, l8 Noise 5.9122 60.244 0.39 <0.05 

 

In the next sections, we will look in more detail at the GPT's ability to predict traffic volume, 

emissions and noise.  

3.2.1. Traffic Analysis  

The analysis regarding the correlations between GPT suggests that in most cases GPT can explain 

a significant part of the variation in traffic volumes. All models are adequate and statistically significant 

to fit the data (p-value<0.05). More specifically, in links l1 and l2 there were high correlations between 

the number of vehicles and the values of GPT (R2 > 0.85) both during the weekday and the weekend as 

the two links consist of the main street that leads to the shopping area. Figure 5 presents the linear 

regression models with higher coefficient of determination. The lowest correlations were achieved in 

links l7 and l8, since a significant number of drivers used a secondary entrance of the hypermarket zone.  

Figure 5. Linear regressions between traffic volumes and Popular times 
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3.2.2. Emission Analysis 

Figures 6 to 8 present the linear regressions between GPT and CO2 and NOx emissions for all the 

studied links. Links l1 and l2 presented the strongest correlations regarding emissions for both CO2 and 

NOx emissions. GPT can explain 94% and 76% of CO2 and NOx variability, respectively, in link l1, and 

82% and 67%, respectively, in l2. Regarding the links l3 and l4, we can observe weaker relationships. 

However, GPT is still able to explain around 59% of their variability in link l3, and 53% and 55% of CO2 

and NOx variability, respectively, in l4. For links l5 and l6, GPT describes up to 52% of CO2 and 47% of 

NOx emissions variability. Regarding the study area in Badajoz, which comprises links l7 and l8, GPT 

can explain up to 62% and 56% of CO2 and NOx variability, respectively. Results on correlations with 
NOx emissions are rather weaker, when compared with CO2, because the emissions of NOx are strongly 

affected by drivers’ behaviour. Overall, these results reinforce that GPT can be used for estimating 

emissions or at least for minimizing the error in its estimation. 

 

 
  

Figure 6. Linear regressions between CO2 (left) and NOx (right) emissions and Popular times for Aveiro Shopping Center 
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Figure 7. Linear regressions between system, O2 (left) and NOx (right) emissions and Popular times for Glicínias Plaza Shopping 

Center (Aveiro, PT) 

 

Figure 8. Linear regressions between CO2 and NOx emissions and Popular times for Hypermarket (Badajoz, SP) 

 
3.2.3. Noise Analysis  

 

We examined the relationships between noise and GPT by combining the line noise sources from 
both directions of each street (Figure 9). As in the previous analyses, linear regression models are only 
valid for the range of GPT values that were observed during the fieldwork. However, for these intervals 
the GPT can reasonably explain the variability in the traffic noise levels in the studied links. In links l1 
and l2, GPT can explain on weekends and on weekdays 85% and 75% of noise levels variability, 
respectively. Due to high demand on weekends (also observed in nearby commercial areas), an increase 
of 0.49 dBA was observed on weekdays and 0.71 dBA on weekends per a decimal increase GPT. In links 
l5 and l6 GPT explains 68% of noise variability. In links l7 and l8, GPT can justify only 38% of noise 
emissions variation. This lower value may be related to a weaker relation between noise and traffic 
volume combined with a high dispersion of average speed. 
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Figure 9. Linear regressions between noise estimation and Popular times 

3.3. Comparative Analysis  

In this section, we perform a comparative analysis based on data collection during different 

periods of the year. More specifically for links l1 to l6, we repeated the data collection procedure during 

winter and summer (Figure 10).  

 

Figure 10. Seasonal comparison of the studied areas 
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In links l1 and l2, the developed linear models present a similar pattern. However, the slope of the 

regression line is higher in winter suggesting that the commercial area has a more relevant impact in this 

period in urban traffic. Once more, in such links, GPT has greater ability to predict variability in traffic 

conditions than in links l3 and l4, which may be due to a higher percentage of drivers with distinct origin 

and destinations than the commercial areas. Regarding links l5 and l6 (study area b), the results may be 

explained by the fact that both links are used for different trip destinations and there is a significant 

seasonal demand variation implying that the same scale (GPT) should not be used for different seasons. 

4. Conclusions 

This study assessed the potential of using GPT to predict traffic volumes and traffic-related 

externalities. Three different study areas and 8 links near to important shopping areas in Portugal and 

Spain have been assessed during weekdays and weekends in different seasons. Linear regression models 

were developed to fit empirical and model-based derived data related to road traffic, NOx and CO2 

emissions, and noise levels with GPT. The results suggest that for specific time periods it is possible to 

establish clear relationships between GPT and traffic volumes (up to 90%), CO2 emissions (up to 98%) 

and noise levels (up to 85%). Results also show that GPT demonstrated lower capability to explain NOx 

emissions due to high variability in driving behaviour and high dependence of individual acceleration and 

deceleration patterns under free flow regime. However, in shorter links such as l1, GPT can justify up to 

76% of NOx emissions variability.  

Regarding the main question of the paper “Can web based information of business popularity be a 

reliable source of Information for traffic management?” the answer is affirmative but under a 
considerable set of restrictions. While in some links we found that the models can be applied in different 

seasons of the year with minor deviations, in others the regressions coefficients depend on the season or 

the day. This fact suggests that the relative scale of the GPT is not a uniform approach for different 

periods of the year and there is a considerable seasonal variability in the OD matrix of road users of the 

assessed road links. Before the implementation of a monitoring system based on this type of information, 

it will be necessary to collect data over an extended period or to have access to similar data sets e.g., 

based on absolute values for urban zones on open data platforms. This type of information would be 

especially useful in cities where there is limited funding to monitoring traffic conditions through 

traditional traffic monitoring systems and environmental sensors. Furthermore, leisure trips are harder to 

predict and this information can contribute to adjust spatio-temporal information of urban OD matrices 

with high accuracy.  
This type of information and crowdsourcing information may be considered an asset to anticipate 

in advance potential congestion solutions due to high levels of popularity. Moreover, it may allow the 

optimization of intelligent transport systems such as partial-metering strategy or dynamic traffic lights. 

Finally, the collected environmental information can be included in environmental information systems 

and real-time link-based information to be included in eco-routing platforms. 

Future work will contain the development of a global model that could be used to estimate traffic 

volumes, CO2 and NOx emissions, and noise in links near commercial areas using GPT as predictive 

variable. In addition, integrated analysis is going to be conducted based on street networks and not on 

separated links. 
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0145-FEDER-029679) which were approved by the Executive Committee of the Competitiveness and 

Internationalization Operational Program in its ERDF component, by the Portuguese Foundation for 
Science and Technology, I.P. The cooperation of Toyota Caetano Auto, S.A. (that allowed the use of 

Toyota vehicles) is also appreciated. 
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