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Various forecasting schemes have been proposed to manage traffic data, which is collected by videos cameras, sensors, and 
mobile phone services. However, these are not sufficient for collecting data because of their limited coverage and high costs for 
installation and maintenance. To overcome the limitations of these tools, we introduce a hybrid scheme based on intelligent 
transportation system (ITS) and global navigation satellite system (GNSS). Applying the GNSS to calculate travel time has proven 
efficient in terms of accuracy. In this case, GNSS data is managed to reduce traffic congestion and road accidents. This paper 
introduces a short-time forecasting model based on real–time travel time for urban heterogeneous road networks. Travel time 
forecasting has been achieved by predicting travel speeds using an optimized exponential moving Average (EMA) model. Furthermore 
for speed adaptation in heterogeneous road networks, it is necessary to introduce asuitable control strategy for longitude, based on the 
GNSS. GNSS products provide worldwide and real-time services using precise timing information and, positioning technologies.  

Keywords: ITS, EMA, traffic, speed adaptation 

1. Introduction 

Nowadays, protecting human life is an important concern and an economic challenge in regarding 
to intelligent transportation systems. Heavy traffic in road networks and road accidents has received the 
most attention from researchers, due their economic impact (Elvik, 2000). Traffic congestion costs the 
economy billions of dollars. The major cause of traffic congestion is road accidents, which continue to 
increase in the post- modern age. They have many causes, which can be divided into four categories: (1) 
the environment, (2) traffic conditions, (3) problems with vehicles, and (4) driver behavior. Many studies 
have shown that higher speeds do not lead to serious accidents (Tu et. al., 2008). On the other hand, some 
studies have shown that fatal accidents increase with high speed limits. Our analysis revealed that the major 
factor leading to an accident is not speed, but variations in speed. To reduction the amount of traffic 
congestion in road networks, and their negative effects ((i.e. delays, waiting time, driver stress, air and noise 
pollution, and the blocking of emergency vehicles) and to improve traffic safety, we have introduced a 
travel data management approach to variations in traffic flow speeds in real-time. 

This new form of management is effective and will improve transportation supply performance in 
time and space with real-time interventions. When the number of vehicles increases in the road networks, 
high dynamics in traffic flow and increases in travel time follow and traffic management becomes more 
complex. So we have introduced a road network guide based on the GNNS (Hong et. al., 2014). A mobile 
agent was designed to handle traffic in heterogeneous road networks by taking into account the real-time 
traffic flow. The proposed research work in intelligent transportation systems will investigate a novel 
approach integrating travel observations made by different sources and hybrid applications.  

The challenge is to take advantage of each research trend and provide an optimized solution to the 
intelligent transportation system (ITS). The objective of the proposed management approach is to increase 
the quality of the entire road network, especially in the case of congestion and jams at peak hours, taking 
into account real-time traffic information and the travel times of drivers, enabling them to reach their 
destinations in safety.  

Many ITS applications require real-time vehicle positioning data. The main task for a map- matching 
(MM) algorithm is to identify the correct road segment (Velaga et. al., 2010).  A navigation system that 
provides such positioning data consists of three components:  

 a positioning system, such a global positioning system (GPS) (Berzina et. al., 2014),  
 a geographic information system (GIS) based road map, and  
 a map-matching (MM) algorithm (Quddus et. al., 2007).  
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However, a navigation system that provides position data contains errors due to satellite orbits. 
Errors result from atmospheric effects, receiver measurement error and multipath error (Quddus et. al., 
2007). 

The mismatching was carried out to identify errors due to:  
 positioning sensors,  
 digital maps and  
 the map-matching process.  

Furthermore, GIS-based road maps contain errors that can be geometric or topological (Velaga  
et. al., 2010). This phenomenon is known as mismatching. Identification of the wrong road link may mislead 
users and reduce the effectiveness of the ITS service. Current map-matching algorithms have many 
constraints and limitations, especially in urban areas.  Highly accurate positioning data are essential 
(Quddus et. al., 2007).  

This paper is organized as follows: Section 2 presents an overview of related travel data. Section 3 
describes the proposed concept for a real-time road supervision model. Section 4 presents a short- time 
travel forecast model, based on an optimized EMA. Section 5 introduces a map matching method for 
determining vehicle position. Section 5 presents simulations and results.  Finally, the conclusion 
summarizes the work and points to some directions for future research. 

2. Travel Data Collection  

The objective of the travel time modeling framework was to provide an incident detection algorithm 
based on historical data, for several purposes. The primary use of historical travel time was to establish the 
statistical properties of street segment travel times, and thus, make more information available to the 
incident detection system, in addition to the real-time travel time records provided by the transit probe 
vehicles. Furthermore, historical data was used to detect outliers in the reported travel times. The 
development of advanced technologies for data collection and data management has led to the collection of 
high quality accident data involving numerous types of information, as well as the ability to manage data 
more efficiently. There are two major strategies for travel data collections. Currently, the most and widely 
used technology is the traditional strategy based on magnetic loop detectors, installed under the roadway 
surface (Borzacchielo, 2010).  

The lack of this technology is explained by the high cost of installing and maintenance of the local 
detectors; they are typically installed only on a relatively small area of the roadway system, thus providing 
limited coverage of the entire transportation network. Furthermore in an urban environment, there are many 
traffic interruptions that cause delays and that are not easily captured by measuring speeds at any point 
along the road. To avoid the cost of roadside equipment, we introduce a modern strategy that is based on 
cellular phone service. Information based on cellular systems can be gathered in milliseconds compared to 
the traffic data collected from detectors. Conceptually, traffic information may fall into one of the three 
categories: historical information, real-time information, and predictive information. Historical data consist 
of past observations of the system. They describe the traffic status of a transportation system during 
previous time periods, and they mainly used to construct daily graphs or register special events. Real-time 
information up-to-date and can be calculated, for example, by on-line simulations. Predictive information, 
such as traffic forecasts, can help to change the travel behavior of road users by providing information about 
the future state of the network. The real-time information gathered to update the historical adaptive 
information is considered special when it does not match the historical information. Historical information 
is needed to carry out a plausible forecast in real-time. To develop a robust forecast model, it is necessary 
to collect accurate travel information. Firstly, it is necessary to optimize the resource allocation in cellular 
systems. This involves a consideration of factors like repeated handoffs, radio spectrum coverage, call 
blocking probability, delays and interference.  

Our study and analysis have shown that these factors strongly influence the quality of the collected 
travel flow information. In the second half of twentieth century, the phenomenon of traffic congestion 
became prominent, due to a rapid increase in the number of vehicles. Traffic congestion appears when too 
many vehicles attempt to use a common transportation infrastructure with limited capacity. To reduce 
traffic congestion, several methods have been proposed, such as time Series, Kalman Filtering, neural 
networks, state space reconstruction, and non-parametric regression. Some of these have been successful 
at practical or simulated forecasting (Zheng, et. al., 2009). However, due to the complexity of traffic flow 
and the properties of forecasting methods, it is very difficult to achieve accurate forecast results using only 
one method or model. Some model parameters need to be determined before the model can be used to 
forecast the traffic volume, and the structure of the model depends on these parameters, which are computed 
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from the historical and real time traffic data in practice. For a successful forecast of traffic flow, the model 
needs to perceive variations in the environment and adjust the parameters automatically. Furthermore, it is 
important that the forecast model take into consideration abnormal conditions that occur in real-time (Zhang 
et. al., 2003). The ability to accurately forecast future link times in the transportation network is a critical 
of component for many transportation system applications. Travel time in an urban traffic environment is 
highly time-dependant due to random fluctuations in travel demands, interruptions caused by traffic control 
devices, road incidents, and weather conditions. It has been increasingly recognized that for many 
transportation applications, estimates of the mean and variance in travel times significantly affect the 
accuracy of forecasting approaches. Figure1 compares the travel data collection based on cellular systems 
to data collection based on sensors. The current system supports a data resolution of 2.5 minutes. 

3. Concept 

To overcome the lack of an ITS and the GNSS, we propose a hybrid scheme for travel forecasting 
based on real-time data, as illustrated Figure 1.  Travel data collected via mobile services, and is controlled 
by satellites.  Because some urban areas cannot be covered by cellular systems, we use satellite services 
(GPS/ GNSS) (Berzina et.al. 2014) (Hong et. al., 2014) to calculate  travel time data. The major advantage 
of using mobile agents lies in their ability to move from one place to another and carry out their tasks 
autonomously, to manage dynamic negotiations with other mobile agents, to draw conclusions from 
plausible reasoning after updating their local information, and to develop themselves in the future in ways 
that are appropriate for newly implemented services in the system, in order to deal with their affiliated 
Quality of Experience (QoE). The mobile agent approach has been used in dynamic systems in many fields 
and has been reported in the literature. A mobile agent interacts autonomously to provide solutions. In this 
paper, mobile agents are incorporated into intelligent transportation systems in order to improve dynamic 
traffic management. A mobile agent is an actively communicating, cooperative, entity in a dynamic 
environment, which plays a role in updating travel data.  The mobile agent adds new performance to the 
concept by perceiving the environment, which is needed for dynamic traffic data management.  Its task is 
to sense and monitor the state of the traffic flow through the road network in order to enable better usage 
of the network, by updates traffic data. Middleware is deployed to monitor the traffic flow and speed 
variations through road network based on the QoE of end users. 

 

 
Figure 1. Forecasting model 

4. Short- Term Forecast Model 

4.1. Methodology 

In this section, we introduce a forecasting model based on the moving average. There are three types 
of moving average: the simple moving average (SMA), the weighted moving average (WMA), and the 
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exponential moving average (EMA). In this study, an exponential moving average was used. This form 
of average uses a weighting or a smoothing factor that decreases exponentially (Andrada-Felix et. al., 2008). 
The weighting for each older data point decreasing exponentially, gives much more importance to recent 
observations, while not discarding the older observations entirely. The forecast model is divided into two 
phases: detection phase, and forecasting phase. The detection phase focuses on an analysis of collected 
data. To increase accuracy in this phase we have to detect abnormal events in the collected data. The 
forecasting phase   is based on the exponential moving average. The robustness and accuracy of the 
exponential smoothing forecast are impressive. The accuracy of this technique depends on the weight 
smoothed alpha factor value of the current demand. To determine the optimal alpha factor value, we use a 
fitting curve.  

There are two kinds of exponential moving average forecasting (EMA):  one uses exponential 
moving average based historical information (EMA-H); the other uses exponential moving average based 
real-time information (EMA-R). The EMA-R possesses two main phases, namely, a detection phase and a 
forecast phase. 

4.2. Short-term forecasting based on historical Information 

The historical database is a collection of past travel observations of the system. The exponential 
smoothing forecasting method gives weight to the observed time series unequally. This is accomplished by 
using one or more smoothing parameters, which determine how much weight is given to each observation. 
The major advantage of exponential smoothing method is that it gives good forecasts in a wide variety of 
applications. In addition, the data storage and computing requirements are minimal, which makes 
exponential smoothing suitable for real-time forecasting. 

),()1(),(),1( ktttktttkttt HM     (1) 

where 10   , ttM(t, k)  is the actual travel time in section k at time t, and ttH(t, k) is the historical travel 
time in section k at time t. 

4.3. Smoothing parameter alpha 

To achieve short-term traffic flow forecasting with high accuracy, the proposed forecast scheme 
called for optimization of the smoothing parameter alpha. Alpha determines how responsive a forecast is 
to sudden jumps and drops. It is the percentage weight given to the prior historical period, and the remainder 
is distributed to the other historical periods. Alpha is used in all exponential smoothing methods. The lower 
the value of alpha, the less responsive the forecast is to sudden change. The smoothing parameter “alpha” 
lies between 0 and 1. To determine the optimal smoothing factor, a sum of the square errors between the 
observed and the forecast alpha dose rates was analyzed by increasing the smoothing filter factor from 0.1. 
The sum of the square errors decreases as the smoothing filter factor increases, as shown in Figure 2. 

 
Figure 2. Smoothing parameter alpha 

4.4. Short term forecasting based on real-time information 

The occurrence of abnormal conditions in traffic flow travel information decreases of forecasts 
based on historical information and may increase the complexity of the forecasting of unusual incidents. 
The forecasting model based on real-time information gives a little weight to historical information and 
great weight to real-time observations. 
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where 10   . 

4.5. Smoothing parameter -gamma 

Figure 3 shows that the value of gamma for real-time forecasting is close to 0.9885. 
 

 

Figure 3. Smoothing parameter gamma 

4.6. Heterogeneous Road Network Management 

This concept can be adapted for managing various heterogeneous road network traffic, such as urban 
road traffic and highway traffic whose mean speed vary. The concept can be used also for various road 
networks worldwide. The management of heterogeneous road networks involves multiple lane roads, traffic 
positioning determination, vehicle location estimation, and travel forecasting. Various methods have been 
proposed for estimating the positions of vehicles, such as the use of wi-fi, cellular networks, sensors, and 
navigation systems.  Nowadays, navigation systems such as the GNSS and GPSs are used widely for vehicle 
position detection.  Navigation systems also provide travel information, destination directions, road maps, 
real-time road conditions, and vehicle speeds. Management of a heterogeneous road network required 
locating the vehicle within a road network. Navigation satellite systems, wi-fi, cellular systems, and sensors 
are used to accomplish this. However, their results are often inaccurate. To improve the detection of vehicle 
position within a road network, we propose a map- matching (MM) method, which is used often to obtain 
the real- time positions of vehicles in a road network. In basic terms, map-matching considers a trajectory 
T and a road network N, and travel time T. The method detects newly arriving vehicle in section NA , 
through which T is believed to have traveled in time t and then allocates a precise position along A to which 
T(t) should be matched. This method aims to identify the correct road segments and to determine the vehicle 
location on that segment (Quddus et, al., 2007). 

Various map-matching methods have been proposed. Quddus et al. (2007) introduce a map-
matching strategy based on distance and orientation, which does not involve any further knowledge about 
the movement besides the position samples.  Civilis et al. introduced a map-matching algorithm based on 
edge distance and direction, like that of Quddus et al. (2007), for updating location by tracking the users of 
location-based services. (Yin and Wolfson, 2004) proposed an algorithm based on a weighted graph 
representation of the road network in which the weights of each edge represent the distance of the edge to 
the trajectory. The improved map- matching method that is proposed here uses an algorithm based on local 
path searching and enable better determination of vehicle position within a road network, as illustrated in 
Figure 4. The model starts by computing the short- term travel forecast in real- time for all of the segments 
of a road network.  When a vehicle demands service, the map-matching system detects its position in the 
road network. The heterogeneous road management model introduces the optimal path (start point to 
destination point) by considering the adaptive mean speed for each segment of the path. 
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Figure 4. Road traffic management 

 

5. Evaluation of Forecast Model 

5.1. Simulation 

We used the MATLAB environment to process the travel data. Figure 5 shows a comparison of 
travel data collected via mobile services with travel data collected by sensors. The current system supports 
a data resolution of 2.5 minutes.  Figure 6 compared the EMA to the optimized EMA based on historical 
observations (travel data) (Raiyn et. al. 2014). Figures 7 and 8 present the actual observations compared to 
the EMA and to the EMA based on real-time information, respectively. The results indicate that all three 
moving average methods had more or less similar performance in forecasting short-term travel times. 
However, as one would expect the method using optimized weights produced slightly better forecasts at a 
higher computational cost. The quality of the forecasts diminished as the time for which the forecasts were 
made was projected farther into the future. Moving average methods overestimate travel speeds during 
slow-downs and underestimate them when traffic congestion is clearing up and speeds are increasing.  
Figure 8 presents a comparison between the exponential moving average- based historical information 
(EMA-H) and the exponential moving average based real-time information (EMA-R) compared to actual 
observations. The EMA-H detects abnormal conditions in traffic flow based on pervious data collected in 
the same location at the corresponding time. The advantage of the EMA-H is its ability to identify incident 
traffic flow. However, an incident occurring with the same characteristics in the future is not certain. Figure 
8 demonstrates that the EMA-R can identify any incident in the traffic flow and provide incident clearness. 
Figure 9 compares the SMA, WMA, and EMA based on root mean squared error (RMSE). 
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Figure 5. Cellular versus sensor travel data 

 
Figure 6. EMA-H versus actual observations 

 
Figure 7. EMA-R versus actual observations 

 

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

Observation [2.5min]

S
p

e
e

d
[k

m
/h

r]

cellular
sensor

1200 1250 1300 1350 1400 1450 1500 1550 1600
60

65

70

75

80

85

90

95

100

105

Period [15min]

S
p

e
e

d
 [k

m
/h

o
u

r]

EMA Based Historic

EMA-Historic

Observations

1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500
65

70

75

80

85

90

95

100

Period [15min]

S
pe

ed
 [

]k
m

/h
ou

r

EMA Based Real-Time

 

 

EMA-Real

Observations



Transport and Telecommunication Vol. 17, no. 2, 2016 

118 

 

Figure 8. EMA-H and EMA-R compared 

 

Figure 9. Root Mean Squared Error 

5.2. Position based speed  

The traffic management system also involves use of a geographic information system (GIS) to 
provide a digital map of the road network.  It divides the high-way into sections (of 300 meters) and 
computes the speed for each section. The travel forecast for each section is adapted to traffic load and 
weather conditions. For speed indications on the digital map, we have used keyhole markup language 
(KML). KML is an XML notation for geographic annotation and visualization within Internet-based, two-
dimensional maps and three-dimensional Earth browsers. KML was developed for use with Google Earth, 
which was originally named Keyhole Earth Viewer. It was created by Keyhole, Inc, which was acquired by 
Google in 2004. Here is an example of a KML file which describes a point (longitude =-1.82675, 
latitude=51.179045, altitude=0): 
 
<?xml version="1.0" encoding="UTF-8"?> 
<kml xmlns="http://earth.google.com/kml/2.2"> 
<Placemark> 
<name> Simple placemark </name> 
<Point> 
<coordinates > -1.82675, 51.179045, 0 </coordinates> 
</Point> 
</Placemark> 
</kml> 
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Geographic features can be represented by several lines of KML code because a KML file is text-
formatted. Layers are an important feature of Google Earth, which provide access to all kinds of other data. 
All sorts of information, including videos, photos, real-time weather, 3D images of buildings, and more can 
be presented in KML and displayed in different layers. Figure 11 shows speed based locations on the 
highway between Haifa and Tel Aviv. Table 1 presents travel data forecast based on the SMA scheme. 
Figure 10 illustrates the travel speed averages related to different road sections. Figures 11, 12, and 13 show 
the travel speeds based on position. The road has been divided in 300–meter-long sections, and the Travel 
speed has been assigned to each section. 

Table 1. Estimated travel speed average 

Sections 0 1 2 3 4 
Normal Mean 
(km/hour) 

53.8606 47.5177 45.3111 44.7848 47.6886 

Sections 5 6 7 8 9 

Normal Mean 
(km/hour) 

58.1212 59.7911 59.3912 62.9577 75.2875 

Sections 10 11 12 13 14-16 

Normal Mean 
(km/hour) 

76.9951 77.2779 78.8352 81.3669 81.1209 

 
 

 
Figure 10. Estimated travel speed average 

 
Figure 11. Traffic flow 
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Figure 12. Travel speed per section 

 

Figure 13. Location based speed 

6. Conclusion and future works 

In this paper we have discussed travel data management.  We have introduced three kinds of moving 
average schemes, simple moving average (SMA), weighted moving average (WMA), and exponential 
moving average (EMA). The exponential moving average scheme offered the best results compared to other 
forecast schemes, furthermore EMA is the most accurate method. The exponential moving average is used 
for real short- term travel forecast. The travel data collection is based on cellular phone service. Due to a 
lack of urban coverage in cellular systems and in the GNSS, we have introduced a hybrid scheme that is 
based on both cellular systems and the GNSS data. GNSS data are used to determine the floating data 
positioning in urban area.  Future work will consider the management of travel Big Data for heterogeneous 
road networks with dynamic traffic conditions.  
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