Mathematical Publications
DOI: 10.2478/tmmp-2019-0024
Tatra Mt. Math. Publ. 74 (2019), 117-144

ON ONE APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS IN FUNCTION THEORY

Symon Serbenyuk

Vinnytsia, UKRAINE

Abstract

The paper presents the investigation of applications of infinite systems of functional equations for modeling functions with complicated local structure that are defined in terms of the nega- \tilde{Q}-representation. The infinite systems of functional equations $$
f\left(\hat{\varphi}^{k}(x)\right)=\widetilde{\beta}_{i_{k+1}, k+1}+\widetilde{p}_{i_{k+1}, k+1} f\left(\hat{\varphi}^{k+1}(x)\right),
$$ where $k=0,1, \ldots, x=\Delta_{i_{1}(x) i_{2}(x) \ldots i_{n}(x) \ldots}^{-\widetilde{\widetilde{Q}}}$, and $\hat{\varphi}$ is the shift operator of the \widetilde{Q}-expansion, are investigated. It is proved that the system has a unique solution in the class of determined and bounded on $[0,1]$ functions. Its analytical presentation is founded. The continuity of the solution is studied. Conditions of its monotonicity and nonmonotonicity, differential, and integral properties are studied. Conditions under which the solution of the system of functional equations is a distribution function of the random variable $\eta=\Delta_{\xi_{1} \xi_{2} \ldots \xi_{n} \ldots}^{\widetilde{Q}}$ with independent \widetilde{Q}-symbols are founded.

1. Introduction

Nowadays, it is well-known that functional equations and systems of functional equations are widely used in mathematics and other sciences. For example, in the information theory, physics, economics, decision theory, etc. [1,2,5,7, Modeling functions with complicated local structure by systems of functional equations is a shining example of their applications in function theory.

[^0]
SYMON SERBENYUK

The class of functions with complicated local structure consists of singular (for example, [13, 22, 23, 30, 31), continuous nowhere monotonic [10, and nowhere differentiable functions (for example, [3, 14, 21, 25, 26, 29, 30]).

An example of a strictly increasing singular function is the following function, that is called the Salem function

$$
f(x)=\beta_{\alpha_{1}(x)}+\sum_{n=1}^{\infty}\left(\beta_{\alpha_{n}(x)} \prod_{j=1}^{n-1} p_{\alpha_{j}(x)}\right)
$$

where

$$
x=\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{2} \equiv \sum_{n=1}^{\infty} \frac{\alpha_{n}}{2^{n}}, \quad \alpha_{n} \in\{0,1\}
$$

$Q_{2}=\left\{p_{0}, p_{1}\right\}$ is a fixed tuple of integers such that $p_{0}+p_{1}=1$, and

$$
\beta_{\alpha_{n}(x)}= \begin{cases}0 & \text { whenever } \alpha_{n}(x)=0 \\ p_{0} & \text { whenever } \alpha_{n}(x)=1\end{cases}
$$

Properties of the function (including the singularity) were studied by S alem [13] and by other authors [6, 8, 30]. The Salem function is a distribution function of a random variable with independent identically distributed binary digits and a unique solution of the following system of functional equations in the class of determined and bounded on $[0,1]$ functions:

$$
f\left(\frac{x}{2}\right)=p_{0} f(x), \quad f\left(\frac{x+1}{2}\right)=p_{0}+p_{1} f(x)
$$

The system can be written as follows (for functions determined on the segment $[0 ; 1])$:

$$
f\left(\Delta_{i \alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{2}\right)=\beta_{i}+p_{i} f\left(\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{2}\right)
$$

In [9, the following generalization of the Salem function is investigated:

$$
f(x)=\beta_{\alpha_{1}(x)}+\sum_{n=2}^{\infty}\left(\beta_{\alpha_{n}(x)} \prod_{j=1}^{n-1} p_{\alpha_{j}(x)}\right)
$$

where

$$
x=\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{s} \equiv \sum_{n=1}^{\infty} \frac{\alpha_{n}}{s^{n}}, \quad \alpha_{n} \in\{0,1, \ldots, s-1\}
$$

$2<s$ is a fixed positive integer, and

$$
\beta_{\alpha_{n}(x)}= \begin{cases}0 & \text { whenever } \alpha_{n}(x)=0 \\ \alpha_{i=0}^{\alpha_{n}(x)-1} p_{i}>0 & \text { whenever } \alpha_{n}(x) \neq 0\end{cases}
$$

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

The last-mentioned function is a unique solution of the following system of functional equations in the class of determined and bounded on $[0,1]$ functions:

$$
f\left(\frac{i+x}{s}\right)=\beta_{i}+p_{i} f(x)
$$

where $i=0,1, \ldots, s-1, p_{i}$ is a real number from $(-1,1)$, and $p_{0}+p_{1}+\cdots+$ $p_{s-1}=1$.

In [10], the following system of s functional equations is considered:

$$
f\left(\Delta_{i \alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{Q}\right)=\beta_{i}+p_{i} f\left(\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{Q}\right), \quad i=\overline{0, s-1},
$$

where $\max _{i}\left|p_{i}\right|<1, p_{0}+p_{1}+\cdots+p_{s-1}=1, \beta_{0}=0<\beta_{k}=\sum_{i=0}^{k-1} p_{i}$, and the argument of f is represented in terms of the Q-representation [11, p. 87]. The Q-representation is a generalization of the s-adic representation $\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{s}$. That is,

$$
\Delta_{\alpha_{1} \alpha_{2} \ldots \alpha_{n} \ldots}^{Q} \equiv \gamma_{\alpha_{1}}+\sum_{n=2}^{\infty}\left(\gamma_{\alpha_{n}} \prod_{j=1}^{n-1} q_{\alpha_{j}}\right)=x \in[0,1]
$$

where $1<s$ is a fixed positive integer, $Q=\left\{q_{0}, q_{1}, \ldots, q_{s-1}\right\}$ is a fixed tuple of real numbers such that $q_{i}>0$ for all $i=\overline{0, s-1}$ and $\sum_{i=0}^{s-1} q_{i}=1$. Also, here $\gamma_{0}=0$ and $\gamma_{k}=\sum_{j=0}^{k-1} q_{j}$ for $k=1,2, \ldots, s-1$. The investigations from [10] are generalization of the investigations from [9].

Introducing and investigations of generalizations of the Salem function are new and unknown for real numbers representations $\Delta_{\delta_{1} \delta_{2} \ldots \delta_{n} \ldots}$ with the removable alphabet. That is, when $\delta_{n} \in A_{t_{n}}^{0} \equiv\left\{0,1, \ldots, t_{n}\right\}, t_{n} \in \mathbb{N}$, and $\left|A_{t_{k}}^{0}\right| \neq\left|A_{t_{l}}^{0}\right|$ for $k \neq l$, where $|\cdot|$ is the number of elements of the set. Representations of real numbers by positive [4, 12, 15] and alternating [16, 26] Cantor series, the \widetilde{Q} - [11, p. 87-91] and the nega- \widetilde{Q}-representation [18, 28] are these representations. For the first time, such investigations were carried out by the author of the present paper for the case of positive Cantor series [17, 19 and presented in April 2014 at the international mathematical conference "Differential equations, computational mathematics, function theory and mathematical methods in mechanics" [17.

In October 2014, the results of the present paper and of the similar research for the case of positive and alternating Cantor series (the papers [17, 20, 24, 28]) were presented by the author in reports "Determination of a class of functions, that are represented by Cantor series, by systems of functional equations" and "Polybasic positive and alternating \widetilde{Q}-representations and their applications to determination of functions by systems of functional equations" at the seminar on fractal analysis of the Institute of Mathematics of NAS of Ukraine and of the National Pedagogical Dragomanov University (the archive of reports is available at http://www.imath.kiev.ua/events/index.php?seminarId=21\&archiv=1).

SYMON SERBENYUK

The present paper is devoted to study of one example of applications of systems of functional equations to modeling of functions with complicated local structure. The following new and non-investigated at this moment system of functional equations is studied:

$$
f\left(\hat{\varphi}^{k}(x)\right)=\widetilde{\beta}_{i_{k+1}, k+1}+\widetilde{p}_{i_{k+1}, k+1} f\left(\hat{\varphi}^{k+1}(x)\right),
$$

where $k=0,1, \ldots, \hat{\varphi}$ is the shift operator of the \widetilde{Q}-expansion, and

$$
x=\Delta_{i_{1}(x) i_{2}(x) \ldots i_{n}(x) \ldots}^{-\widetilde{Q}} \equiv \Delta_{i_{1}(x)\left[m_{2}-i_{2}(x)\right] i_{3} \ldots i_{2 k-1}(x)\left[m_{2 k}-i_{2 k}(x)\right] \ldots}^{\widetilde{Q}} .
$$

The properties of the unique solution to the last-mentioned system in the class of determined and bounded on $[0,1]$ functions

$$
F(x)=\beta_{i_{1}(x), 1}+\sum_{k=2}^{\infty}\left[\widetilde{\beta}_{i_{k}(x), k} \prod_{j=1}^{k-1} \widetilde{p}_{i_{j}(x), j}\right]
$$

are investigated.

2. \widetilde{Q}-representation, its partial cases and the shift operator

Let $\widetilde{Q}=\left\|q_{i, n}\right\|$ be a fixed matrix, where $i=\overline{0, m_{n}}, m_{n} \in N_{\infty}^{0}=\mathbb{N} \cup\{0, \infty\}$, $n=1,2, \ldots$, and the following system of properties is true for elements $q_{i, n}$ of the last-mentioned matrix

$$
\begin{aligned}
& 1^{\circ} . q_{i, n}>0 \\
& 2^{\circ} . \text { for all } n \in \mathbb{N}: \sum_{i=0}^{m_{n}} q_{i, n}=1 ; \\
& 3^{\circ} \text {. for any }\left(i_{n}\right), i_{n} \in \mathbb{N} \cup\{0\}: \prod_{n=1}^{\infty} q_{i_{n}, n}=0 .
\end{aligned}
$$

Definition 1. An expansion of a number x from $[0,1)$ by the following positive series

$$
\begin{equation*}
a_{i_{1}(x), 1}+\sum_{n=2}^{\infty}\left[a_{i_{n}(x), n} \prod_{j=1}^{n-1} q_{i_{j}(x), j}\right], \tag{1}
\end{equation*}
$$

where

$$
a_{i_{n}, n}= \begin{cases}\sum_{i=0}^{i_{n}-1} q_{i, n} & \text { whenever } i_{n} \neq 0 \\ 0 & \text { whenever } i_{n}=0\end{cases}
$$

is called the \widetilde{Q}-expansion of a number x [11, p. 89]. Defining an arbitrary number $x \in[0,1)$ by expansion (11) is denoted by $x=\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{\widetilde{Q}}$ and the last-mentioned notation is called the \widetilde{Q}-representation of x.

Definition 2. A number $x \in[0,1)$ which has the period (0) in its own \widetilde{Q} --representation is called \widetilde{Q}-rational, i.e.,

$$
\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n}(0)}^{\widetilde{Q}}
$$

The other numbers in $[0,1]$ are called \widetilde{Q}-irrational.
Proposition 1. If the condition $m_{n}<\infty$ holds for all $n>n_{0}$, where n_{0} is a fixed integer, then each \widetilde{Q}-rational number has two different \widetilde{Q}-representations, i.e.,

$$
\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n}(0)}^{\widetilde{Q}}=\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] m_{n+1} m_{n+2} \ldots}^{\widetilde{\widetilde{ }}}
$$

The \widetilde{Q}-representation of real numbers is:

- the Q^{*}-representation (or Q_{s}^{*}-representation) when the equality $m_{n}=s-1$ is true for all $n \in \mathbb{N}$, where $\mathbb{N} \ni s=$ const >1;
- the Q-representation (or Q_{s}-representation) when the equality $m_{n}=s-1$ is true for an arbitrary $n \in \mathbb{N}$, where $\mathbb{N} \ni s=$ const >1 and $q_{i, n}=q_{i}$ for all $n \in \mathbb{N}$;
- the Q_{∞}^{*}-representation whenever the condition $m_{n}=\infty$ holds for any $n \in \mathbb{N}$;
- the Q_{∞}-representation whenever the conditions $m_{n}=\infty$ and $q_{i, n}=q_{i}$ hold for all $n \in \mathbb{N}$;
- the representation by a positive Cantor series whenever the conditions $m_{n}=d_{n}-1$ and $q_{i, n}=\frac{1}{d_{n}}, i=\overline{0, d_{n}-1}$, hold for any $n \in \mathbb{N}$, where $\left(d_{n}\right)$ is a fixed sequence of positive integers and $d_{n}>1$;
- the s-adic representation whenever the equalities $m_{n}=s-1$ and $q_{i, n}=$ $q_{i}=\frac{1}{s}$ are true for all $n \in \mathbb{N}$, where $s>1$ is a fixed positive integer.

Definition 3. The mapping defined by

$$
\hat{\varphi}(x)=\hat{\varphi}\left(\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{\widetilde{Q}}\right)=a_{i_{2}, 2}+\sum_{k=3}^{\infty}\left[a_{i_{k}, k} \prod_{j=2}^{k-1} q_{i_{j}, j}\right]
$$

is called the shift operator $\hat{\varphi}$ of the \widetilde{Q}-expansion of a number x.
The following mapping

$$
\hat{\varphi}^{k}(x)=a_{i_{k+1}, k+1}+\sum_{n=k+2}^{\infty}\left[a_{i_{n}, n} \prod_{j=k+1}^{n-1} q_{i_{j}, j}\right]
$$

is called the shift operator of rank k of the \widetilde{Q}-expansion of a number x.

SYMON SERBENYUK

The last-mentioned and the following definitions of $\hat{\varphi}^{k}$ are equivalent.
Definition 4. Let $\left(\widetilde{Q}_{k}\right)$ be a sequence of the following matrixes \widetilde{Q}_{k} :

$$
\widetilde{Q}_{k}=\left(\begin{array}{ccccc}
q_{0, k+1} & q_{0, k+2} & \ldots & q_{0, k+j} & \ldots \\
q_{1, k+1} & q_{1, k+2} & \ldots & q_{1, k+j} & \ldots \\
\vdots & \vdots & \ddots & \vdots & \ldots \\
q_{m_{k+1}-1, k+1} & q_{m_{k+2}-2, k+2} & \ldots & q_{m_{k+j}, k+j} & \ldots \\
q_{m_{k+1}, k+1} & q_{m_{k+2}-1, k+2} & \ldots & & \ldots \\
& q_{m_{k+2}, k+2} & \ldots & & \ldots
\end{array}\right)
$$

where $k=0,1,2, \ldots, j=1,2,3, \ldots$
Let $\left(\mathcal{F}_{[0 ; 1)}^{\widetilde{Q}_{k}}\right)$ be a sequence of sets $\mathcal{F}_{[0,1)}^{\widetilde{Q}_{k}}$ of all possible \widetilde{Q}_{k}-representations (of numbers from $[0,1)$) generated by the matrix \widetilde{Q}_{k}, where $\widetilde{Q}_{0} \equiv \widetilde{Q}$.

The mapping $\pi\left(\hat{\varphi}^{k}(x, \widetilde{Q})\right)$ such that

$$
\begin{aligned}
& \varphi^{k}:[0,1) \times \widetilde{Q} \rightarrow[0,1) \times \widetilde{Q}_{k} ;\left(\left(i_{1}, i_{2}, \ldots, i_{k}, \ldots\right), \widetilde{Q}\right) \rightarrow\left(\left(i_{k+1}, i_{k+2}, i_{k+j}, \ldots\right), \widetilde{Q}_{k}\right), \\
& \pi:[0,1) \times \widetilde{Q}_{k} \rightarrow[0,1) ; \quad\left(x^{\prime}, \widetilde{Q}_{k}\right) \rightarrow x^{\prime}
\end{aligned}
$$

is called the shift operator $\hat{\varphi}^{k}$ of rank k of the \widetilde{Q}-representation of a number $x \in[0,1)$.

Remark 1. For the compactness of the presentation of the paper, we will use the notation $\hat{\varphi}^{k}$ instead of the notation $\pi\left(\hat{\varphi}^{k}(x, \widetilde{Q})\right)$ in this paper.

Since $x=a_{i_{1}, 1}+q_{i_{1}, 1} \hat{\varphi}(x)$, we have

$$
\hat{\varphi}(x)=\frac{x-a_{i_{1}, 1}}{q_{i_{1}, 1}} .
$$

It is easy to see that the following expressions are true.

$$
\begin{gather*}
\hat{\varphi}^{k}(x)=\frac{1}{q_{0,1} q_{0,2} \ldots q_{0, k}} \Delta_{\underbrace{\widetilde{Q}}_{k} \underbrace{}_{i_{k+1} i_{k+2} \ldots}}^{\hat{\varphi}^{k-1}(x)=a_{i_{k}, k}+q_{i_{k}, k} \hat{\varphi}^{k}(x)=\frac{1}{q_{0,1} q_{0,2} \ldots q_{0, k-1}} \Delta_{\underbrace{\widetilde{Q} \ldots 0}_{k-1} i_{k} i_{k+1} \ldots}^{\widetilde{Q}} .} .
\end{gather*}
$$

Remark. Throughout the paper, we will consider that $m_{n}<\infty$ for all $n \in \mathbb{N}$.

application of infinite systems of functional equations

3. Nega- \widetilde{Q}-representation of real numbers from $[0,1]$

Theorem 1 (18,24$])$. For an arbitrary $x \in[0,1)$, there exists a sequence $\left(i_{n}\right)$, $i_{n} \in N_{m_{n}}^{0}$, such that

$$
\begin{equation*}
x=\sum_{i=0}^{i_{1}-1} q_{i, 1}+\sum_{n=2}^{\infty}\left[(-1)^{n-1} \widetilde{\delta}_{i_{n}, n} \prod_{j=1}^{n-1} \widetilde{q}_{i_{j}, j}\right]+\sum_{n=1}^{\infty}\left(\prod_{j=1}^{2 n-1} \widetilde{q}_{i_{j}, j}\right) \tag{3}
\end{equation*}
$$

where

$$
\widetilde{\delta}_{i_{n}, n}=\left\{\begin{array}{cl}
1 & \text { if } n \text { is even and } i_{n}=m_{n} \\
\sum_{i=m_{n}-i_{n}}^{m_{n}} q_{i, n} & \text { if } n \text { is even and } i_{n} \neq m_{n} \\
0 & \text { if } n \text { is odd and } i_{n}=0 \\
\sum_{i=0}^{i_{n}-1} q_{i, n} & \text { if } n \text { is odd and } i_{n} \neq 0
\end{array}\right.
$$

and the first sum in expression (3) equals 0 whenever $i_{1}=0$.
Definition 5. An expansion of a number x by series (3) is called the nega-\widetilde{Q}-expansion of x and is denoted by $\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{-\widetilde{Q}}$. The last-mentioned notation is called the nega- \widetilde{Q}-representation of a number x ([18]).

The numbers from a countable subset of $[0,1]$ have two different nega- \widetilde{Q} --representations, i.e.,

$$
\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} 0 m_{n+5} \ldots}^{-\widetilde{ }}=\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4} \ldots}^{-\widetilde{\widetilde{2}}}, i_{n} \neq 0 .
$$

These numbers are called nega- \widetilde{Q}-rational and the rest of the numbers from $[0,1]$ are called nega- \widetilde{Q}-irrational.

Definition 6. The set of all numbers from $[0,1]$ such that the first n digits $i_{1}, i_{2}, \ldots, i_{n}$ of the nega- \widetilde{Q}-representation of the numbers are equal to c_{1}, c_{2}, \ldots, c_{n}, respectively, is called a cylinder $\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}$ of rank n with the base $c_{1} c_{2} \ldots c_{n}$. That is,

$$
\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{\widetilde{Q}}} \equiv\left\{x:[0,1] \ni x=\Delta_{c_{1} c_{2} \ldots c_{n} i_{n+1} i_{n+2} \ldots i_{n+k} \ldots}^{-\widetilde{ }}, i_{n+k} \in N_{m_{n+k}}^{0}, k \in \mathbb{N}\right\},
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ is a fixed tuple of symbols from $N_{m_{1}}^{0}, N_{m_{2}}^{0}, \ldots, N_{m_{n}}^{0}$, respectively.

SYMON SERBENYUK

By ([18), it follows that the following statements are true.
Lemma 1. Cylinders $\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{\widetilde{2}}}$ have the following properties:
(1) a cylinder $\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}$ is the following closed interval:

$$
\begin{array}{rr}
\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}=\left[\Delta_{c_{1} c_{2} \ldots c_{n} m_{n+1} 0 m_{n+3} 0 m_{n+5} \ldots,}^{-\widetilde{ }},\right. & \left.\Delta_{c_{1} c_{2} \ldots c_{n} 0 m_{n+2} 0 m_{n+4} 0 m_{n+6} \ldots}^{-\widetilde{ }}\right] \\
\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}=\left[\begin{array}{ll}
\Delta_{c_{1} c_{2} \ldots c_{n} 0 m_{n+2} 0 m_{n+4} 0 m_{n+6} \ldots,}^{-\widetilde{Q} n \text { is odd },} & \Delta_{c_{1} c_{2} \ldots c_{n} m_{n+1} 0 m_{n+3} 0 m_{n+5} \ldots}^{-\widetilde{Q}}
\end{array}\right] \\
\text { if } n \text { is even; }
\end{array}
$$

(2) for any $n \in \mathbb{N}$,

$$
\Delta_{c_{1} c_{2} \ldots c_{n} c}^{-\widetilde{Q}} \subset \Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}
$$

(3) for all $n \in \mathbb{N}$,

$$
\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{\widetilde{2}}}=\bigcup_{c=0}^{m_{n+1}} \Delta_{c_{1} c_{2} \ldots c_{n} c}^{-\widetilde{\widetilde{Q}} ;} ;
$$

(4)

$$
\begin{array}{cl}
\sup \Delta_{c_{1} c_{2} \ldots c_{n-1} c}^{-\widetilde{\widetilde{2}}}=\inf \Delta_{c_{1} c_{2} \ldots c_{n-1}[c+1]}^{-\widetilde{ }} & \text { if } n \text { is odd, } \\
\sup \Delta_{c_{1} c_{2} \ldots c_{n-1}[c+1]}^{-\widetilde{Q}}=\inf \Delta_{c_{1} c_{2} \ldots c_{n-1} c}^{-\widetilde{Q}} & \text { if } n \text { is even; }
\end{array}
$$

(5) for any $n \in \mathbb{N}$,

$$
\left|\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}\right|=\prod_{j=1}^{n} \widetilde{q}_{c_{j}, j}
$$

(6) for an arbitrary $x \in[0,1]$,

$$
\bigcap_{n=1}^{\infty} \Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}=x=\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{-\widetilde{\widetilde{ }}}
$$

Lemma 2. For the nega- \widetilde{Q}-representation, the following identities are true:

$$
\begin{aligned}
\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{-\widetilde{\widetilde{2}}} & \equiv \Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{2 k-1}\left[m_{2 k}-i_{2 k}\right] \ldots}^{\widetilde{Q}]} \\
\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{\widetilde{Q}} & \equiv \Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{2 k-1}\left[m_{2 k}-i_{2 k}\right] \ldots}^{-\widetilde{Q}}
\end{aligned}
$$

That is

$$
x=\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{-\widetilde{Q}} \equiv a_{i_{1}, 1}+\sum_{n=2}^{\infty}\left[\widetilde{a}_{i_{n}, n} \prod_{j=1}^{n-1} \widetilde{q}_{i_{j}, j}\right]
$$

where

$$
\widetilde{a}_{i_{n}, n}=\left\{\begin{array}{ll}
a_{i_{n}, n} & \text { if } n \text { is odd } \\
a_{m_{n}-i_{n}, n} & \text { if } n \text { is even, }
\end{array} \quad \widetilde{q}_{i_{n}, n}= \begin{cases}q_{i_{n}, n} & \text { if } n \text { is odd } \\
q_{m_{n}-i_{n}, n} & \text { if } n \text { is even }\end{cases}\right.
$$

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

4. The main object of the research is an infinite system of functional equations

Let us have matrixes of the same dimension $\widetilde{Q}=\left\|q_{i, n}\right\|$ (properties of the last-mentioned matrix were considered earlier) and $P=\left\|p_{i, n}\right\|$, where $i=\overline{0, m_{n}}$, $m_{n} \in \mathbb{N} \cup\{0\}, n=1,2, \ldots$, and for elements $p_{i, n}$ of P the following system of conditions is true:
1°. $p_{i, n} \in(-1,1)$;
2°. for all $n \in \mathbb{N}: \sum_{i=0}^{m_{n}} p_{i, n}=1$;
3°. for any $\left(i_{n}\right), i_{n} \in \mathbb{N} \cup\{0\}: \prod_{n=1}^{\infty}\left|p_{i_{n}, n}\right|=0 ;$
4°. for all $i_{n} \in \mathbb{N}: 0<\sum_{i=0}^{i_{n}-1} p_{i, n}<1$.
Let us consider the infinite system of functional equations

$$
\begin{equation*}
f\left(\hat{\varphi}^{k}(x)\right)=\widetilde{\beta}_{i_{k+1}, k+1}+\widetilde{p}_{i_{k+1}, k+1} f\left(\hat{\varphi}^{k+1}(x)\right) \tag{4}
\end{equation*}
$$

where $k=0,1, \ldots, \hat{\varphi}$ is the shift operator of the \widetilde{Q}-expansion,

$$
\begin{gathered}
x=\Delta_{i_{1}(x) i_{2}(x) \ldots i_{n}(x) \ldots}^{-\widetilde{\widetilde{2}}} \equiv \Delta_{i_{1}(x)\left[m_{2}-i_{2}(x)\right] i_{3} \ldots i_{2 k+1}(x)\left[m_{2 k+2}-i_{2 k+2}(x)\right] \ldots}^{\widetilde{Q}}, \\
\widetilde{p}_{i_{n}, n}= \begin{cases}p_{i_{n}, n} & \text { if } n \text { is odd } \\
p_{m_{n}-i_{n}, n} & \text { if } n \text { is even, }\end{cases} \\
\beta_{i_{n}, n}=\left\{\begin{array}{ll}
\sum_{n=0}^{i_{n}-1} p_{i, n}>0 & \text { if } i_{n} \neq 0 \\
0 & \text { if } i_{n}=0,
\end{array} \quad \widetilde{\beta}_{i_{n}, n}= \begin{cases}\beta_{i_{n}, n} & \text { if } n \text { is odd } \\
\beta_{m_{n}-i_{n}, n} & \text { if } n \text { is even. }\end{cases} \right.
\end{gathered}
$$

Since equality (2) is true, one can write system (4) as

$$
\begin{equation*}
f\left(\widetilde{a}_{i_{k}, k}+\widetilde{q}_{i_{k}, k} \hat{\varphi}^{k}(x)\right)=\widetilde{\beta}_{i_{k}, k}+\widetilde{p}_{i_{k}, k} f\left(\hat{\varphi}^{k}(x)\right) \tag{5}
\end{equation*}
$$

where $k=1,2, \ldots, i \in N_{m_{k}}^{0}$.
Lemma 3. The function

$$
\begin{equation*}
F(x)=\beta_{i_{1}(x), 1}+\sum_{k=2}^{\infty}\left[\widetilde{\beta}_{i_{k}(x), k} \prod_{j=1}^{k-1} \widetilde{p}_{i_{j}(x), j}\right] \tag{6}
\end{equation*}
$$

is a well-defined function at an arbitrary point from $[0,1]$.

SYMON SERBENYUK

Proof. Let x be a nega- \widetilde{Q}-irrational number. Series (6) is absolutely convergent. The last-mentioned statement follows from conditions

$$
\widetilde{\beta}_{i_{k}(x), k} \in[0,1), \quad\left|\widetilde{p}_{i_{k}(x), k}\right|<1
$$

and from the convergence of the series

$$
\beta_{i_{1}(x), 1}+\sum_{k=2}^{\infty}\left[\widetilde{\beta}_{i_{k}(x), k} \prod_{j=1}^{k-1}\left|\widetilde{p}_{i_{j}(x), j}\right|\right] .
$$

The convergence is proved analogously to the proof of the convergence of series (1) when $\widetilde{p}_{i_{k}(x), k} \neq 0$ for all $k \in \mathbb{N}$.

Let x be a nega- \widetilde{Q}-rational number. Consider the difference

$$
\Delta=F\left(\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} 0 m_{n+5} \ldots}^{-\widetilde{ }}\right)-F\left(\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4} \ldots}^{-\widetilde{ }}\right) .
$$

Let n be even. Then

$$
\begin{aligned}
\Delta & =\left(\prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right) \\
& \times\left(\beta_{m_{n}-i_{n}, n}-\beta_{m_{n}-i_{n}+1, n}+p_{m_{n}-i_{n}, n}\left(\beta_{m_{n+1}, n+1}+\sum_{l=2}^{\infty} \beta_{m_{n+l}, n+l}\left[\prod_{j=n+1}^{n+l-1} p_{m_{j}, j}\right]\right)\right) \\
= & \left(\prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right) \times\left(-p_{m_{n}-i_{n}, n}+p_{m_{n}-i_{n}, n}\right)=0 .
\end{aligned}
$$

If n is odd, then

$$
\begin{aligned}
\Delta & =\left(\prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right)\left(\beta_{i_{n}, n}-\beta_{i_{n}-1, n}-p_{i_{n}-1, n}\left(\beta_{m_{n+1}, n+1}+\sum_{l=2}^{\infty} \beta_{m_{n+l}, n+l}\left[\prod_{j=n+1}^{n+l-1} p_{m_{j}, j}\right]\right)\right) \\
& =0
\end{aligned}
$$

Theorem 2. Infinite system (4) of functional equations has a unique solution

$$
f(x)=\beta_{i_{1}(x), 1}+\sum_{k=2}^{\infty}\left[\widetilde{\beta}_{i_{k}(x), k} \prod_{j=1}^{k-1} \widetilde{p}_{i_{j}(x), j}\right]
$$

in the class of determined and bounded on $[0,1]$ functions.

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

Proof. Really, for an arbitrary $x=\Delta_{i_{1}(x) i_{2}(x) \ldots i_{k}(x) \ldots}^{-\widetilde{Q}}$ from $[0,1]$, we have

$$
\begin{aligned}
f(x)= & \beta_{i_{1}(x), 1}+p_{i_{1}(x), 1} f(\hat{\varphi}(x)) \\
= & \beta_{i_{1}(x), 1}+p_{i_{1}(x), 1}\left(\beta_{m_{2}-i_{2}(x), 2}+p_{m_{2}-i_{2}(x), 2} f\left(\hat{\varphi}^{2}(x)\right)\right) \\
= & \beta_{i_{1}(x), 1}+\beta_{m_{2}-i_{2}(x), 2} p_{i_{1}(x), 1} \\
& +p_{i_{1}(x), 1} p_{m_{2}-i_{2}(x), 2}\left(\beta_{i_{3}(x), 3}+p_{i_{3}(x), 3} f\left(\hat{\varphi}^{3}(x)\right)\right) \\
= & \cdots=\beta_{i_{1}(x), 1}+\widetilde{\beta}_{i_{2}(x), 2} \widetilde{p}_{i_{1}(x), 1}+\widetilde{\beta}_{i_{3}(x), 3} \widetilde{p}_{i_{1}(x), 1} \widetilde{p}_{i_{2}(x), 2} \\
& +\cdots+\widetilde{\beta}_{i_{k}(x), k} \prod_{j=1}^{k-1} \widetilde{p}_{i_{j}(x), j}+\left(\prod_{j=1}^{k} \widetilde{p}_{i_{j}(x), j}\right) f\left(\hat{\varphi}^{k}(x)\right) .
\end{aligned}
$$

Since $\hat{\varphi}^{k}(x) \in[0,1]$, for arbitraries $x \in[0,1]$ and $k \in Z_{0}$, the function f is determined at all points from $[0,1]$ and the function is bounded on the segment $[0,1]$ (i.e., there exists $M>0$ such that for any $x \in[0,1]:|f(x)| \leq M)$ and the condition

$$
\prod_{j=1}^{k} \widetilde{p}_{i_{j}(x), j} \leq \prod_{j=1}^{k}\left|\widetilde{p}_{i_{j}(x), j}\right| \rightarrow 0 \quad(k \rightarrow \infty)
$$

holds, it follows that

$$
\begin{aligned}
& f\left(\Delta_{i_{1} i_{2} \ldots i_{k} \ldots}^{-\widetilde{\widetilde{2}}}\right)=\lim _{k \rightarrow \infty}\left(\beta_{i_{1}(x), 1}+\sum_{n=2}^{k}\left[\widetilde{\beta}_{i_{n}(x), n} \prod_{j=1}^{n-1} \widetilde{p}_{i_{j}(x), j}\right]\right. \\
& \left.+\left(\prod_{j=1}^{k} \widetilde{p}_{i_{j}(x), j}\right) f\left(\hat{\varphi}^{k}(x)\right)\right) \\
& =\lim _{k \rightarrow \infty}\left(\beta_{i_{1}(x), 1}+\sum_{n=2}^{k}\left[\widetilde{\beta}_{i_{n}(x), n} \prod_{j=1}^{n-1} \widetilde{p}_{i_{j}(x), j}\right]\right) \\
& =\beta_{i_{1}(x), 1}+\sum_{k=2}^{\infty}\left[\widetilde{\beta}_{i_{k}(x), k} \prod_{j=1}^{k-1} \widetilde{p}_{i_{j}(x), j}\right] .
\end{aligned}
$$

So, by system (4), one can model the class Λ_{F} of determined and bounded on $[0,1]$ functions, where the fixed matrix P determines the unique function

$$
y=F(x)
$$

such that

$$
\begin{array}{r}
x=\sum_{i=0}^{i_{1}-1} q_{i, 1}+\sum_{n=2}^{\infty}\left[(-1)^{n-1} \widetilde{\delta}_{i_{n}, n} \prod_{j=1}^{n-1} \widetilde{q}_{i_{j}, j}\right]+\sum_{n=1}^{\infty}\left(\prod_{j=1}^{2 n-1} \widetilde{q}_{i_{j}, j}\right), \\
y=F(x)=\sum_{i=0}^{i_{1}-1} p_{i, 1}+\sum_{n=2}^{\infty}\left[(-1)^{n-1} \widetilde{\zeta}_{i_{n}, n} \prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right]+\sum_{n=1}^{\infty}\left(\prod_{j=1}^{2 n-1} \widetilde{p}_{i_{j}, j}\right),
\end{array}
$$

where

$$
\widetilde{\zeta}_{i_{n}, n}=\left\{\begin{array}{cl}
1 & \text { if } n \text { is even and } i_{n}=m_{n} \\
\sum_{i=m_{n}-i_{n}}^{m_{n}} p_{i, n} & \text { if } n \text { is even and } i_{n} \neq m_{n} \\
0 & \text { if } n \text { is odd and } i_{n}=0 \\
\sum_{i=0}^{i_{n}-1} p_{i, n} & \text { if } n \text { is odd and } i_{n} \neq 0
\end{array}\right.
$$

Remark 2. The argument of the function $F \in \Lambda_{F}$ is determined by the nega-\widetilde{Q}-representation, but an expansion of a value of the function has only "formal" view of the nega- P-representation and is the last only if all elements $p_{i, n}$ of the matrix P are positive numbers.

5. Continuity and monotonicity conditions of the solution of system (4) of functional equations

Theorem 3. The function $y=F(x)$ is a continuous function on $[0,1]$.
Proof. Let $[0,1] \ni x_{0}$ be a number. Let us consider the difference

$$
\begin{aligned}
F(x)-F\left(x_{0}\right)= & \left(\prod_{j=1}^{n_{0}} \widetilde{p}_{i_{j}, j}\right)\left(\widetilde{\beta}_{i_{n_{0}+1}(x), n_{0}+1}-\widetilde{\beta}_{i_{n_{0}+1}\left(x_{0}\right), n_{0}+1}\right)+ \\
& \left(\prod_{j=1}^{n_{0}} \widetilde{p}_{i_{j}, j}\right)\left(\sum_{k=n_{0}+2}^{\infty}\left(\widetilde{\beta}_{i_{k}(x), k} \prod_{l=n_{0}+1}^{k-1} \widetilde{p}_{i_{l}(x), l}\right)-\right. \\
& \left.\sum_{k=n_{0}+2}^{\infty}\left(\widetilde{\beta}_{i_{k}\left(x_{0}\right), k} \prod_{l=n_{0}+1}^{k-1} \widetilde{p}_{i_{l}\left(x_{0}\right), l}\right)\right),
\end{aligned}
$$

where

$$
i_{n_{0}+1}(x) \neq i_{n_{0}+1}\left(x_{0}\right), \quad i_{j}(x)=i_{j}\left(x_{0}\right), \quad j=\overline{1, n_{0}} .
$$

application of infinite systems of functional equations

Let x_{0} be a nega- \widetilde{Q}-irrational point. Since F is bounded and the conditions $x \rightarrow x_{0}, n_{0} \rightarrow \infty$ are equivalent, it is easy to see that

$$
\lim _{x \rightarrow x_{0}}\left|F(x)-F\left(x_{0}\right)\right|=\lim _{n_{0} \rightarrow \infty}\left(\prod_{j=1}^{n_{0}}\left|\widetilde{p}_{i_{j}, j}\right|\right)=0
$$

So, $\lim _{x \rightarrow x_{0}} F(x)=F\left(x_{0}\right)$.
Let x_{0} be a nega- \widetilde{Q}-rational number. Let us denote

$$
\begin{array}{rlr}
x_{0} & =x_{0}^{(1)}=\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4}}^{-\widetilde{Q}} \quad x_{0}^{(2)} & \\
& =\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} \ldots}^{-\widetilde{ }}=x_{0}^{-\widetilde{Q}} n \text { is odd }, \\
x_{0} & =x_{0}^{(1)}=\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} \ldots}^{-\widetilde{Q}} & \\
& =\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4} \ldots}^{-\widetilde{Q}}=x_{0}^{(2)} & \text { if } n \text { is even, }
\end{array}
$$

and consider the limits

$$
\lim _{x \rightarrow x_{0}+0} F(x)=\lim _{x \rightarrow x_{0}^{(2)}} F(x), \quad \lim _{x \rightarrow x_{0}-0} F(x)=\lim _{x \rightarrow x_{0}^{(1)}} F(x)
$$

by considerations for the case of a nega- \widetilde{Q}-irrational number x_{0}.
Therefore, F is a continuous function on $[0,1]$.
Lemma 4. A value of the increment

$$
\mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}\right)=F\left(\sup \Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}\right)-F\left(\inf \Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{\widetilde{2}}}\right)
$$

of the function F on the cylinder $\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}$ is calculated by the formula

$$
\begin{equation*}
\mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{\widetilde{2}}}\right)=\prod_{j=1}^{n} \widetilde{p}_{i_{j}, j} \tag{7}
\end{equation*}
$$

Proof. From the definition and properties of cylinders $\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}$, it follows that

$$
\mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{\widetilde{2}}}\right)=\left\{\begin{aligned}
F\left(\Delta_{c_{1} c_{2} \ldots c_{n} 0 m_{n+2} 0 m_{n+4} \ldots}^{-\widetilde{T}}\right) & \\
-F\left(\Delta_{c_{1} c_{2} \ldots c_{n} m_{n+1} 0 m_{n+3} \ldots}^{-\widetilde{2}}\right) & \text { if } n \text { is odd } \\
F\left(\Delta_{c_{1} c_{2} \ldots c_{n} m_{n+1} 0 m_{n+3} \ldots}^{-\widetilde{\widetilde{Q}}}\right) & \\
-F\left(\Delta_{c_{1} c_{2} \ldots c_{n} 0 m_{n+2} 0 m_{n+4} \ldots}^{-\widetilde{Q}}\right) & \text { if } n \text { is even. }
\end{aligned}\right.
$$

SYMON SERBENYUK

Therefore,

$$
\begin{aligned}
& \mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}\right)=\left(\beta_{m_{n+1}, n+1}+\beta_{m_{n+2}, n+2} p_{m_{n+1}, n+1}+\right. \\
& \left.\quad \beta_{m_{n+3}, n+3} p_{m_{n+1}, n+1} p_{m_{n+2}, n+2}+\cdots\right) \prod_{j=1}^{n} \widetilde{p}_{i_{j}, j}
\end{aligned}
$$

Equality (77) follows from the last-mentioned expression.

Theorem 4. The function $y=F(x)$ is:

- a monotonic non-decreasing function whenever elements $p_{i, n}$ of the matrix P are non-negative, and a strictly increasing function whenever all elemets of the matrix P are positive;
- a non-monotonic function that has at least one interval of monotonicity on $[0,1]$ whenever the matrix P does not have zeros and there exists only the finite tuple $\left\{p_{i, n}\right\}$ of the elements $p_{i, n}<0$ of the matrix P;
- a function that does not have intervals of monotonicity on $[0,1]$ whenever the matrix P does not have zeros and there exists an infinite subsequence $\left(n_{k}\right)$ of positive integers such that for an arbitrary number $k \in \mathbb{N}$ there exists at least one element $p_{i, n_{k}}<0$ of P, where $i=\overline{0, m_{n_{k}}}$;
- a constant almost everywhere on $[0,1]$ function whenever there exists an infinite subsequence $\left(n_{k}\right)$ of positive integers such that for an arbitrary number $k \in \mathbb{N}$ there exists at least one element $p_{i, n_{k}}=0$ of the matrix P, where $i=\overline{0, m_{n_{k}}}$.

Proof. The first and the second statements follow from (77).
The third statement. Let us choose a number n_{0} such that the number $n_{0}+1$ belongs to a subsequence $\left(n_{k}\right)$ of positive integers and the tuple $c_{1}, c_{2}, \ldots, c_{n_{0}}$ such that the condition $\mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n_{0}}}^{-\widetilde{ }}\right)>0$ holds. It is easy to see that there exist nega- \widetilde{Q}-symbols $i_{n_{0}+1}$ and $i_{n_{0}+1}^{\prime}$ such that $\widetilde{p}_{i_{n_{0}+1}, n_{0}}<0, \quad \widetilde{p}_{i_{n_{0}+1}^{\prime}, n_{0}}>0$. In the case for

$$
\Delta_{c_{1} c_{2} \ldots c_{n_{0}}}^{-\widetilde{\widetilde{Q}}} \supset\left(\Delta_{c_{1} c_{2} \ldots c_{n_{0}} i_{n_{0}+1}}^{-\widetilde{ }} \cup \Delta_{c_{1} c_{2} \ldots c_{n_{0}} i_{c_{n_{0}}+1}^{\prime}}^{-\widetilde{ }}\right)
$$

since equation (7), it follows that

$$
\mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n_{0}} i_{n_{0}+1}}^{-\widetilde{T}}\right)<0<\mu_{F}\left(\Delta_{c_{1} c_{2} \ldots c_{n_{0}} i_{n_{0}+1}^{\prime}}^{-\widetilde{ }}\right) .
$$

Since the function F is a monotonically increasing function on a some segment, the function does not have intervals of increasing and decreasing on the segment simultaneously. Therefore, the last-mentioned double inequality is a contradiction. So, the function F does not have intervals of monotonicity on $[0,1]$.

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

Since equality (17) holds and the value of the Lebesgue measure of the set

$$
C\left[-\widetilde{Q}, \overline{\left(V_{n_{k}}\right)}\right] \equiv\left\{x: x=\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{-\widetilde{\widetilde{2}}}, i_{n_{k}} \notin V_{n_{k}}\right\}
$$

where $\left(n_{k}\right)$ is a fixed subsequence of positive integers and $\left(V_{n_{k}}\right)$ is a sequence of the subsets $V_{n_{k}}$ of the sets $N_{m_{n_{k}}}^{0}$ of nega- \widetilde{Q}-symbols such that

$$
V_{n_{k}} \equiv\left\{i: i \in N_{m_{n_{k}}}^{0}, p_{i, n_{k}}=0\right\},
$$

equals zero, the fourth statement is true.
Proposition 2. Let us have the set

$$
C\left[\widetilde{Q},\left(N_{m_{n}}^{0} \backslash\left\{i_{n}^{*}\right\}\right)\right] \equiv\left\{x: x=\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{-\widetilde{\widetilde{ }}}, i_{n} \in N_{m_{n}}^{0} \backslash\left\{i_{n}^{*}\right\}\right\}
$$

where $\left(i_{n}^{*}\right)$ is a fixed sequence of \widetilde{Q}-symbols such that $i_{1}^{*} \in N_{m_{1}}^{0}, i_{2}^{*} \in N_{m_{2}}^{0}, \ldots$
The following equality

$$
\lambda\left(C\left[\widetilde{Q},\left(N_{m_{n}}^{0} \backslash\left\{i_{n}^{*}\right\}\right)\right]\right)=0
$$

holds, where $\lambda(\cdot)$ is the Lebesgue measure of a set.
Proof. Let us denote by

$$
\begin{gathered}
V_{0, n}=N_{m_{n}}^{0} \backslash\left\{i_{n}^{*}\right\}, \\
E_{n}=\bigcup_{i_{1} \neq i_{1}^{*}, \ldots, i_{n} \neq i_{n}^{*}} \Delta_{i_{1} i_{2} \ldots i_{n}}^{-\widetilde{Q}},
\end{gathered}
$$

and that

$$
\begin{gathered}
E_{n}=E_{n+1} \cup \overline{E_{n+1}}, \\
C\left[\widetilde{Q},\left(V_{0, n}\right)\right]=\cap_{n=1}^{\infty} E_{n},
\end{gathered}
$$

where

$$
E_{n+1} \subset E_{n} \quad \text { and } \quad E_{0}=[0,1] .
$$

From the property of continuity of the Lebesgue measure, we obtain that

$$
\lambda\left(C\left[\widetilde{Q},\left(V_{0, n}\right)\right]\right)=\lim _{n \rightarrow \infty} \lambda\left(E_{n}\right)=\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1-q_{i_{k}^{*}, k}\right)=0
$$

because

$$
\lambda\left(E_{n+1}\right)=\sum_{\substack{i_{1} \neq i_{1}^{*}, i_{n+1} \neq i_{n+1}^{*}}}\left(q_{i_{1}, 1} \ldots q_{i_{n+1}, n+1}\right)=\lambda\left(E_{n}\right)-q_{i_{n+1}^{*}, n+1} \sum_{\substack{i_{1} \neq i_{1}^{*}, \ldots \ldots \\ i_{n} \neq i_{n}^{*}}}\left(q_{i_{1}, 1} \ldots q_{i_{n}, n}\right)
$$

SYMON SERBENYUK

and

$$
\begin{aligned}
1 & =\sum_{\substack{i_{1} \in N_{m_{1}}^{0}, \ldots, i_{n} \in N_{m_{n}}^{0}}}\left(q_{i_{1}, 1} q_{i_{2}, 2} \ldots q_{i_{n}, n}\right) \\
& =\sum_{\substack{i_{1} \neq i_{1}^{*}, i_{n} \neq i_{n}^{*}}}\left(q_{i_{1}, 1} \ldots q_{i_{n}, n}\right)+q_{i_{n}^{*}, n} \sum_{\substack{i_{1} \neq i_{1}^{*}, i_{n-1} \neq i_{n-1}^{*}}}\left(q_{i_{1}, 1} \ldots q_{i_{n-1}, n-1}\right)+\cdots+q_{i_{1}^{*}, 1} q_{i_{2}^{*}, 2} \ldots q_{i_{n}^{*}, n} .
\end{aligned}
$$

So, Proposition 2 is true.
Since the relation between the \widetilde{Q} - and nega- \widetilde{Q}-representation is given, the proofs of equalities

$$
\lambda\left(C\left[-\widetilde{Q}, \overline{\left(V_{n_{k}}\right)}\right]\right)=0, \quad \lambda\left(C\left[\widetilde{Q},\left(N_{m_{n}}^{0} \backslash\left\{i_{n}^{*}\right\}\right)\right]\right)=0
$$

are analogous.

Corollary 1. The function F is a bijective mapping on $[0,1]$ whenever all elements of the matrix P are positive numbers.

6. Integral properties

Theorem 5. The Lebesgue integral of the function F can be calculated by the following formula
where

$$
\int_{0}^{1} F(x) \mathrm{d} x=z_{1}+\sum_{n=2}^{\infty}\left(z_{n} \prod_{k=1}^{n-1} \sigma_{k}\right)
$$

$$
\begin{aligned}
& z_{n}=\widetilde{\beta}_{0, n} \widetilde{q}_{0, n}+\widetilde{\beta}_{1, n} \widetilde{q}_{1, n}+\cdots+\widetilde{\beta}_{m_{n}, n} \widetilde{q}_{m_{n}, n}=\beta_{0, n} q_{0, n}+\beta_{1, n} q_{1, n}+\cdots+\beta_{m_{n}, n} q_{m_{n}, n}, \\
& \sigma_{n}=\widetilde{p}_{0, n} \widetilde{q}_{0, n}+\widetilde{p}_{1, n} \widetilde{q}_{1, n}+\cdots+\widetilde{p}_{m_{n}, n} \widetilde{q}_{m_{n}, n}=p_{0, n} q_{0, n}+p_{1, n} q_{1, n}+\cdots+p_{m_{n}, n} q_{m_{n}, n}
\end{aligned}
$$

Proof. From equality (2), it follows that

$$
\mathrm{d}\left(\hat{\varphi}^{n}(x)\right)=\widetilde{q}_{i_{n+1}, n+1} d\left(\hat{\varphi}^{n+1}(x)\right) .
$$

By the definition of the function and the additive property of the Lebesgue integral, we obtain that

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

$$
\begin{aligned}
& \int_{0}^{1} F(x) \mathrm{d} x=\int_{0}^{a_{1,1}} F(x) \mathrm{d} x+\int_{a_{1,1}}^{a_{2,1}} F(x) \mathrm{d} x+\cdots+\int_{a_{m_{1}, 1}}^{1} F(x) \mathrm{d} x \\
& =\int_{0}^{a_{1,1}} p_{0,1} F(\hat{\varphi}(x)) \mathrm{d} x+\int_{a_{1,1}}^{a_{2,1}}\left[\beta_{1,1}+p_{1,1} F(\hat{\varphi}(x))\right] \mathrm{d} x \\
& +\cdots+\int_{a_{m_{1}, 1}}^{1}\left[\beta_{m_{1}, 1}+p_{m_{1}, 1} F(\hat{\varphi}(x))\right] \mathrm{d} x \\
& =p_{0,1} q_{0,1} \int_{0}^{1} F(\hat{\varphi}(x)) d(\hat{\varphi}(x))+\beta_{1,1} q_{1,1} \\
& +p_{1,1} q_{1,1} \int_{0}^{1} F(\hat{\varphi}(x)) \mathrm{d}(\hat{\varphi}(x))+\cdots+\beta_{m_{1}, 1} q_{m_{1}, 1} \\
& +p_{m_{1}, 1} q_{m_{1}, 1} \int_{0}^{1} F(\hat{\varphi}(x)) \mathrm{d}(\hat{\varphi}(x)) \\
& =\left(\beta_{0,1} q_{0,1}+\beta_{1,1} q_{1,1}+\cdots+\beta_{m_{1}, 1} q_{m_{1}, 1}\right) \\
& +\left(p_{0,1} q_{0,1}+p_{1,1} q_{1,1}+\cdots+p_{m_{1}, 1} q_{m_{1}, 1}\right) \int_{0}^{1} F(\hat{\varphi}(x)) \mathrm{d}(\hat{\varphi}(x)) \\
& =z_{1}+\sigma_{1} \int_{0}^{1} F(\hat{\varphi}(x)) \mathrm{d}(\hat{\varphi}(x)) \\
& =z_{1}+\sigma_{1}\left(\int_{0}^{a_{1,2}}\left(\widetilde{\beta}_{m_{2}, 2}+\widetilde{p}_{m_{2}, 2} F\left(\hat{\varphi}^{2}(x)\right)\right) \mathrm{d}(\hat{\varphi}(x))\right. \\
& \left.+\cdots+\int_{a_{m_{2}, 2}}^{1}\left(\widetilde{\beta}_{0,2}+\widetilde{p}_{0,2} F\left(\hat{\varphi}^{2}(x)\right)\right) \mathrm{d}(\hat{\varphi}(x))\right) \\
& =z_{1}+\sigma_{1}\left(\beta_{0,2} q_{0,2}+\beta_{1,2} q_{1,2}+\cdots+\beta_{m_{2}, 2} q_{m_{2}, 2}\right. \\
& \left.+\left(p_{0,2} q_{0,2}+\cdots+p_{m_{2}, 2} q_{m_{2}, 2}\right) \int_{0}^{1} F\left(\hat{\varphi^{2}}(x)\right) \mathrm{d}\left(\hat{\varphi^{2}}(x)\right)\right) \\
& =z_{1}+z_{2} \sigma_{1}+\sigma_{1} \sigma_{2} \int_{0}^{1} F\left(\hat{\varphi^{2}}(x)\right) \mathrm{d}\left(\hat{\varphi^{2}}(x)\right) \\
& =\cdots=z_{1}+z_{2} \sigma_{1}+z_{3} \sigma_{1} \sigma_{2}+\cdots+z_{n} \sigma_{1} \sigma_{2} \ldots \sigma_{n-1} \\
& +\sigma_{1} \sigma_{2} \ldots \sigma_{n} \int_{0}^{1} F\left(\hat{\varphi^{n}}(x)\right) \mathrm{d}\left(\hat{\varphi^{n}}(x)\right)=\cdots
\end{aligned}
$$

SYMON SERBENYUK

Continuing the process indefinitely, we obtain that

$$
\int_{0}^{1} F(x) \mathrm{d} x=z_{1}+\sum_{n=2}^{\infty}\left(z_{n} \prod_{k=1}^{n-1} \sigma_{k}\right)
$$

7. Modeling singular distribution functions

Lemma 5. If the function F has a derivative $F^{\prime}\left(x_{0}\right)$ at a nega- \widetilde{Q}-irrational point x_{0}, then

$$
F^{\prime}\left(x_{0}\right)=\lim _{n \rightarrow \infty}\left(\prod_{j=1}^{n} \frac{\widetilde{p}_{i_{j}\left(x_{0}\right), j}}{\widetilde{q}_{i_{j}\left(x_{0}\right), j}}\right)=\prod_{n=1}^{\infty} \frac{\widetilde{p}_{i_{n}\left(x_{0}\right), n}}{\widetilde{q}_{i_{n}\left(x_{0}\right), n}}
$$

Proof. The statement is true, because the Property 6 of cylinders $\Delta_{c_{1} c_{2} \ldots c_{n}}^{-\widetilde{Q}}$ is true and the conditions $x \rightarrow x_{0}, n \rightarrow \infty$ are equivalent.

Theorem 6. If, for all $n \in \mathbb{N}$ and $i=\overline{0, m_{n}}$, it is true that $p_{i, n} \geq 0$, then the unique solution of functional equations system (4) is a continuous function of probabilities distribution on $[0,1]$.

Proof. It is easy to see that

$$
\begin{gathered}
F(0)=F\left(\Delta_{0 m_{2} 0 m_{4} \ldots 0 m_{2 k} \ldots}^{-\widetilde{Q}}\right)=\beta_{0,1}+\sum_{n=2}^{\infty}\left[\beta_{0, n} \prod_{j=1}^{n-1} p_{0, j}\right]=0, \\
F(1)=F\left(\Delta_{m_{1} 0 m_{3} \ldots 0 m_{2 k-1} \ldots}^{-\widetilde{\widetilde{ }}}\right)=\beta_{m_{1}, 1}+\sum_{n=2}^{\infty}\left[\beta_{m_{n}, n} \prod_{j=1}^{n-1} p_{m_{j}, j}\right]=1 .
\end{gathered}
$$

Let

$$
x_{1}=\Delta_{i_{1}\left(x_{1}\right) i_{2}\left(x_{1}\right) \ldots i_{n}\left(x_{1}\right) \ldots}^{-\widetilde{Q}} \quad \text { and } \quad x_{2}=\Delta_{i_{1}\left(x_{2}\right) i_{2}\left(x_{2}\right) \ldots i_{n}\left(x_{2}\right) \ldots}^{-\widetilde{ }}
$$

be some numbers from $[0,1]$ such that $x_{1}<x_{2}$. Therefore, there exists a number n_{0} such that $i_{j}\left(x_{1}\right)=i_{j}\left(x_{2}\right)$ for all $j=\overline{1, n_{0}-1}$ and $i_{n_{0}}\left(x_{1}\right)<i_{n_{0}}\left(x_{2}\right)$ whenever n_{0} is odd, or $i_{n_{0}}\left(x_{1}\right)>i_{n_{0}}\left(x_{2}\right)$ whenever n_{0} is even.

Whence,

$$
\begin{aligned}
F\left(x_{2}\right)-F\left(x_{1}\right)= & \left(\prod_{j=1}^{n_{0}-1} \widetilde{p}_{i_{j}\left(x_{2}\right), j}\right) \cdot\left(\widetilde{\beta}_{i_{n_{0}}\left(x_{2}\right), n_{0}}-\widetilde{\beta}_{i_{n_{0}}\left(x_{1}\right), n_{0}}\right. \\
& +\sum_{k=1}^{\infty}\left(\widetilde{\beta}_{i_{n_{0}+k}\left(x_{2}\right), n_{0}+k} \prod_{j=0}^{k-1} \widetilde{p}_{i_{n_{0}+j}\left(x_{2}\right), n_{0}+j}\right) \\
& \left.-\sum_{k=1}^{\infty}\left(\widetilde{\beta}_{i_{n_{0}+k}\left(x_{1}\right), n_{0}+k} \prod_{j=0}^{k-1} \widetilde{p}_{i_{n_{0}+j}\left(x_{1}\right), n_{0}+j}\right)\right) \\
\geq & \left(\prod_{j=1}^{n_{0}-1} \widetilde{p}_{i_{j}\left(x_{2}\right), j}\right) \cdot\left(\widetilde{\beta}_{i_{n_{0}}\left(x_{2}\right), n_{0}}-\widetilde{\beta}_{i_{n_{0}}\left(x_{1}\right), n_{0}}\right. \\
& \left.-\sum_{k=1}^{\infty}\left(\widetilde{\beta}_{i_{n_{0}+k}\left(x_{1}\right), n_{0}+k} \prod_{j=0}^{k-1} \widetilde{p}_{i_{n_{0}+j}\left(x_{1}\right), n_{0}+j}\right)\right)=\kappa,
\end{aligned}
$$

where for odd n_{0}

$$
\begin{aligned}
\kappa \geq & \left(\prod_{j=1}^{n_{0}-1} \widetilde{p}_{i_{j}\left(x_{2}\right), j}\right)\left(p_{i_{n_{0}}\left(x_{1}\right), n_{0}}+p_{i_{n_{0}}\left(x_{1}\right)+1, n_{0}}+\cdots\right. \\
& =\left(\prod_{j=1}^{n_{0}-1} \widetilde{p}_{i_{j}\left(x_{2}\right), j}\right)\left(p_{i_{n_{0}}\left(x_{n_{0}}\right)-1, n_{0}}-p_{i_{n_{0}}\left(x_{1}\right), n_{0}} \max _{x \in[0,1]} F\left(\hat{\varphi}_{0}+\cdots+p_{i_{n_{0}}\left(x_{2}\right)-1, n_{0}}\right) \geq 0 .\right.
\end{aligned}
$$

Let n_{0} be even. Then

$$
\begin{aligned}
\kappa \geq & \left(\prod_{j=1}^{n_{0}-1} \widetilde{p}_{i_{j}\left(x_{2}\right), j}\right)\left(p_{m_{n_{0}}-i_{n_{0}}\left(x_{1}\right), n_{0}}+p_{m_{n_{0}}-i_{n_{0}}\left(x_{1}\right)+1, n_{0}}+\cdots\right. \\
& \left.\cdots+p_{m_{n_{0}}-i_{n_{0}}\left(x_{2}\right)-1, n_{0}}-p_{m_{n_{0}}-i_{n_{0}}\left(x_{1}\right), n_{0}} \max _{x \in[0,1]} F\left(\hat{\varphi}^{n_{0}}\left(x_{1}\right)\right)\right) \\
= & \left(\prod_{j=1}^{n_{0}-1} \widetilde{p}_{i_{j}\left(x_{2}\right), j}\right)\left(p_{m_{n_{0}}-i_{n_{0}}\left(x_{1}\right)+1, n_{0}}+\cdots+p_{m_{n_{0}}-i_{n_{0}}\left(x_{2}\right)-1, n_{0}}\right) \geq 0 .
\end{aligned}
$$

If all elements $p_{i, n}$ of the matrix P are positive, then the inequality

$$
F\left(x_{2}\right)-F\left(x_{1}\right)>0
$$

holds.
Since the function F is a continuous function at all points from $[0,1]$, it follows that the function is a continuous function of probabilities distribution on $[0,1]$.

SYMON SERBENYUK

Let η be a random variable defined by the following form

$$
\eta=\Delta_{\xi_{1} \xi_{2} \ldots \xi_{n} \ldots}^{\widetilde{Q}}
$$

where

$$
\xi_{n}= \begin{cases}i_{n} & \text { if } n \text { is odd } \\ m_{n}-i_{n} & \text { if } n \text { is even }\end{cases}
$$

$n=1,2,3, \ldots$, the digits ξ_{n} are random and taking the values $0,1, \ldots, m_{n}$ with probabilities $p_{0, n}, p_{1, n}, \ldots, p_{m_{n}, n}$. That is, ξ_{n} are independent and $P\left\{\xi_{n}=i_{n}\right\}=$ $p_{i_{n}, n}, i_{n} \in N_{m_{n}}^{0}$.

Theorem 7. The distribution function \widetilde{F}_{η} of the random variable η can be represented by

$$
\widetilde{F}_{\eta}(x)= \begin{cases}0, & x<0 \\ \beta_{i_{1}(x), 1}+\sum_{n=2}^{\infty}\left[\widetilde{\beta}_{i_{n}(x), n} \prod_{j=1}^{n-1} \widetilde{p}_{i_{j}(x), j}\right], & 0 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Proof. Let $k \in \mathbb{N}$. The statement follows from the equalities

$$
\begin{gathered}
\{\eta<x\}=\left\{\xi_{1}<i_{1}(x)\right\} \cup\left\{\xi_{1}=i_{1}(x), \xi_{2}<m_{2}-i_{2}(x)\right\} \cup \ldots \\
\cdots \cup\left\{\xi_{1}=i_{1}(x), \xi_{2}=m_{2}-i_{2}(x), \ldots, \xi_{2 k-1}<i_{2 k-1}(x)\right\} \\
\cup\left\{\xi_{1}=i_{1}(x), \xi_{2}=m_{2}-i_{2}(x), \ldots, \xi_{2 k-1}=i_{2 k-1}(x),\right. \\
\left.\xi_{2 k}<m_{2 k}-i_{2 k}(x)\right\} \cup \ldots, \\
P\left\{\xi_{1}=i_{1}(x), \xi_{2}=m_{2}-i_{2}(x), \ldots, \xi_{2 k-1}<i_{2 k-1}(x)\right\} \\
=\beta_{i_{2 k-1}(x), 2 k-1} \prod_{j=1}^{2 k-2} \widetilde{p}_{i_{j}(x), j}, \\
P\left\{\xi_{1}=i_{1}(x), \xi_{2}=m_{2}-i_{2}(x), \ldots, \xi_{2 k}<m_{2 k}-i_{2 k}(x)\right\} \\
=\beta_{m_{2 k}-i_{2 k}(x), 2 k} \prod_{j=1}^{2 k-1} \widetilde{p}_{i_{j}(x), j}
\end{gathered}
$$

and the definition of a distribution function.

One can formulate the following conclusions by the statements in [11, p. 170].
Lemma 6. Let the inequality $p_{i, n} \geq 0$ holds for any $n \in \mathbb{N}$ and $i=\overline{0, m_{n}}$.
The function F is a singular function of Cantor type if and only if

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(\sum_{i: \widetilde{p}_{i, n}>0} \widetilde{q}_{i, n}\right)=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{i: \widetilde{p}_{i, n}=0} \widetilde{q}_{i, n}\right)=\infty \tag{2}
\end{equation*}
$$

8. Modeling functions that does not have the derivative at any nega- \widetilde{Q}-rational point

Theorem 8. If the following properties of the matrix P hold, then the unique solution to system (4) of functional equations does not have a finite or an infinite derivative at any nega- \widetilde{Q}-rational point from the segment $[0,1]$:

- for all $n \in \mathbb{N}, i_{n} \in N_{m_{n}}^{1} \equiv\left\{1,2, \ldots, m_{n}\right\}$

$$
p_{i_{n}, n} \cdot p_{i_{n}-1, n}<0
$$

- the conditions

$$
\lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{p_{0, k}}{q_{0, k}} \neq 0, \quad \lim _{n \rightarrow \infty} \prod_{k=1}^{n} \frac{p_{m_{k}, k}}{q_{m_{k}, k}} \neq 0
$$

hold simultaneously.
Proof. Let x_{0} be a nega- \widetilde{Q}-rational point. That is

In the case of odd n, let us denote

$$
\begin{aligned}
x_{0}=x_{0}^{(1)} & =\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} 0 m_{n+5} \ldots}^{-\widetilde{2}} \\
& =\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4}-\ldots}^{-\widetilde{2}}=x_{0}^{(2)} .
\end{aligned}
$$

If n is even, then let us denote

$$
\begin{aligned}
x_{0}=x_{0}^{(1)} & =\Delta_{i_{1} i_{2} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4} \ldots}^{-\widetilde{Q}} \\
& =\Delta_{i_{1} i_{2} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} 0 m_{n+5} \ldots}^{-\widetilde{2}}=x_{0}^{(2)} .
\end{aligned}
$$

SYMON SERBENYUK

Let us consider the sequences $\left(x_{k}^{\prime}\right),\left(x_{k}^{\prime \prime}\right)$ such that $x_{k}^{\prime} \rightarrow x_{0}, x_{k}^{\prime \prime} \rightarrow x_{0}$ as $k \rightarrow \infty$ and for an odd number n

$$
\begin{aligned}
& x_{k}^{\prime}= \begin{cases}\Delta_{i_{1} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} 0 \ldots m_{n+k-1} 1 m_{n+k+1} 0 m_{n+k+3} \ldots}^{-\widetilde{2}} & \text { if } k \text { is even } \\
\Delta_{i_{1} \ldots i_{n-1} i_{n} m_{n+1} 0 \ldots m_{n+k-2} 0\left[m_{n+k}-1\right] 0 m_{n+k+2} 0 m_{n+k+4} \ldots}^{-\widetilde{2}} & \text { if } k \text { is odd },\end{cases} \\
& x_{k}^{\prime \prime}= \begin{cases}\Delta_{i_{1} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 \ldots m_{n+k-1} 00 m_{n+k+2} 0 m_{n+k+4} \ldots}^{-\widetilde{Q}} & \text { if } k \text { is odd } \\
\Delta_{i_{1} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 \ldots m_{n+k} m_{n+k+1} 0 m_{n+k+3} 0 m_{n+k+5} \ldots}^{-\widetilde{Q}} & \text { if } k \text { is even, }\end{cases}
\end{aligned}
$$

and for the case of even n

$$
\begin{aligned}
& x_{k}^{\prime}= \begin{cases}\Delta_{i_{1} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 m_{n+4} 0 \ldots m_{n+k-1} 1 m_{n+k+1} 0 m_{n+k+3} \ldots} & \text { if } k \text { is an odd } \\
\Delta_{i_{1} \ldots i_{n-1}\left[i_{n}-1\right] 0 m_{n+2} 0 \ldots m_{n+k-2} 0\left[m_{n+k}-1\right] 0 m_{n+k+2} 0 m_{n+k+4} \ldots} & \text { if } k \text { is even },\end{cases} \\
& x_{k}^{\prime \prime}= \begin{cases}\Delta_{i_{1} \ldots i_{n-1} i_{n} m_{n+1} 0 m_{n+3} \ldots 0 m_{n+k} m_{n+k+1} 0 m_{n+k+3} \ldots}^{-\widetilde{Q}} & \text { if } k \text { is odd } \\
\Delta_{i_{1} \ldots i_{n-1} i_{n} m_{n+1} 0 \ldots m_{n+k-1} 00 m_{n+k+2} 0 m_{n+k+4} 0 m_{n+k+6} \ldots}^{-\widetilde{Q}} & \text { if } k \text { is even. } .\end{cases}
\end{aligned}
$$

Therefore, if n is odd, then

$$
\begin{aligned}
x_{k}^{\prime}-x_{0}^{(1)}= & \Delta_{i_{1}\left[m_{2}-i_{2}\right] i_{3}\left[m_{4}-i_{4}\right] \ldots i_{n}}^{\widetilde{\widetilde{Q}}} \underbrace{0 \ldots 0}_{k-1} 1(0)-\Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{n}(0)}^{\widetilde{Q}} \\
\equiv & a_{1, n+k}\left(\prod_{j=1}^{n} \widetilde{q}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k-1} q_{0, t}\right), \\
F\left(x_{k}^{\prime}\right)-F\left(x_{0}^{(1)}\right)= & \beta_{1, n+k}\left(\prod_{j=1}^{n} \widetilde{p}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k-1} p_{0, t}\right)=\left(\prod_{j=1}^{n} \widetilde{p}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} p_{0, t}\right), \\
x_{0}^{(2)}-x_{k}^{\prime \prime}= & \Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots\left[m_{n-1}-i_{n-1}\right]\left[i_{n}-1\right] m_{n+1} m_{n+2} \ldots}^{\widetilde{Q}} \\
& -\Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots\left[m_{n-1}-i_{n-1}\right]\left[i_{n}-1\right] m_{n+1} m_{n+2} \ldots m_{n+k}(0)}^{\widetilde{Q}}{ }_{\equiv} q_{i_{n}-1, n}\left(\prod_{j=1}^{n-1} \widetilde{q}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} q_{m_{t}, t}\right), \\
F\left(x_{0}^{(2)}\right)-F\left(x_{k}^{\prime \prime}\right)= & p_{i_{n}-1, n}\left(\prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} p_{m_{t}, t}\right) .
\end{aligned}
$$

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

If n is even, then

$$
\begin{aligned}
x_{k}^{\prime}-x_{0}^{(1)}= & \Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{n-1}\left[m_{n}-i_{n}+1\right]}^{\widetilde{Q}} \underbrace{0 \ldots 0}_{k-1} 1(0) \\
& -\Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{n-1}\left[m_{n}-i_{n}+1\right](0)}^{\widetilde{Q}}\left(\prod_{j=1}^{n-1} \widetilde{q}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k-1} q_{0, t}\right) q_{m_{n}-i_{n}+1, n} \\
\equiv & a_{1, n+k}\left(\prod_{j=1}^{n-1} \widetilde{q}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} q_{0, t}\right) q_{m_{n}-i_{n}+1, n}, \\
F\left(x_{k}^{\prime}\right)-F\left(x_{0}^{(1)}\right)= & \beta_{1, n+k}\left(\prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k-1} p_{0, t}\right) p_{m_{n}-i_{n}+1, n} \\
= & \left(\prod_{j=1}^{n-1} \widetilde{p}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} p_{0, t}\right) p_{m_{n}-i_{n}+1, n}, \\
x_{0}^{(2)}-x_{k}^{\prime \prime}= & \Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{n-1}\left[m_{n}-i_{n}\right] m_{n+1} m_{n+2} \ldots}^{\widetilde{Q}}{ }^{\widetilde{2}}-\Delta_{i_{1}\left[m_{2}-i_{2}\right] \ldots i_{n-1}\left[m_{n}-i_{n}\right] m_{n+1} m_{n+2} \ldots m_{n+k}(0)}^{\widetilde{Q}} \\
\equiv & \left(\prod_{j=1}^{n} \widetilde{q}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} q_{m_{t}, t}\right), \\
F\left(x_{0}^{(2)}\right)-F\left(x_{k}^{\prime \prime}\right)= & \left(\prod_{j=1}^{n} \widetilde{p}_{i_{j}, j}\right)\left(\prod_{t=n+1}^{n+k} p_{m_{t}, t}\right) .
\end{aligned}
$$

So,

$$
\begin{aligned}
& B_{k}^{\prime}=\frac{F\left(x_{k}^{\prime}\right)-F\left(x_{0}\right)}{x_{k}^{\prime}-x_{0}}=\left\{\begin{array}{l}
\frac{p_{i_{n}, n}}{q_{i_{n}, n}}\left(\prod_{j=1}^{n-1} \frac{\widetilde{p}_{i_{j}, j}}{\widetilde{q}_{i_{j}, j}}\right)\left(\prod_{t=n+1}^{n+k} \frac{p_{0, t}}{q_{0, t}}\right) \text { if } n \text { is odd } \\
\frac{p_{m_{n}-i_{n}+1, n}}{q_{m_{n}-i_{n}+1, n}}\left(\prod_{j=1}^{n-1} \frac{\widetilde{p}_{i_{j}, j}}{\widetilde{q}_{i_{j}, j}}\right)\left(\prod_{t=n+1}^{n+k} \frac{p_{0, t}}{q_{0, t}}\right) \text { if } n \text { is even, }
\end{array}\right. \\
& B_{k}^{\prime \prime}=\frac{F\left(x_{0}\right)-F\left(x_{k}^{\prime \prime}\right)}{x_{0}-x_{k}^{\prime \prime}}=\left\{\begin{array}{l}
\frac{p_{i_{n}-1, n}}{q_{i_{n}-1, n}}\left(\prod_{j=1}^{n-1} \frac{\widetilde{p}_{i_{j}, j}}{\widetilde{q}_{i_{j}, j}}\right)\left(\prod_{t=n+1}^{n+k} \frac{p_{m_{t}, t}}{q_{m_{t}, t}}\right) \text { if } n \text { is odd } \\
\frac{p_{m_{n}-i_{n}, n}}{q_{m_{n}-i_{n}, n}}\left(\prod_{j=1}^{n-1} \frac{\widetilde{p}_{i_{j}, j}}{\widetilde{q}_{i_{j}, j}}\right)\left(\prod_{t=n+1}^{n+k} \frac{p_{m_{t}, t}}{q_{m_{t}, t}}\right) \text { if } n \text { is even. }
\end{array}\right.
\end{aligned}
$$

SYMON SERBENYUK

Let us denote

$$
b_{0, k}=\prod_{t=n+1}^{n+k} \frac{p_{0, t}}{q_{0, t}}, \quad \quad b_{m_{k}, k}=\prod_{m=n+1}^{n+k} \frac{p_{m_{t}, t}}{q_{m_{t}, t}}
$$

Since the conditions

$$
\prod_{j=1}^{n-1}\left(\widetilde{p}_{i_{j}, j} / \widetilde{q}_{i_{j}, j}\right)=\mathrm{const}, \quad p_{i_{n}, n} p_{i_{n}-1, n}<0, \quad p_{m_{n}-i_{n}+1, n} p_{m_{n}-i_{n}, n}<0
$$

hold and the sequences $\left(b_{0, k}\right),\left(b_{m_{k}, k}\right)$ do not converge to 0 simultaneously, the inequality

$$
\lim _{k \rightarrow \infty} B_{k}^{\prime} \neq \lim _{k \rightarrow \infty} B_{k}^{\prime \prime}
$$

holds for all cases. Therefore, F does not have a finite or an infinite derivative at an arbitrary nega- \widetilde{Q}-rational point from the segment $[0,1]$.

9. A graph of the continuous unique solution to system (4)

Theorem 9. Let the elements $p_{i, n}$ of the matrix P do not equal 0 .
Let $x=\Delta_{i_{1}(x) i_{2}(x) \ldots i_{n}(x) \ldots}^{-\widetilde{Q}}$ be a fixed number and the sequence $\left(\psi_{i_{n}(x), n}\right)$ be a corresponding to its sequence of affine transformations of space \mathbb{R}^{2} :

$$
\psi_{i_{n}(x), n}:\left\{\begin{array}{l}
x^{\prime}=\widetilde{a}_{i_{n}(x), n}+\widetilde{q}_{i_{n}(x), n} x \\
y^{\prime}=\widetilde{\beta}_{i_{n}(x), n}+\widetilde{p}_{i_{n}(x), n} y,
\end{array}\right.
$$

where $i_{n} \in N_{m_{n}}^{0}$.
Then the graph Γ_{F} of the function F is the following set in space \mathbb{R}^{2} :

$$
\Gamma_{F}=\bigcup_{x \in[0,1]}\left(\cdots \circ \psi_{i_{n}(x), n} \circ \cdots \circ \psi_{i_{2}(x), 2} \circ \psi_{i_{1}(x), 1}\left(\Gamma_{F}\right)\right) .
$$

Proof. Since the function F is the continuous unique solution to system (5), it is clear that

$$
\begin{aligned}
& \psi_{i_{1}, 1}:\left\{\begin{array}{l}
x^{\prime}=q_{i_{1}, 1} x+a_{i_{1}, 1} \\
y^{\prime}=\beta_{i_{1}, 1}+p_{i_{1}, 1} y,
\end{array}\right. \\
& \psi_{i_{2}, 2}:\left\{\begin{array}{l}
x^{\prime}=q_{m_{2}-i_{2}, 2} x+a_{m_{2}-i_{2}, 2} \\
y^{\prime}=\beta_{m_{2}-i_{2}, 2}+p_{m_{2}-i_{2}, 2} y,
\end{array}\right.
\end{aligned}
$$

etc.,

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

whence,

$$
\psi_{i_{n}, n}:\left\{\begin{aligned}
x^{\prime} & =\widetilde{q}_{i_{n}, n} x+\widetilde{a}_{i_{n}, n} \\
y^{\prime} & =\widetilde{\beta}_{i_{n}, n}+\widetilde{p}_{i_{n}, n} y
\end{aligned}\right.
$$

Therefore,

$$
\bigcup_{x \in[0,1]}\left(\cdots \circ \psi_{i_{n}(x), n} \circ \cdots \circ \psi_{i_{2}(x), 2} \circ \psi_{i_{1}(x), 1}\left(\Gamma_{F}\right)\right) \equiv G \subset \Gamma_{\widetilde{F}},
$$

because

$$
F\left(x^{\prime}\right)=F\left(\widetilde{a}_{i_{n}, n}+\widetilde{q}_{i_{n}, n} x\right)=\widetilde{\beta}_{i_{n}, n}+\widetilde{p}_{i_{n}, n} y=y^{\prime}
$$

Let

$$
\begin{gathered}
T\left(x_{0}, F\left(x_{0}\right)\right) \in \Gamma_{\widetilde{F}}, \\
x_{0}=\Delta_{i_{1} i_{2} \ldots i_{n} \ldots}^{-\widetilde{Q}}
\end{gathered}
$$

be a fixed point from $[0,1]$. Let x_{n} be a point from $[0,1]$ such that $x_{n}=\hat{\varphi}^{n}\left(x_{0}\right)$.
Since $i_{1} \in N_{m_{1}}^{0}, i_{2} \in N_{m_{2}}^{0}, \ldots, i_{n} \in N_{m_{n}}^{0}$ and system (4) is true and the condition

$$
\bar{T}\left(\hat{\varphi}^{n}\left(x_{0}\right), F\left(\hat{\varphi}^{n}\left(x_{0}\right)\right)\right) \in \Gamma_{\widetilde{F}}
$$

holds, it follows that

$$
\psi_{i_{n}, n} \circ \cdots \circ \psi_{i_{2}, 2} \circ \psi_{i_{1}, 1}(\bar{T})=T_{0}\left(x_{0}, F\left(x_{0}\right)\right) \in \Gamma_{F}, \quad i_{n} \in N_{m_{n}}^{0}, \quad n \rightarrow \infty
$$

Whence, $\Gamma_{F} \subset G$. So,

$$
\Gamma_{F}=\bigcup_{x \in[0,1]}\left(\cdots \circ \psi_{i_{n}(x), n} \circ \cdots \circ \psi_{i_{2}(x), 2} \circ \psi_{i_{1}(x), 1}\left(\Gamma_{F}\right)\right)
$$

REFERENCES

[1] ANTONEVICH, A. B.: Linear Functional Equations: Operator Approach. Universitetskoe, Minsk, 1988. (In Russian)
[2] ACEL, YA.-DOMBR, ZH.: Functional Equations with Several Variables. FIZMATLIT, Moscow, 2003. (In Russian)
[3] BUSH, K. A.: Continuous functions without derivatives, Amer. Math. Monthly. 59 (1952), 222-225.
[4] CANTOR, G.: Über die einfachen Zahlensysteme, Zeitschrift Math. Phys. 14 (1869), 121-128. (In German)
[5] DAUGAVET, I. K.: Aproximate Solution of the Linear Functional Equations. Izd-vo Leningr. un-ta, Leningrad, 1985. (In Russian)

SYMON SERBENYUK

[6] KALASHNIKOV, A. V.: Some functional correlations, that the singular Salem function holds, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 9 (2008), 192-199. (In Ukrainian)
[7] LIKHTARNIKOV, L. M.: Elementary Introduction to Functional Equations, Lan', Saint Petersburg, 1997. (In Russian)
[8] MARSALIA, G.: Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), no. 2, 1922-1929.
[9] PRATSIOVYTYI, M. V.-KALASHNIKOV, A. V.: On one class of continuous functions with complicated local structure, most of which are singular or nondifferentiable, Trudy Instituta prikladnoi matematiki i mekhaniki NAN Ukrainy, 23 (2011), 178-189. (In Ukrainian)
[10] PRATS'OVYTYI, M.V.- KALASHNIKOV, A. V.: Self-affine singular and nowhere monotone functions related to the Q-representation of real numbers, Ukrainian Math. J. 65, (2013), no. 3, 448-462. (In Ukrainian)
[11] PRATSIOVYTYI, M.: Fractal Approach to Investigation of Singular Probability Distributions, Vydavnytstvo NPU im. M. P. Dragomanova, Kyiv, 1998. (In Ukrainian)
[12] RALKO, YU. V.: Representation of numbers by the Cantor series and some its applications, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 10 (2009), 132-140. (In Ukrainian)
[13] SALEM, R.: On some singular monotonic functions which are stricly increasing, Trans. Amer. Math. Soc. 53 (1943), 423-439.
[14] SERBENYUK, S. O.: On one nearly everywhere continuous and nowhere differentiable function, that defined by automaton with finite memory, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 13 (2012), no. 2, 166-182. (In Ukrainian);
https://www.researchgate.net/publication/292970012
[15] _Representation of numbers by the positive Cantor series: expansion for rational numbers, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1.Phys. Math.] 14 (2013), 253-267. (In Ukrainian);
https://www.researchgate.net/publication/283909906
[16] _On some sets of real numbers such that defined by nega-s-adic and Cantor nega-s-adic representations, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 15 (2013), 168-187. (In Ukrainian);
https://www.researchgate.net/publication/292970280
[17] _Defining by functional equations systems of one class a functions, whose arguments defined by the Cantor series. In: International Mathematical Conference "Differential Equations, Computational Mathematics, Theory of Functions and Mathematical Methods of Mechanics" dedicated to 100th anniversary of G. M. Polozhły: Abstracts. Kyiv, 2014. pp. 121. (In Ukrainian);
https://www.researchgate.net/publication/301765329

APPLICATION OF INFINITE SYSTEMS OF FUNCTIONAL EQUATIONS

[18] SERBENYUK, S. O.: Nega- \widetilde{Q}-representation as a generalization of certain alternating representations of real numbers, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech. 1 (2016), no. 35, 32-39. (In Ukrainian);
https://www.researchgate.net/publication/308273000
[19] ___ Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015), 34-40. (In Ukrainian);
https://www.researchgate.net/publication/292606546
[20] _Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers, Zh. Mat. Fiz. Anal. Geom. 13 (2017), no. 1, 57-81.
[21] _ Non-Differentiable functions defined in terms of classical representations of real numbers, Zh. Mat. Fiz. Anal. Geom. 14 (2018), no. 2, 197-213.
[22] SERBENYUK, S.: On one fractal property of the Minkowski function, Rev. R. Acad. Cienc. Exactas FSPs. Nat. Ser. A, Math. RACSAM 112 (2018), no. 2, 555-559. doi:10.1007/s13398-017-0396-5
[23] SERBENYUK, S. O.: Preserving of Hausdorff-Besicovitch dimension by the monotone singular distribution functions. In: The Second Interuniversity Scientific Conference on Mathematics and Physics for Young Scientists: Abstracts, Kyiv, 2011, pp. 106-107. (In Ukrainian);
https://www.researchgate.net/publication/301637057
[24] _On one function, that defined in terms of a nega- \widetilde{Q}-representation, from a class of functions with complicated local structure. In: The Fourth All-Ukrainian Scientific Conference of Young Scientists on Mathematics and Physics: Abstracts. Kyiv, 2015, pp. 52. (In Ukrainian);
https://www.researchgate.net/publication/301765100
[25] _On two functions with complicated local structure. In :The Fifth International Conference on Analytic Number Theory and Spatial Tessellations: Abstracts, Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine and Institute of Physics and Mathematics of the National Pedagogical Dragomanov University, 2013, pp. 51-52.
https://www.researchgate.net/publication/
[26] \qquad On one class of functions with complicated local structure, Šiauliai Math. Semin. 11 (2016), no. 19, 75-88.
[27] Representation of real numbers by the alternating Cantor series, Integers 17 (2017), no. A15, pp. 27.
[28] SERBENYUK, S. O.: Nega- \widetilde{Q}-representation of real numbers. In: International Conference "Probability, Reliability and Stochastic Optimization": Abstracts, Kyiv, Taras Shevchenko National University of Kyiv, 2015, pp. 24. https://www.researchgate.net/publication/
[29] On one nearly everywhere continuous and nowhere differentiable function, that defined by automaton with finite memory. In: International Scientific Conference "Asymptotic Methods in the Differential Equations Theory": Abstracts, Kyiv, 2012, pp. 93. (In Ukrainian);
https://www.researchgate.net/publication/301765319

SYMON SERBENYUK

[30] TURBIN, A.-PRATSIOVYTYI, M.: Fractal Sets, Functions, Probability Distributions, Naukova Dumka, Kyiv, 1992. (In Russian)
[31] ZAMFIRESCU, T.: Most monotone functions are singular, Amer. Math. Mon. 88 (1981), 47-49.

Received July 27, 2016
45, Shchukina str.
Vinnytsia, 21012
UKRAINE
E-mail: simon6@ukr.net

[^0]: © 2019 Mathematical Institute, Slovak Academy of Sciences.
 2010 Mathematics Subject Classification: 39B72, 11K55, 26A27, 26A30, 26A42.
 Keywords: Function with complicated local structure, systems of functional equations, singular function, nowhere differentiable function, distribution function, nowhere monotone function, \tilde{Q}-representation, nega- \tilde{Q}-representation, Lebesgue integral.
 Licensed under the Creative Commons Attribution-NC-ND 4.0 International Public License.

