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FILTERING

Ol’ga Stašová — Zuzana Krivá
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ABSTRACT. The paper deals with the nonlinear tensor diffusion which yields
a coherence improvement. It is very appropriate for images with flow-like struc-
tures. Two convolutions are used in the construction of diffusion tensor for such
a model, see [Drbĺıková, O.—Mikula, K.: Convergence analysis of finite volume

scheme for nonlinear tensor anisotropic diffusion in image processing, SIAM J.
Numer. Anal. 46 (2007), 37–60], [Weickert, J.: Coherence-enhancing diffusion
filtering, Int. J. Comput. Vis. 31 (1999), 111–127]. In this paper we introduce
the third supplemental convolution in order to enhance the diffusion strategy.

First, we briefly present the classical coherence enhancing model and explain

our modification. Then the discrete scheme is provided. The core of the paper
consists in numerical experiments. Benefits of the additional convolution are dis-
cussed and illustrated in the figures.

1. Introduction

Coherence enhancing diffusion (CED), see [10], is a recovery technique which
improves a connectivity of image structures. It possesses the capability to close
gaps in the structures since the diffusion tensor supports the diffusion in the
direction of edges, see Fig. 1. On the other hand, the filtering is kept low in
the perpendicular direction to avoid blurring edges. The CED is often used as a
pre-processing algorithm for methods such as the edge detection and segmenta-
tion which produce significantly better results after the improvement of image
structural connectivity. This approach can be also applied as a post-processing
technique.
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Figure 1. The image on the left has been processed by the coherence
enhancing diffusion. The algorithm CED3 discussed in this paper has been

used. The coherence of disrupted structures has been improved while small
isolated spots have been removed.

2. Mathematical model

The coherence enhancing diffusion model has the following form, see [3,10],

∂u

∂t
−∇ · (D∇u) = 0 in QT ≡ Ω× I, (1)

u(x, 0) = u0(x) in Ω, (2)

D∇u · n = 0 on ∂Ω× I, (3)

where u(x, t) is an unknown function and denotes a grey level image intensity,
u0 ∈ L2(Ω), n denotes the outer normal unit vector to the ∂Ω and the matrix
D = D(x, t) is the diffusion tensor, which leads the filtering. We consider this
problem on the spatio-temporal domain QT , where Ω represents a rectangular
image domain with boundary ∂Ω and I = [0, T ] is a time interval.

2.1. Diffusion tensor

The design of the diffusion tensor is based on the eigenvalues and eigenvectors
of the so-called structure tensor

Jρ(∇ut̃) = Gρ ∗ (∇ut̃∇ut̃
T ) =

(
a b
b c

)
,

where

ut̃(x, t) =
(
Gt̃ ∗ u(·, t)

)
(x) (4)

and Gt̃ and Gρ are Gaussian kernels. Parameters t̃ and ρ are positive.
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The choice of t̃ and ρ depends on the image data. The noise scale t̃ ensures that
the details smaller than O(t̃) are ignored by the edge detector. The integration
scale ρ should be chosen following the characteristic texture size. Usually, it
is large in comparison to the noise scale t̃, see [11]. The matrix Jρ satisfies
symmetry and positive semi-definiteness properties. Its eigenvectors are parallel
and orthogonal to ∇ut̃. This matrix is also known as an interest operator or
second moment matrix in computer vision, see [6]. Its eigenvalues are given as
follows

μ1,2 =
1

2

(
a+ c±

√
(a− c)2 + 4b2

)
, μ1 ≥ μ2. (5)

The corresponding orthogonal set of eigenvectors (v, w) to eigenvalues (μ1, μ2)
is given by

v = (v1, v2), w = (w1, w2),

v1 = 2b, v2 = c− a+
√
(a− c)2 + 4b2, (6)

w ⊥ v, w1 = − v2, w2 = v1.

The orientation of the eigenvectorw, which corresponds to the smaller eigenvalue
μ2 is called the coherence orientation. The lowest image intensity fluctuations
occur just in this orientation.

The diffusion tensor D is constructed to lead a diffusion such that the fil-
tering is intense in the coherence direction w and increases with the coherence
(μ1 − μ2)

2.

For this purpose, the eigenvectors of D are the same as the eigenvectors of the
structure tensor Jρ(∇ut̃) labelled as v and w and the choice of diffusion tensor
eigenvalues is the following

κ1 =α, α ∈ (0, 1), α � 1, (7)

κ2 =

{
α if μ1 = μ2,

α+ (1− α) exp
(

−C
(μ1−μ2)2

)
, C > 0 else.

Then we acquire the diffusion tensor D in the following form

D = ABA−1 =

(
D11 D12

D12 D22

)
,

where

A =

(
v1 −v2
v2 v1

)
and B =

(
κ1 0
0 κ2

)
(8)

which is non-linearly dependent on partial derivatives of solution u and fulfils
smoothness, symmetry and uniform positive definiteness properties.
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2.2. Regularized diffusion tensor

The construction of our diffusion tensor differs from the previous one only in
the relation (8) which we replace by

D = Gθ ∗ (ABA−1) =

(
D11 D12

D12 D22

)
,

where

A =

(
v1 −v2
v2 v1

)
and B =

(
κ1 0
0 κ2

)
(9)

and Gθ is a Gaussian kernel. By our best knowledge, introduction of the third
convolution is new in known literature.

In order to distinguish both coherence enhancing techniques below, we label
the classical approach as CED2 and its modification with 3 diffusion tensor con-
volutions as CED3. If both procedures satisfy the same properties or statements,
we will denote them simply CED.

3. Numerical scheme

We developed the nine-point finite volume diamond-cell scheme, see [2], [3], for
the CED. The finite volume method, see [5], was chosen since a piecewise constant
representation of approximate solutions in this technique is similar to the digital
image structure. We were forced to switch to the nine-point method due to
restrictions of the classical five-point approach, see [7], for tensor models.

Let the image be given by n1 × n2 pixels (finite volumes) such that it seems
like a square mesh with n1 rows and n2 columns. Let Ω = (0, n1h)×(0, n2h) with
a pixel size h. The diffusion process is considered in a time interval I = [0, T ].
Let the time discretization be represented as 0 = t0 ≤ t1 ≤ · · · ≤ tNmax

= T ,
where tn = tn−1+k and k is the length of the discrete time step. We look for un,
i.e., an approximation of solution at time tn for every n = 1, . . . , Nmax. We start
the scheme construction integrating the equation (1) over the finite volume W,
then provide a semi-implicit time discretization and use the divergence theorem
to acquire

un
W − un−1

W

k
m(W ) −

∑
σ∈EW∩Eint

∫
σ

(
Dn−1∇un

)
· nW,σ ds = 0, (10)

where un
W represents the numerical solution at time tn, n = 1, . . . , Nmax on fi-

nite volume W, W ∈ Th and Th is an admissible finite volume mesh, see [5].
Further quantities and notations are given as follows: m(W ) is the measure
of finite volume W with the boundary ∂W, σWE = W ∩ E is an edge of the
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finite volume W, where E ∈ Th is a neighbouring finite volume to W such that
the measure m(W ∩ E) �= 0. We will use σ instead of σWE to simplify nota-
tion in places, where no confusion can appear. EW is the set of edges such that
∂W =

⋃
σ∈EW

σ and E =
⋃

W∈Th
EW . Eext represents the set of boundary edges,

that is Eext = {σ ∈ E , σ ⊂ ∂Ω} and Eint = E \ Eext. Υ denotes the set of pairs
of adjacent finite volumes and is defined as

Υ =
{
(W,E) ∈ T 2

h , W �= E, m(σWE) �= 0
}

and nW,σ is the normal unit vector to σ outward to W.

Our discrete numerical solution is given as

uh,k(x, t)=

Nmax∑
n=0

∑
W∈Th

un
Wχ{x ∈W}χ{tn−1 < t ≤ tn}, χ{A}=

{
1, if A is true,

0, elsewhere.

The extension of the function uh,k(x, t) outside Ω is given by its periodic mirror
reflection in Ωζ = Ω ∪ Bζ(x), x ∈ ∂Ω, where ζ = max(t̃, ρ) for the CED2

(and ζ = max(t̃, ρ, θ) for the CED3 ) is the width of the smoothing kernel and
Bζ(x) is a circle with a center at x and a radius of ζ. Finally we extend this
periodic mirror reflection by 0 outside Ωζ and denote it by ũh,k.

We start computations by defining initial values u0
W = 1

m(W )

∫
W

u0(x) dx,

W ∈ Th. Let the finite volume approximation at the nth time step be given by

un
h,k(x) =

∑
W∈Th

un
Wχ{x∈W}.

We define an auxiliary variable φn
σ(u

n
h,k) which represents an approximation

of the exact averaged flux 1
m(σ)

∫
σ
(Dn−1∇un) · nW,σds for any W and σ ∈ EW

in order to rewrite (10) in the form

un
W − un−1

W

k
− 1

m(W )

∑
σ∈EW∩Eint

φn
σ(u

n
h,k)m(σ) = 0,

where m(σ) denotes the measure of edge σ.

We propose an approximation of the flux φn
σ(u

n
h,k) using a co-volume mesh,

see, e.g., [2], [3]. The co-volume χσ associated to σ is created around each edge
by joining endpoints of this edge and midpoints of finite volumes which are
attributed to this edge, see Fig. 2. We denote its edges as σ̄. First, we build an
approximation of the averaged gradient on χσ

1

m(χσ)

∫
χσ

∇un dx =
1

m(χσ)

∫
∂χσ

unnχσ,σ̄ ds

≈ 1

m(χσ)

∑
σ̄∈∂χσ

un
N1(σ̄)

+ un
N2(σ̄)

2
m(σ̄)nχσ,σ̄ = pnσ(u),
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Figure 2. The co-volumes χσ associated to edges σ = σWE (left) and
σ = σEW (right).

where nχσ,σ̄ is the normal unit vector to σ̄ outward to χσ and N1(σ̄) and N2(σ̄)
denote the endpoints of an edge σ̄ ⊂ ∂χσ. uE and uW denote the values at xE

and xW and the values uN and uS at the vertices xN and xS are evaluated as the
arithmetic mean of neighbouring volume values (for general nonuniform meshes
see [2]).

Since our mesh is uniform and squared, we can rearrange pnσ(u) using the

following relations: m(χσ) =
h2

2
, m(σ̄) =

√
2
2
h into the form

pnσ(u) =
un
E − un

W

h
nW,σ +

un
N − un

S

h
tW,σ, (11)

where tW,σ is a unit vector parallel to σ such that (xN −xS) ·tW,σ > 0. Although
un
N , un

W , un
E and un

S correspond to particular edge σ and we should denote them
by un

Nσ
, un

Wσ
, un

Eσ
and un

Sσ
in (11) due to a simplification we omit inferior

indexes σ. Replacing the exact gradient ∇un by the numerical gradient pnσ(u)
in the approximation of φn

σ(u
n
h,k) we have the numerical flux in the form

φn
σ(u

n
h,k) = Dσp

n
σ(u) · nW,σ, (12)

where

Dσ = Dn−1
σ =

(
D̄σ

11 D̄σ
12

D̄σ
12 D̄σ

22

)

is an approximation of the mean value of matrix D along σ evaluated at the
previous time step. We evaluate the structure and diffusion tensor on σ at the
point xWE = σWE ∩ xWxE .

Let us emphasise that the matrix Dσ in (12) is always considered in the basis
(nW,σ, tW,σ), cf. [2], in order to simplify further considerations. In practice, it
means that if the matrix D is given in standard basis on edge σ by(

Dσ
11 Dσ

12

Dσ
12 Dσ

22

)
, then Dσ =

(
Dσ

11 Dσ
12

Dσ
12 Dσ

22

)
,

i.e., D̄σ
11 = Dσ

11, D̄
σ
12 = Dσ

12 and D̄σ
22 = Dσ

22 for edges parallel to the axis y.
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On the other hand,

Dσ =

(
Dσ

22 −Dσ
12

−Dσ
12 Dσ

11

)
,

i.e., D̄σ
11 = Dσ

22, D̄
σ
12 = −Dσ

12 and D̄σ
22 = Dσ

11 for edges parallel to the axis x.
Due to such a matrix representation, (12) can be rewritten in the form

φn
σ(u

n
h,k) =

(
D̄σ

11D̄
σ
12

D̄σ
12D̄

σ
22

)(
un
E−un

W

h

un
N−un

S

h

)(
1

0

)
= D̄σ

11

un
E − un

W

h
+ D̄σ

12

un
N − un

S

h
,

since the formula (11) in the basis (nW,σ, tW,σ) can be written for each edge as

pnσ(u) =

(
un
E−un

W

h
un
N−un

S

h

)

and nW,σ in the basis (nW,σ, tW,σ) is equal to
(
1
0

)
for each edge σ.

Using the above mentioned strategy, we obtain the scheme in the form, see [3],

un
W − un−1

W

k
− 1

m(W )

∑
σ∈EW∩Eint

φn
σ(u

n
h,k)m(σ) = 0 (13)

with

φn
σ(u

n
h,k) = D̄σ

11

un
E − un

W

h
+ D̄σ

12

un
N − un

S

h
. (14)

We proved the convergence of the discrete solution of the scheme (13)–(14)
to the weak solution of the model (1)–(3) for the CED2 in [3]. We also estimated
the difference between the weak solution of the problem (1)–(3) and the ap-
proximate solution fulfilling the scheme (13)–(14) for the CED2 in dependence
on the spatial and temporal discretization step, see [4]. We proved that the er-
ror of the numerical solution given by our scheme in L∞(I, L2) is of order h.
The detailed convergence and error estimate proofs for the CED2 can be found
in [3] and [4], respectively. The convergence analysis for the CED3 is our present
interest of research.

4. Computational experiments

In all our experiments we use the space step h (the size of finite volume edge)
equal to 0.01 and the time discretization step k of the numerical scheme (10)
satisfies the relation k = h2. Instead of convolution with the Gaussian kernel

Gt(x) =
1

4πt
e−

|x|2
4t , (15)
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we apply one step of an implicit scheme solving the linear heat equation, where
the relationship between the radius r of the Gaussian convolution kernel and
time step k of the heat equation is given by

r = 3
√
2k.

We denote the time steps of the heat equation corresponding to three convolu-
tions with the Gaussian kernel Gt̃, (Gρ and Gθ) by kt̃, (kρ and kθ).

The first experiment shows the advantage of the CED3 in comparison to the
CED2. We demonstrate it in Fig. 3.

Figure 3. Top: the artificial image with 3 fine structures (left), the image
from top, left with additional defects (right). Bottom: the image from top,
right filtered by 13 steps of the CED2 (left), the image from top, right
filtered by 15 steps of the CED3 (right).

We created an artificial image consisting of several wide and two narrow
arcs. One of the wide arcs contains 3 fine line structures, see Fig. 3 (top, left).
Then the image was damaged, see Fig. 3 (top, right), in order to compare the
restoration techniques of CED2 and CED3. Our aim was to close the corrupted
spots by the diffusion without the loss of 3 fine line structures. Because the
fine line structures are very thin, we must choose the value of the noise scale t̃
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very small. Otherwise, the fine structures are not recognized by the structure
tensor and are consequently smoothed. The integration scale ρ must be also
small to enable to preserve so tiny structures. Hence the choice of ρ is crucial for
the difference between CED2 and CED3 results in this experiment. The CED2

performs in general well. Nevertheless, oscillations can appear here even if only
very occasionally. To avoid them we must sufficiently enlarge the parameter ρ.
Unfortunately, this enlargement often leads to loss of tiny structures. On the
other hand, thanks to the third convolution, the CED3 has no problem with
oscillations and hence a sufficiently small ρ can be used which enables to preserve
tiny structures. The oscillations occur only if the time step kθ of heat equation
corresponds to extremely small radius of Gaussian convolution kernel Gθ, e.g.,
kθ = 10−6 corresponds to the radius equal to 0.004. This radius is too small
in comparison with the spatial step h = 0.01. We usually use the time step
kθ = 10−4 corresponding to the radius which is approximately equal to 0.042
(corresponding to 4 finite volumes). We recommend that kθ is at least 10-times
smaller than kρ.

We put kt̃ = 2.5 · 10−5 in this experiment because the use of a higher value
leads to loss of fine structures. The CED3 works correctly without oscillations
regardless of kρ selection. We chose kρ = 0.002 as the best choice satisfying
the two conditions: ρ (and thus kρ) must be at once small so that the fine
structures are recognized by the structure detector and large enough to perform
sufficient diffusion. We obtained the CED3 result, see Fig. 3 (bottom, right), after
15 filtering steps using the parameter values mentioned above. CPU was 25.97
seconds. When we performed the same experiment using CED2 instead of CED3,
we used the same parameter value kt̃ = 2.5 ·10−5 but the choice of ρ was limited
by the formation of oscillations. The smallest admissible value for which the
oscillations did not occur was kρ = 0.0125. Forming the oscillations is shown in
Fig. 4. We used the same parameters for the CED2 and CED3: kt̃ = 2.5 · 10−5,
kρ = 0.002 and α = 0.001 (the parameter of diffusion tensor eigenvalues given
in (7)) with the additional parameter kθ = 0.0001 for the CED3. The oscillations
in the image filtered by CED2 could be observed after 15 diffusion steps, when
the damaged spots were sufficiently repaired. In the next steps, they become
more and more distinctive. On the other hand, in image filtered by CED3 the
oscillations did not occur at all.

We used only 13 filtering steps of the CED2 to repair damaged spots in the im-
age sufficiently because this diffusion procedure was a little faster due to larger
convolution parameter kρ. However, the fine structures were smoothed before
defect removal because this value of kρ is too high for so tiny structures, see
Fig. 3 (bottom, left). CPU of the CED2 was 78.3 seconds which is about 3 times
more than the running time of the CED3.
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Figure 4. The results of CED2 (top) and CED3 (bottom) using small
parameter kρ = 0.002 after 15 diffusion steps (left), after 30 steps (middle)
and after 70 steps (right).

Figure 5. Results of the additive noise elimination. The original image
(left), result after 20 time steps of the CED3 (middle), edge detection
performed after 20 time steps (right).

Using the same testing image we performed experiments exploring the ability
to remove additive and salt & pepper noise. The Fig. 5 and Fig. 6 show the results
of applying CED3 after 20 time steps with the following set of parameters:

α = 0.02, t̃ = 0.001, ρ = 0.05 and θ = 0.005.
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Figure 6. Results of the salt & pepper noise elimination. The original
image (left), result after 20 time steps of the CED3 (middle), edge detection
performed after 20 time steps (right).

Figure 7. Top: the artificial image (left), the image from top, left with ad-
ditional defects (right). Bottom: the image from top, right after 20 diffusion

steps of the CED2 (left) and the CED3 (right).

Afterwards edge detection has been applied. Even after running more than neces-
sary, the oscillations did not appear (however, this could happen if the parameter
α to control the diffusion across edges is too small).
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Several others realized experiments compared the efficiency of the CED2 and
CED3. In the following text we summarize their results. If we use the same param-
eter values of kt̃ and kρ and the same number of steps for the CED2 and CED3,
the running time of CED2 is a little shorter (about 5–7%).

However, in general a lower number of steps is sufficient for the CED3 to acquire
a desirable diffusion result and hence the running time of CED3 is in fact shorter
(about 10–15%). We demonstrate this behaviour in Fig. 7.

We constructed an artificial image with wide arcs, see Fig. 7 (top, left). Then
we superimposed several large interruptions in one of these arcs, see Fig. 7 (top,
right). Our goal was to compare the CED2 and CED3 approaches by using the
same convolution parameter values kt̃ and kρ. We applied the following values:
kt̃ = 0.001, kρ = 0.01 and kθ of the CED3 equal to 0.001. We compared the
results of CED2 and CED3 obtained by the same number of diffusion steps. As
an example, we show the results after 20 steps, see Fig. 7 (bottom). One can
see that the CED3 saturates disrupted places in the arc faster. The full arc
restoration was acquired after 300 steps while the CED2 needed up to 350 steps
and hence also took a longer time (about 14%).

Next experiments show applications of the CED3. Fig. 8 shows the detail of
the radar data (non-homogeneous region with tiny structures). The data was
processed by the CED2 as well as CED3. Both schemes used the parameters:
kt̃ = 1.5 · 10−5 and α = 0.005. They differ in a choice of ρ. In the CED2 we
had to apply larger kρ equal to 0.008 to avoid a formation of oscillations, while
smaller kρ = 0.001 was sufficient for the algorithm of CED3. The parameter kθ
of the CED3 was 10-times smaller than kρ. We performed 8 time steps.

The coherence of the CED3 image seems to be better, moreover, while CED2

linear system needed 280 iterations, the CED3 only 45.

Figure 8. Details of the radar data (non-homogeneous region with tiny

structures) processed by the CED2 and CED3. The original data is on the
left, the data processed by the CED3 in the middle. To compare with the
CED2 by visual inspection, its result is shown on the right.
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The last experiment represents the CED as a post-processing procedure. Fig. 9
(top) shows an original (noisy) membrane image and Fig. 9 (bottom, left) the re-
sult of processing of this image by 15 time steps of the regularized (in the sense
of C a t t é , L i o n s, M o r e l and C o l l) Perona-Malik equation, see [1], [8].
This diffusion model has the following form

Figure 9. Top: the membrane original (noisy) image. Bottom: the image
filtered by 15 steps of the Perona-Malik diffusion (left), the image filtered
by 15 steps of the Perona-Malik diffusion and subsequently by 2 steps

of the CED3 (right).

ut −∇ · (g(|∇Gt̃ ∗ u|)∇u) = 0 in QT ≡ Ω× I, (16)

u(x, 0) = u0 in Ω. (17)

∇u · n = 0 on ∂Ω× I. (18)

In our experiments we used g in the form g(s) = 1
1+Ks2 . To preserve important

edges, choice of large K (K = 10) was required to slow-down the diffusion near
edges sufficiently. We obtained the image result in which the noise is blurred
and image structures representing membranes are still kept, see Fig. 9 (bottom,
left). However, their boundaries are rather jaggy. To improve their quality, we
applied the CED3 improving the boundary coherence, see Fig. 9 (bottom, right).
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5. Conclusions

The paper is devoted to the coherence enhancing diffusion. First, we briefly
describe the model and show a construction of the diffusion tensor which steers
the filtering process. Then we propose our regularization. The additional con-
volution is integrated in the model and applied to the diffusion tensor. Then
we give a hint how to create the numerical scheme. The semi-implicit diamond-
cell finite volume approach was used for the computational implementation.
The end of section devoted to the discrete scheme contains references to fun-
damental theorem of the convergence and error estimate analysis for the CED2.
The contribution is demonstrated in experiments showing benefits of the CED3

in comparison to the CED2.

The CED2 operates very well in practice. However, it can rarely produce os-
cillations due to the fact that the “out-of-diagonal” coefficients of linear system
for the scheme (13)–(14) can be positive. These coefficients consist of sums and
differences of the diffusion tensor elements. The oscillations appear in such dif-
fusion processes in which both convolution kernels are very small. We can avoid
a creation of oscillations in the CED2 by enlarging the convolution parameters t̃
and ρ (which follows from the enlargement of kt̃ and kρ). However, this enlarge-
ment causes a loss of tiny structures in the image. We introduced the additional
convolution in CED3 to prevent oscillations. It also enables to decrease suffi-
ciently the parameters t̃ and ρ which leads to a more precise reconstruction
of image edges. Thus, the diffusion procedure has no oscillation problem, addi-
tionally the third convolution leads to the filtering acceleration.
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