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ROTATION-EQUIVALENCE CLASSES

OF BINARY VECTORS

Otokar Grošek — Viliam Hromada

ABSTRACT. In this paper we study equivalence classes of binary vectors with
regards to their rotation by using an algebraic approach based on the theory
of linear feedback shift registers. We state the necessary and sufficient condition
for existence of an equivalence class with given cardinality and provide two for-
mulas. The first represents the sharp distribution of cardinalities for given length

and Hamming weight of binary vectors and the second enables us to determine
the number of different classes with the same cardinality.

1. Introduction

In cryptography and coding theory, there are many algorithms, which use
rotation of a binary vector. One interesting example is the McEliece cryptosys-
tem [4], [5] that uses quasi-cyclic codes, e.g., QC-LDPC (low-density parity-check
codes) as proposed by B a l d i et al. [1], [2]. Another interesting example, where
equivalence classes of rotation of binary vectors are studied, is the rotational
cryptanalysis of various cryptosystems [7].

McEliece version with QC-LDPC codes uses quasi-cyclic matrices, which are
matrices consisting of blocks of binary circulant matrices. A binary circulant
matrix is a matrix, in which each row vector is rotated one element to the right
relative to the preceding row. It is therefore helpful to know the correspond-
ing equivalence class of a binary vector with regards to its rotation and the
cardinality of this class. These rotations are calculated in the real time in the
implementation of these cryptosystems, since it is sufficient to store into mem-
ory only the first rows of used binary circulant matrices and the other rows can
be computed on-demand by simple rotations, which greatly lowers the memory
requirements.
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This paper deals with the sufficient and necessary condition for the existence
of a class with given cardinality and the formulas presented in this paper can be
used to determine the structure of classes for binary vectors with given length
and Hamming weight, i.e., they present the sharp distribution of cardinalities
and the number of different classes with the same cardinality.

2. Rotational equivalence classes

Let Vn be n-dimensional vector space over F2, and Et =
{
e | hw(e) = t

} ⊂ Vn,

where hw is the Hamming weight. Number of such vectors is equal to
(
n
t

)
, i.e.,

|Et| =
(
n
t

)
. Let A be the associated n×nmatrix to the characteristic polynomial

f(x) = xn + 1 over F2 of the LFSR as defined in [3]

A =

⎛
⎜⎜⎜⎜⎜⎝
0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

For any u ∈ Et let [u] = {u, uA, . . . , uAd−1} be a class of words (state vectors)
obtained from u by consecutive shifts of this vector, where d is the smallest
period of this sequence. Hence u = uAd.

Let �n be a relation defined on Et such that u�nv if and only if u, v belong
to the same class. Then �n is an equivalence relation on Et and u�n = [u].
The cardinality of such classes may vary from 1 to n as shown in the next
example.

Example 1. Here we present several typical cases:

1. If n = 6, t = 6, then clearly |[1, 1, 1, 1, 1, 1]�6| = 1.

2. If n = 7, t = 3, then all classes have the same cardinality 7, and there are
5 such classes.

3. If n = 10, t = 4, then we have 20 classes of cardinality 10 and 2 classes of
cardinality 5, namely,

[0, 0, 1, 0, 1, 0, 0, 1, 0, 1]�10 and [0, 0, 0, 1, 1, 0, 0, 0, 1, 1]�10 .

All divisors of 10 are 2, 5, 10, but there is no class with cardinality 2.

Remark 1� A necessary condition for having the same cardinality for all classes
is n | (nt). From [6] it can be deduced that

(
n
t

)
is divisible by n

gcd(n,t) . Thus, if

gcd(n, t) = 1, then
(
n
t

)
is divisible by n. The converse is not true, e.g.,

(
10
4

)
= 210,

and gcd(10, 4) > 1, but 10 | 210. As shown in Example 1 in this case there exist
2 classes with 5 elements.
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It follows from the theory of LFSR that for any initial state u the cardinal-
ity of [u] = u�n divides the order of A in the general linear group GL(n,F2).
Equivalently, the cardinality of [u] divides the order of f(x) in F2[x], i.e., the
smallest � such that f(x) | x� + 1. This � coincides with the order of A.
Since in our case the order of A is n, d | n. Next, we prove a necessary and
sufficient condition for having a class of a given cardinality d.

������� 1� Let �n be the equivalence relation on Et defined above. Then there
exists a class u�n with cardinality d if and only if d | n and n

d | t.

P r o o f. The first condition d | n of our claim results from general theory of LFSR
(cf. [3]).

Next we concatenate u from smaller parts. Thus we will speak about words
over the alphabet {0, 1} of a given length, i.e., elements from the free semigroup
S = {0, 1}∗. If there is a class with d elements, |u�n| = d ≤ n. Then

u = unun−1 . . . u1 = un−dun−d−1 . . . u1unun−1 . . . un−d+1 (1)

and we can concatenate u from words w1‖w2‖ . . .‖wz , where the length of wi is
|wi| = d, i = 1, 2, . . . z, and z = n/d. Next we show that

1. all these words are the same, i.e., w1 = w2 = . . . = wz;

2. the weight of wi is
t
z = td

n for i = 1, 2, . . . , z, providing n | td.
Clearly, the second claim is a direct consequence of the first one.

From the definition of classes it follows that if u = w1‖w2‖ . . .‖wz, then

u = uAd = wz‖w1‖w2‖ . . . ‖wz−1.

Thus w1 = wz, w2 = w1, . . . , wz = wz−1 which concludes the first part of the
proof.

On the other hand, let d | n and n
d | t. Then we can construct a word w

w =

d−td/n︷ ︸︸ ︷
00 . . .0 ‖

td/n︷ ︸︸ ︷
11 . . .1= 0d−td/n1td/n,

i.e., u = wn/d, and [u] contains precisely d elements. �

����		
�� 1� All classes u�n have the same cardinality if and only if t = 0
or gcd(n, t) = 1.

P r o o f. The cases t = 0 and t = n are trivial. Let for now 0 < t < n. From
Theorem 1 it follows that the cardinality d of a class must satisfy n | td and
d | n. If gcd(n, t) = 1, then d = n.

On the other hand, if all classes have the same cardinality d and gcd(n, t) =
k > 1, then we can construct two words, namely
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1. u = 0n−t1t, which yields |u�n| = n, and

2. v = w1 | . . . | wk such that wi = w, i = 1, . . . , k, |w| = n/k, hw(w) = t/k.
From the construction it follows that |v�n| = n/k �= n, a contradiction
with our supposition.

This completes the proof. �

Here is a more complex example:

Example 2. Let n = 20, t = 10. Then we have the following distribution
of classes:

– 9225 classes with cardinality d = 20;

– 25 classes with cardinality d = 10;

– 1 class with cardinality d = 4;

– 1 class with cardinality d = 2.

In this case there is no class with cardinality d = 5 since n
d � t.

Important question is how many classes with the maximum cardinality d = n
exist. Let for given n, t; C(n, t, d) denotes the number of classes with the car-
dinality d. In Example 2, e.g., C(20, 10, 4) = 1, C(20, 10, 5) = 0. According
to Theorem 1 and definition of �n we have(

n

t

)
=

∑
d|n

dC(n, t, d). (2)

By Theorem 1 we can exclude in this formula all summands d for which
C(n, t, d) = 0. (

n

t

)
=

∑
d|n

n/d|t

dC(n, t, d). (3)

There are 2 trivial cases

C(n, n, d) = C(n, 0, d) =

{
1, if d = 1;

0, if d > 1.
(4)

Let for given n, t; Dn,t be the set of all d for which summands in Formula 3 are
non-zero. Using the proof of Theorem 1 we can easily derive a formula for all
non-trivial and non-zero C(n, t, d):

C(n, t, d) =
1

d

⎛
⎜⎜⎝
(
d
td
n

)
−

∑
k∈Dn,t

k|d,k<d

kC(n, t, k)

⎞
⎟⎟⎠ . (5)
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Example 3. We apply formula (5) to our examples:

If n = 10, t = 4, then D10,4 = {5, 10}; C(10, 4, 5) = 1
5

(
5
2

)
= 2 and

C(10, 4, 10) = 1
10

((
10
4

)− 5C(10, 4, 5)
)
= 20.

If n = 20, t = 10, then D20,10 = {2, 4, 10, 20}; C(20, 10, 2) = 1
2

(
2
1

)
= 1,

C(20, 10, 4) = 1
4

((
4
2

)− 2C(20, 10, 2)
)
= 1,

C(20, 10, 10) = 1
10

((
10
5

)− 2C(20, 10, 2)
)
= 25,

C(20, 10, 20) = 1
20

((
20
10

)− 2C(20, 10, 2)− 4C(20, 10, 4)− 10C(20, 10, 10)
)
= 9225.

3. Conclusion

In this paper we studied equivalence classes of binary vectors with regards
to their rotation. We used the theory of linear feedback shift registers, since the
rotation of a binary vector can be modeled by a register with corresponding
characteristic polynomial f(x) = xn + 1. We stated necessary and sufficient
condition for the existence of such classes with given cardinalities, and provided
a formula that can be used to determine the structure of equivalence classes for
binary vectors with given length and Hamming weight. One of the applications
of our results are the quasi-cyclic codes used in the McEliece cryptosystems
based on QC-LDPC codes, since we are able to determine the existence of square
n×n binary circulant matrices with n distinct rows and the structure of binary
circulant matrices, e.g., the number of distinct rows, depending on the length n
and Hamming weight t of the first row.
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