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EFFICIENT SECURE MATRIX MULTIPLICATION

OVER LWE-BASED HOMOMORPHIC ENCRYPTION

Dung Hoang Duong — Pradeep Kumar Mishra — Masaya Yasuda

ABSTRACT. Homomorphic encryption enables various calculations while pre-
serving the data confidentiality. In this paper, we apply the somewhat homo-
morphic encryption scheme proposed by Brakerski and Vaikuntanathan

(CRYPTO 2011) to secure matrix multiplication between two matrices. To reduce
both the ciphertext size and the computation cost, we propose a new method to
pack a matrix into a single ciphertexts so that it also enables efficient matrix mul-
tiplication over the packed ciphertexts. Our packing method generalizes Yasuda
et al.’s methods (Security Comm. Networks 2015 and ACISP 2015), which are

for secure inner product. We also implement our methods and give a comparison
with previous packing methods.

1. Introduction

Homomorphic encryption is a form of encryption that can support mean-
ingful operations on encrypted data (without decryption). This encryption has
been expected to give a powerful tool for data protection in cloud computing.
The concept of homomorphic encryption was first introduced by R i v e s t et al.
in [7, 1978], and the first fully homomorphic encryption (FHE) scheme that
supports arbitrary computations on encrypted data was constructed by G e n
t r y [4]. However, currently known FHE schemes are yet impractical. In contrast,
somewhat homomorphic encryption (SHE) schemes (e.g., the Boneh-Goh-Nissim
(BGN) scheme [1], and the building block for an FHE scheme), which support
only a limited number of additions and multiplications on encrypted data, have
wider applications and take a lot of attention from various communities.
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We use the SHE scheme proposed by B r a k e r s k i and V a i k u n t a n a-
t h a n [3]. The security of the scheme relies on the computational hardness of the
polynomial version of the learning with errors (LWE) problem, a simplified ver-
sion of the ring-LWE assumption of [6]. Over the SHE scheme, L a u t e r et al. [5]
proposed a method to pack an integer of large size into a single ciphertext so
that it enables to efficiently compute secure sums and products over the inte-
gers. After that, Y a s u d a et al. [9] proposed a new packing method for secure
multiple inner products, which can be applied to secure Hamming distance and
pattern matching computations. While their packing method is efficient only
for vectors with small size entries, they modified their method for large size
entries [10]. Their modified method can be applied to secure statistical anal-
ysis such as covariance and correlation between two variables with integers of
practical size.

In this paper, we propose several packing methods for secure matrix multipli-
cation, using the idea of Y a s u d a et al.’s methods [9], [10]. More specifically,
for matrices with binary entries, our method is based on [9], and for non-binary
entries, it is based on [10]. Our main ingredient for packing a matrix A is to
deploy the entries of A into a single polynomial by using the packing methods
of [9], [10], and then encrypt the polynomial over the SHE scheme. Our matrix
packing method requires only one homomorphic multiplication over our packed
ciphertexts for secure matrix multiplication. In Section 2, we review the SHE

scheme proposed by B r a k e r s k i and V a i k u n t a n a t h a n. In Section 3, we
present previous packing method over the SHE scheme. In Section 4, we present
our packing methods for secure matrix multiplication. In Section 5, we give
implementation results and discuss about a comparison with previous methods.

2. Preliminaries

In this section, we briefly recall the construction and the homomorphic cor-
rectness of the somewhat homomorphic encryption scheme proposed by B r a-
k e r s k i and V a i k u n t a n a t h a n [3]. Let n be a 2-power integer defining the
base ring R = Z[x]/(xn + 1). Let q be a prime number with q ≡ 1 mod 2n
defining the ring Rq = R/qR = Fq[x]/(x

n + 1), which gives the base ring of
ciphertext space. According to [2], the condition q ≡ 1 mod 2n is not necessary
for the construction and the security but for the efficiency of the scheme. Let t
be a positive integer with t < q defining the plaintext space Rt = R/tR. Let σ
be the parameter for defining a discrete Gaussian error distribution χ = DZ,σ

(specifically, we select each entry in an n-dimensional vector by sampling from
a Gaussian distribution N(0, σ) and then round it to the nearest integer).
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The security of the scheme (constructed in Section 2.1 below) relies on the
following polynomial-LWE assumption, which is a simplified version of the ring-
LWE assumption of L y u b a s h e v s k y, P e i k e r t and R e g e v [6] (the fol-
lowing assumption is independent of the parameter t, see [3, Proposition 11]
for details).

���������� 1 (Polynomial-LWE)� Given (n, q, t, σ), the polynomial-LWE as-
sumption is that it is infeasible to distinguish the following two distributions:

(1) One samples (ai, bi) uniformly from (Rq)
2.

(2) One first draws s← χ = DZn,σ uniformly and then samples (ai, bi) ∈ (Rq)
2

by sampling ai ← Rq uniformly, ei ← χ and setting bi = ais+ ei.

2.1. Somewhat homomorphic encryption scheme

We here present the construction of the public-key SHE scheme. Specifically,
the below construction is a variant of [5, Section 3.2].

• Key generation: Choose an element R � s ← χ, sample a uniformly
random element p1 ∈ Rq and an error R � e ← χ. Set pk = (p0, p1) with
p0 = −(p1s+ te) as the public key and sk = s as the secret key.

• Encryption: For a plaintextm ∈ Rt, sample R � u, f, g ← χ and compute
the fresh ciphertext

Enc(m, pk) = (c0, c1) = (p0u+ tg +m, p1u+ tf) ∈ (Rq)
2, (1)

where the plaintext m ∈ Rt is regarded as an element of Rq, since t < q.

• Homomorphic operations: Given two (fresh or operated) ciphertexts
ct = (c0, c1, . . . , cξ) and ct′ = (c′0, c

′
1, . . . , c

′
η) (note that the length of a

ciphertext increases by the homomorphic multiplication defined below).
Then the homomorphic addition “�” is computed by component-wise ad-
dition

ct� ct′ =
(
c0 + c′0, . . . , cmax(ξ,η) + c′max(ξ,η)

)
by padding with zeros if ξ �= η, and the homomorphic multiplication “∗”
is defined by ct ∗ ct′ = (c̃0, . . . , c̃ξ+η) with

ξ+η∑
i=0

c̃iz
i =

(
ξ∑

i=0

ciz
i

)(
η∑

j=0

c′jz
j

)
.

Here z denotes a symbolic variable.

• Decryption: For a ciphertext ct = (c0, c1, . . . , cξ), the decryption with
secret key sk = s is computed by

Dec(ct, sk) = [m̃]q mod t ∈ Rt,
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where m̃ =
∑ξ

i=0 cis
i ∈ Rq and [z]q denotes the reduction of z under mod-

ulo q in the interval [−q/2, q/2). For the secret key vector s = (1, s, s2, . . .),
we can simply rewrite Dec(ct, sk) = [〈ct, s〉]q mod t.

2.2. Homomorphic correctness

The “homomorphic correctness” means that the decryption procedure can
correctly recover the operated result over plaintexts after performing several
homomorphic operations over ciphertexts. For given ciphertexts ct1 and ct2 cor-
responding to the plaintexts m1 and m2, one has from the construction that{ 〈ct1 � ct2, s〉 = 〈ct1, s〉+ 〈ct2, s〉,

〈ct1 ∗ ct2, s〉 = 〈ct1, s〉 · 〈ct2, s〉.

It follows from [5, Theorem 3.3] that homomorphic operations over ciphertexts
correspond to the ring structure of the plaintext space Rt. Specially we have{

Dec(ct1 � ct2, sk) = m1 +m2 ∈ Rt,
Dec(ct1 ∗ ct2, sk) = m1 ×m2 ∈ Rt.

Remark 2� Given a fresh ciphertext ct = (c0, c1) generated by (1), we have

〈ct, s〉 = (p0u+ tg +m) + s · (p1u+ tf)

= m+ t · (g + sf − ue) (2)

in the ring Rq since p0 + p1s = −te. If the value m+ t · (g + sf − ue) does not
wrap around mod q (all errors e, f, g, u← χ must be sufficiently small), we have
[〈ct, s〉]q = m+t·(g+sf−ue) in the base ring R. Hence we can recover the correct

plaintext m by (mod t)-operation, which shows the decryption mechanism for
any fresh ciphertexts (see [3] for more details on the homomorphic correctness).

The following Lemma gives us the condition for the homomorphic correctness
of the SHE scheme and for choosing suitable parameters (n, q, t, σ) in order to
avoid decryption failure of a ciphertext.

	�

� 3 (Condition for successful decryption)� For a ciphertext ct, the decryp-
tion Dec(ct, sk) recovers the correct result if it satisfies the condition

‖〈ct, s〉‖∞ <
q

2
.

Here for a =
∑n−1

i=0 aix
i ∈ R, let ‖a‖∞ = max |ai| denote the ∞-norm of its

coefficient representation.
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3. Previous packing methods

In this section, we briefly review the previous packing methods proposed by
L a u t e r et al. [5] and Y a s u d a et al. [9], [10] over the SHE scheme described
in the previous section.

3.1. Packing method by [5] for large integers

L a u t e r et al. [5] introduced a method to pack a large integer into a single
ciphertext, and it enables efficient computation of sums and products over packed
ciphertexts. Specially, a message M of up to n bits is broken into a binary vector
(m0, . . . ,mn−1) and associated with a polynomial

pm(M ) =

n−1∑
i=0

mix
i,

of degree less than or equal to n − 1 and finally encrypts M as ct(M ) :=
Enc(pm(M ), pk). Note that pm(M )|x=2 = M . Moreover, for given plain-
textsM,M ′, the homomorphic addition ct(M )�ct(M ′) gives the polynomial ad-
dition pm(M )+pm(M ′) on encrypted data under the correctness [5, Lemma 3.3].
However, the integer multiplication causes a problem as polynomial multiplica-
tion pm(M ) · pm(M ′) has degree larger than n. Hence, their method can only
encodes integers of at most (n/d)-bit when it requires d homomorphic multipli-
cations. Their method is effective in computing low degree multiplications.

3.2. Packing method by [9] for secure inner product

Y a s u d a et al. [9] proposed two types of packed ciphertexts as follows:
For an integral vector A = (a0, . . . , am−1) of length m ≤ n, set

pm(1)(A) =

m−1∑
i=0

aix
i and pm(2)(A) = −

m−1∑
i=0

aix
n−i, (3)

and then packed ciphertexts are defined as ct(i)(A) := Enc(pm(i)(A), pk) for
i = 1, 2. The first type is same as Lauter et al.’s method [5], but the second
one enables efficient secure computation of inner product. Specially, for two vec-
tors A and B of same length m ≤ n, only one homomorphic multiplication
over ct(1)(A) and ct(2)(B) can give the inner product 〈A,B〉 on encrypted data;
see [9, Proposition 1]. This computation is effective for secure distance com-
putations such as the Euclidean and the Hamming distances; see [9] for more
details.
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3.3. Modification by [10] for large integer entries

When handling with small integers (e.g., 1 or 2 bits), the packing method
in [9] is effective and sufficient for secure statistics. However, for integers of
practical bit-size (e.g., even for 16 or 32 bit), the packing method enforces to set
the parameter t of the plaintext space Rt to be considerably large, and it then
causes slow performance of the SHE scheme. Y a s u d a et al. [10] modified the
packing method in [9] for large-size integers as follows.

Given an integer m, let A = (a0, . . . , am−1) be a vector of length m with
entries ai less than p bits. For a chosen integer r > 0 (e.g., r = 2), we write each
integral entry ai in the base-r representation, namely

ai =

d−1∑
u=0

ai,ur
u with ai,u ∈ {0, 1, . . . , r − 1},

where d = 
logr 2p�. We associate to A the following two polynomials:

pm(1)
m,p,r(A) =

m−1∑
i=0

(
d−1∑
u=0

ai,ux
u

)
x2id, (4)

pm(2)
m,p,r(A) =−

m−1∑
i=0

(
d−1∑
u=0

ai,ux
u

)
xn−2id, (5)

and then packed ciphertexts are defined as ct
(i)
m,p,r(A) := Enc(pm

(i)
m,p,r(A), pk)

for i = 1, 2. Then we have the following theorem [10, Theorem 1] on secure inner
product between A and B with large entries.

�
����
 4� Let A = (a0, . . . , am−1) and B = (b0, . . . , bm−1) be two integral
vectors of same length m with entries less than p bits. Assume that n ≥ 2md
and t > m(r − 1)2d, where d = 
logr 2p� for a fixed positive integer r. Let

ct = ct(1)m,p,r(A) ∗ ct(2)m,p,r(B),

and let Dec(ct, pk) =
∑n−1

i=0 mix
i ∈ Rt denote the decryption result. Then under

the condition of Lemma 3 for the ciphertext ct, the sum
∑2d−1

i=0 mir
i ∈ Z gives

the inner product 〈A,B〉.

4. Our packing methods for secure matrix multiplication

In this section, we propose packing methods to efficiently compute secure ma-
trix multiplication. Notice that by using the packing methods of Y a s u d a et
al. [9], [10] described in the previous section, one needs m2 secure inner prod-
uct computations (i.e., m2 homomorphic multiplications) to compute a matrix
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multiplication of two m ×m matrices. In this section, for each of the packing
method proposed by Y a s u d a et al., we propose two methods to reduce the
number of computations: the first one requires m homomorphic multiplications
and the second one requires only one homomorphic multiplication.

4.1. Binary matrix multiplication

Let A be an m ×m matrix with binary entries. Let A1, . . . , Am denote the
row vectors of A and AT

1 , . . . , A
T
m the column vectors of A. In order to compute

the matrix multiplication AB of two binary matrices A and B, one needs to
compute the inner products 〈Ai, B

T
j 〉 for i, j = 1, . . . ,m. We pack each row

Ai = (ai,0, . . . , ai,m−1) and each column AT
j = (aj,0, . . . , aj,m−1) of A as in (3),

namely:

pm(1)(Ai) :=

m−1∑
u=0

ai,ux
u, pm(2)(AT

j ) := −
m−1∑
v=0

aj,vx
n−v. (6)

It follows from Section 3.2 that the constant term of pm(1)(Ai) × pm(2)(BT
j )

is the inner product 〈Ai, B
T
j 〉 (note that “×” denotes the multiplication in the

ring R = Z[x]/(xn + 1)). We define the following two types of polynomials in R
associated to a given matrix A:

Pol(1)(A) := pm(1)(A1) + · · ·+ pm(1)(Am)xm(m−1)

=

m∑
i=1

pm(1)(Ai)x
(i−1)m,

Pol(2)(A) := pm(2)(AT
1 ) + · · ·+ pm(2)(AT

m)xm2(m−1)

=

m∑
j=1

pm(2)(AT
j )x

(j−1)m2

.

Define the packed ciphertexts for a given matrix A to be

ctmat
(i)(A) := Enc(Pol(i)(A), pk), for i = 1, 2.

In order to get the matrix multiplication AB, we need to obtain the inner
products 〈Ai, B

T
j 〉 for i, j = 1, . . . ,m. Here we present our two approaches.

�
����
 5 (The first packing method)� Assume that n ≥ m2. For each
j = 1, . . . ,m, let

ctj = ct
(1)
mat(A) ∗ ct(2)(BT

j )

and let Dec(ctj , sk) ∈ Rt denote the decryption result. Then under the condition
of Lemma 3 for the ciphertext ctj , for each j = 1, . . . ,m, the inner product

〈Ai, B
T
j 〉 is the coefficient of x(i−1)m in Dec(ctj , sk).
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P r o o f. It follows from Section 3.2 (and clear from definition) that

pm(1)(Ai)× pm(2)(BT
j ) = 〈Ai, B

T
j 〉+ other terms of degree (n− v + u),

with u �= v and u, v ∈ {0, . . . ,m− 1}, and so the constant term of pm(1)(Ai)×
pm(2)(BT

j ) ∈ R gives us the inner product of Ai and BT
j . Now one has that

Dec(ctj , sk) = Pol(1)(A)× pm(2)
(
BT

j

)
=

m∑
i=1

pm(1)(Ai)× pm(2)(BT
j )x

(i−1)m.

For a fixed index i, we have

pm(1)(Ai)×pm(2)
(
BT

j

)
x(i−1)m = 〈Ai, B

T
j 〉x(i−1)m

+ other terms of degree n−v+u+(i−1)m,

with u �= v and u, v ∈ {0, . . . ,m − 1}. Since the exponents of x is modulo
n and therefore n − v + u + (k − 1)m is never equal to (i − 1)m for u �= v
and i, k ∈ {1, . . . ,m} . This implies that the terms of degree (i − 1)m in

Pol(1)(A) × pm(2)(BT
j ) is exactly the term of degree (i − 1)m in pm(1)(Ai) ×

pm(2)(BT
j )x

(i−1)m. Hence the inner product 〈Ai, B
T
j 〉 is the coefficient of x(i−1)m

in Dec(ctj , sk). �

Remark 6� With this approach, after m homomorphic multiplications over the
SHE scheme, we get the resulting matrix multiplication AB.

�
����
 7 (The second packing method)� Assume that n ≥ m3. For each
j = 1, . . . ,m, let

ct = ct
(1)
mat(A) ∗ ct(2)mat(B)

and let Dec(ct, sk) ∈ Rt denote the decryption result. Then under the condition
of Lemma 3 for the ciphertext ct, for each i and j, the inner product 〈Ai, B

T
j 〉

is the coefficient of x(j−1)m2+(i−1)m in Dec(ct, sk).

P r o o f. The proof is similar to that of Theorem 5. Over the ring R, we have

Dec(ct, sk) = Pol(1)(A)×Pol(2)(B)

=

m∑
i=1

m∑
j=1

pm(1)(Ai)× pm(2)(BT
j )x

(j−1)m2+(i−1)m.

As in the proof of Theorem 5, the term of degree (j − 1)m2 + (i − 1)m in
Dec(ct, sk) is exactly the term of degree (j − 1)m2 + (i − 1)m in pm(1)(Ai) ×
pm(2)(BT

j )x
(j−1)m2+(i−1)m ∈ R. Hence the coefficient of x(j−1)m2+(i−1)m in

Dec(ct, sk) gives the inner product 〈Ai, B
T
j 〉. �
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Remark 8� In this approach, we need to do only one homomorphic multiplica-
tion on packed ciphertexts for secure matrix multiplication.

4.2. Non-binary matrix multiplication

In this subsection, we adapt the method in Y a s u d a et al. [10] described in
Section 3.3 to propose packing methods for multiplying integral matrices with
non-binary entries. Let A and B be two m × m matrices whose entries are
integers of less than p bits. Let A(1), . . . , A(m) and B(1), . . . , B(m) be the rows of

A and BT , respectively. For i = 0, . . . ,m − 1, we write A(i) = (a
(i)
0 , . . . , a

(i)
m−1)

and B(i) = (b
(i)
0 , . . . , b

(i)
m−1). For a chosen integer r > 0, we write each integral

entry a
(i)
k in the base-r representation, namely

a
(i)
k =

d−1∑
u=0

a
(i)
kur

u with a
(i)
ku ∈ {0, 1, . . . , r − 1} ,

where d = 
logr 2p�, as in Section 3.3 (we took r = 2 in our experiments, and

then d = p). We pack a
(i)
k as

a
(i)
k (x) :=

d−1∑
u=0

a
(i)
kux

u ∈ R = Z[x]/(xn + 1) .

We associate to each row A(i) and column B(j) of A and B, respectively the
following polynomials in the ring R:

pm(1)
m,p,r(A

(i)) =

m−1∑
k=0

a
(i)
k (x)x2kd, (7)

pm(2)
m,p,r(B

(j)) = −
m−1∑
l=0

b
(j)
l (x)xn−2ld, (8)

We define the following polynomials in R associated to A and B:

Pol(1)(A) := pm(1)
m,p,r(A

(1)) + · · ·+ pm(1)
m,p,r(A

(m))x(m−1)2md

=

m∑
i=1

pm(1)
m,p,r(A

(i))x(i−1)2md,

Pol(2)(B) := pm(2)
m,p,r(B

(1)) + · · ·+ pm(2)
m,p,r(B

(m))x(m−1)2m2d

=

m∑
j=1

pm(2)
m,p,r(B

(j))x(j−1)2m2d.
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Define the packed ciphertexts for a given matrix A to be

ctmat
(i)(A) := Enc(Pol(i)(A), pk), for i = 1, 2 .

As in the case of binary matrix multiplication, we here present two approaches.

�
����
 9 (The first packing method)� Assume that n ≥ 2md(m+1). For each
j = 1, . . . ,m, let

ctj = ctmat(A) ∗ ct(2)m,p,r(B
(j)),

and let Dec(ctj , sk) ∈ Rt denote the decryption result. Then under the condition
of Lemma 3 for the ciphertext ctj , for each j = 1, . . . ,m, the inner product

〈A(i), B(j)〉 is the sum of the terms of degree greater or equal to (i− 1)2md and
less than (i− 1)2md+ 2d in Dec(ctj, sk) evaluated at x = r.

P r o o f. Fix i and j. Over the ring R, we have that

pm(1)
m,p,r(A

(i))× pm(2)
m,p,r(B

(j)) =

m−1∑
k=0

a
(i)
k (x)b

(j)
k (x)

︸ ︷︷ ︸
I(i)

+

(
−

m−1∑
k=0

k−1∑
l=0

a
(i)
k (x)b

(j)
l (x)xn+(k−l)2d

)
︸ ︷︷ ︸

II(i)

+

(
−

m−1∑
k=0

m−1∑
l=k+1

a
(i)
k (x)b

(j)
l xn+(k−l)2d

)
︸ ︷︷ ︸

III(i)

.

One gets that the degrees of terms in I(i), II(i) and III(i) are in the intervals
[0, 2d− 2], [2d, 2md− 2] and [n− (m− 1)2d, n− 2], respectively. It follows that

the sum of terms of degree less than 2d in pm
(1)
m,p,r(A(i))× pm

(2)
m,p,r(B(j)) ∈ R

evaluated at x = r gives us the inner product 〈A(i), B(j)〉. Now for each
j = 1, . . . ,m

Dec(ctj, sk) = Pol(1)(A)× pm(2)
m,p,r(B

(j))

=

m∑
i=1

pm(1)
m,p,r(A

(i))× pm(2)
m,p,r(B

(j))x(i−1)2md.

It then follows that for every i = 1, . . . ,m the inner product 〈A(i), B(j)〉 is
the sum of terms of degree greater than or equal to (i − 1)2md and less than
(i− 1)2md+ 2d in Dec(ctj , sk) evaluated at x = r. �
�
����
 10 (The second packing method)� Assume that n ≥ 2m3d+2md+2d.
Let

ct = ct
(1)
mat(A) ∗ ct(2)mat(B)
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and let Dec(ct, sk) ∈ Rt denote the decryption result. Then under the condition
of Lemma 3 for the ciphertext ct, for each i and j, the inner product 〈A(i), B(j)〉
is the sum of terms of degree greater than or equal to (i− 1)2md+ (j − 1)2m2d
and less than (i− 1)2md+ (j − 1)2m2d+ 2d in Dec(ct, sk) evaluated at x = r.

P r o o f. The proof follows easily from that of Theorems 7 and 9. �

5. Implementation and comparison

In this section, we report our implementation results. Specifically, we imple-
mented previous methods for inner product and our methods for secure matrix
multiplication. In the next subsection, let us describe how to select parameters
of the SHE scheme for each method.

5.1. Selection of parameters

Our selection of parameters is followed from [5, Section 3.2.2]. In this sub-
section, we describe how to select parameters (n, q, t, σ) of the SHE scheme.
We divide our description into two cases where the entries of matrices A and B
are binary and non-binary.

5.1.1. Case of binary matrix multiplication

Here we assume that the entries of two m × m matrices A and B are binary.
As in [5], we fix σ = 8. For the matrix size m, it is sufficient to take the plaintext
modulus as t = m + 1 since every entry of AB is not greater than m. In our
experiments, we take m = 16 and 32 for practical use, and hence we set t = 17
and 33, respectively. Let ct1 and ct2 denote the two ciphertexts obtained by
packing a part of or whole A and B, respectively. For example, in our first
packing method, we have

ct1 = ct
(1)
mat(A) and ct2 = ct

(2)
pack(B

T
j ) for some 1 ≤ j ≤ m.

In every packing method, we need to multiply ct := ct1 ∗ ct2 over ciphertexts
for secure matrix multiplication AB. In order to avoid decryption failure of
the ciphertext ct, it requires ‖〈ct, s〉‖∞ < q/2 by Lemma 3. Let U denote an
upper bound of the∞-norm size ‖〈ct′, s〉‖∞ for any fresh ciphertexts ct′ ∈ (Rq)

2.
We clearly have

‖〈ct, s〉‖∞ = ‖〈ct1, s〉 · 〈ct2, s〉‖∞ ≤ nU 2

by the well-known fact that ‖a · b‖∞ ≤ n‖a‖∞‖b‖∞ for a, b ∈ R = Z[x]/(xn+1).
According to the experimental estimation of [5], we may take U = 2tσ2

√
n in

practice. Therefore it suffices to take a prime q satisfying

2n(2tσ2
√
n)2 = 8n2t2σ4 ≤ q. (9)
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With respect to the degree parameter n, the previous method [9] requires n ≥ m,
our first method n ≥ m2, and our second method n ≥ m3. In particular, we take
n = (25)3 = 32768 in our second method for m = 32 = 25. In this case, we
approximately have q ≥ 23+30+10+12 = 255 by (9) since t ≈ 25. Then we always
fix one prime q of 60-bit for the binary case. Note that with such q, we can avoid
decryption failure of ct in every method since our second method requires the
largest n and q. Furthermore, since the ciphertext modulus q is less than 64-bit,
we estimate that the performance over a 64-bit machine would not change when
we use smaller q. We remark that for such q, we need n ≥ 2048 for more than
80-bit security (see [5] for more details on the security).

5.1.2. Case of non-binary matrix multiplication

In this case, we assume that the entries of two m × m matrices A and B are
less than p-bit. In our experiments, we took r = 2 and hence d = p in Theorems
4, 9 and 10. We fix σ = 8 as in the binary case. Let ct1 and ct2 denote the
two ciphertexts obtained by packing a part of or whole A and B, respectively.
For example, in our second packing method, we have

ct1 = ct
(1)
mat(A) and ct2 = ct

(2)
mat(B).

In every method, each coefficient of the decryption polynomial of ct = ct1 ∗ct2 is
not greater than mp (see [10, Section 3.2] for details). Hence, in every method, it
is sufficient to take t = mp+1 as the plaintext modulus. For the degree parameter
n, the previous method requires n ≥ 2mp by Theorem 4, our first method
n ≥ 2mp(m + 1) by Theorem 9, and our second method n ≥ 2p(m3 + m + 1)
by Theorem 10. In our experiments, we take m = 16 and p = 10, and hence we
fix t = mp+ 1 = 161 < 28. In this setting, we take

n = 213 = 8192 ≥ 2mp(m+ 1) and n = 217 = 131072 ≥ 2p(m3 +m+ 1)

in our first and second method, respectively. When we set n = 217, by inequal-
ity (9), it requires q ≥ 8n2t2σ4 ≈ 23+34+16+12 = 265 in order to avoid decryption
failure of ct. In our experiments, we took one prime q of 70-bit in every method
for a margin. For such q, it requires n ≥ 2048 for more than 80-bit security as
in the binary case, and hence we set n = 2048 ≥ 2mp in the previous method.

5.2. Implementation results

We implemented the SHE scheme with our packing methods for secure matrix
multiplication. Our experiments ran on an Intel Core i7-4790 CPU with 3.60 GHz
and 8.00GB RAM, using [PARI] library [8] (version 2.7.5) in C programs.
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Table 1. Performance of secure matrix multiplication of m ×m matrices
with binary entries.

(In seconds) m (n, log2(q), t, σ) Encryption Secure Matrix Mul. Decryption Total time

Previous method [9]
16 (2048, 60, 17, 8) 0.3987 11.5704 3.5352 15.5043

32 (2048,60,33,8) 0.7950 47.8745 14.063 62.7325

Our first method
16 (2048, 60, 17, 8) 0.0150 0.3064 0.2170 0.5384

32 (2048,60,33,8) 0.0160 0.5780 0.3592 0.9532

Our second method
16 (4096, 60, 17, 8) 0.0439 0.0438 0.0328 0.1205

32 (32768,60,33,8) 0.1814 0.5220 0.4036 1.1070

Table 2. Performance of secure matrix multiplication of 16× 16 matrices
with entries less than p = 10 bits.

(In seconds) (n, log2(q), t, σ) Encryption Secure Matrix Mul. Decryption Total time

Previous method [10] (2048, 70, 161, 8) 1.4454 9.4483 3.6581 14.5518

Our first method (8192, 70, 161, 8) 1.5996 1.5797 0.7624 3.9417

Our second method (131072, 70, 161, 8) 4.2024 2.0834 0.9797 7.2655

5.2.1. Binary case

Our chosen parameters and implementation results for the binary case are given
in Table 1. As shown in Table 1, our two methods are much faster than the
previous method [9]. Specifically, our first method is about 2m times faster than
the previous method [9]. For m = 16, our second method is several times faster
than the first one. However, for m = 32, our first method is slightly faster than
the second one in total. This is due to the fact that our second method requires
n ≥ m3 = 323 = 32768 while our first method requires only n≥m2=322=1024
(as in [9], we took n ≥ 2048 for enough security). Then we conclude that our
second method is still efficient for m ≤ 32, but our first method becomes much
more efficient for m ≥ 64 in the binary case.

Remark 11� In our experiments, we took m of the special form m = 2k to
make it easier to choose parameters of the SHE scheme (recall that the degree
parameter n should be chosen as a 2-power integer). However, performance of
secure matrix multiplication does not depend on the form of m. Furthermore,
for m between m = 32 and 64, we estimate from Table 1 that our first method
would be slightly faster than our second one.
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5.2.2. Non-binary case

In Table 2, we give a performance comparison of secure matrix multiplication of
16 × 16 matrices (i.e., m = 16) with entries less than p = 10 bits. Our chosen
parameters for the SHE scheme and implementation results are given in Table 2.
As we can see from the Table 2, our first method is around 5-times faster and
second method is around 2-times faster than the previous method. In this case
we are not using same parameter for our both the methods as in the previous
method. Our first and second methods require n = 8192 ≥ 2mp(m + 1) and
n = 131078 ≥ mp(m3 + m + 1), respectively. Because of very large n in our
second method, our first method is faster than the second method. However,
in sense of computation efficiency, our second method is better than the first
method because we need m-homomorphic multiplications for our first method
and just only one homomorphic multiplication for our second method. Once we
increase the size of entries and dimension of matrices our first method will be
much faster.

Remark 12� When we fix m and take larger p, our first method becomes much
faster than our second one since our first method permits us to take smaller
parameters of the SHE scheme. Therefore, unfortunately, our second method has
advantage on performance only in case of very small m and p such as (m, p) =
(16, 5). More specifically, for m ≥ 32, our first method is faster than our second
one for any p since our first method is faster even in the binary case from Table 1.

Acknowledgements� We are grateful to the anonymous referee for their helpful
comments.
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