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ON THE SUM OF POWERS OF TWO

k-FIBONACCI NUMBERS WHICH BELONGS

TO THE SEQUENCE OF k-LUCAS NUMBERS

Pavel Trojovský

ABSTRACT. Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose
terms satisfy the recurrence relation Fk,n = kFk,n−1+Fk,n−2, with initial con-

ditions Fk,0=0 and Fk,1=1. In the same way, the k-Lucas sequence (Lk,n)n≥0

is defined by satisfying the same recurrence relation with initial values Lk,0 = 2
and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed
many of their properties, too. In particular, they proved that Fk,n+1 +Fk,n−1 =
Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and
F s
k,n+1+F s

k,n−1 ∈ (Lk,m)m≥1 for infinitely many positive integers n, then s = 1.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence (or sequence of Fibonacci numbers)
given by Fn+2 = Fn+1 + Fn, for n ≥ 0, where F0 = 0 and F1 = 1. The Lucas
sequence (Ln)n≥0 is defined by the same recurrence relation but with seeds
L0 = 2 and L1 = 1. The Fibonacci and Lucas numbers are well-known for
possessing wonderful and amazing properties (cf. [5] and [9] together with their
very extensive annotated bibliography for additional references and history).
For instance, the ratio of two consecutive of these numbers converges to the
Golden section α = (1+

√
5)/2. The applications of Golden ratio appear in many

research areas, particularly in Physics, Engineering, Architecture, Nature and
Art. Material engineer S h e c h t m a n et al. [10] discovered the icosahedral phase
in the connection to Golden ratio and aperiodic mosaics, what opened the new
field of quasiperiodic crystals. Physicists N a s c h i e and M a r e k- C r n j a c gave
some examples of the Golden ratio in Theoretical Physics and Physics of High
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Energy Particles [6], [8]. There are many identities related to Fibonacci and
Lucas numbers, e.g., we can cite

Fn+1 + Fn−1 = Ln, for all n ≥ 0.

Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy
the recurrence relation

Fk,n = kFk,n−1 + Fk,n−2, (1.1)

with initial conditions Fk,0 = 0 and Fk,1 = 1.

In the same way, the companion k-Lucas sequence L(k) = (Lk,n)n≥0 is defined
by satisfying the same recursive relation with initial values Lk,0=2 and Lk,1=k.

The above sequences are among the several generalizations of Fibonacci and
Lucas numbers (case k = 1) and they were extensively studied in the series
of papers due to F a l c o n and P l a z a [1]–[4]. In particular, they proved that

Fk,n+1 + Fk,n−1 = Lk,n, for all n ≥ 0. (1.2)

In this paper, we shall search for higher power identities related to (1.2) in the
spirit of the M a r q u e s and T o g b é paper [7]. More precisely, we will prove
that

������� 1.1� Let k, m and s be any positive integers. If F s
k,n+1 + F s

k,n−1 ∈
(Lk,m)m≥1 is satisfied for infinitely many positive integers n, then s = 1.

2. Proof of Theorem 1.1

2.1. Auxiliary results

In this section, we shall provide some useful results in order to prove our
theorem.

Similarly to the Fibonacci and Lucas sequences, their k versions also satisfy
Binet’s formulas

Fk,n =
σn
1 − σn

2

σ1 − σ2
and Lk,n = σn

1 + σn
2 ,

where σ1 = (k +
√
k2 + 4)/2 and σ2 = (k −√

k2 + 4)/2. Moreover, note that

σ2
1 = kσ1 + 1 and σ1σ2 = −1.

F a l c o n and P l a z a [2] contains this result

lim
n→∞

Fk,n+�

Fk,n
= σ�

1.

We will need this generalization.
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����	 2.1� Let α, β, γ, δ, s, t be any positive integers. Then

lim
n→∞

F s
k,αn+β

Lt
k,γn+δ

=

⎧⎪⎨
⎪⎩

0, sα− tγ < 0;
σsβ−tδ
1

(σ1−σ2)
s , sα− tγ = 0;

∞, sα− tγ > 0

and

lim
n→∞

F s
k,αn+β

F t
k,γn+δ

=

⎧⎪⎨
⎪⎩

0, sα− tγ < 0;
σsβ−tδ
1

(σ1−σ2)
s−t , sα− tγ = 0;

∞, sα− tγ > 0.

P r o o f. Using Binet’s formulas for k-Fibonacci and k-Lucas numbers and sub-
sequently binomial theorem (since σ2 < σ1 and |σ2| < 1/2 for k ≥ 2) we have

F s
k,αn+β

Lt
k,γn+δ

=

(
σ
αn+β
1

−σ
αn+β
2

σ1−σ2

)s
(
σγn+δ
1 +σγn+δ

2

)t =
(
σ1 − σ2

)−s σ
s(αn+β)
1 +O

(
σ
(s−1)(αn+β)
1

)
σ
t(γn+δ)
1 +O

(
σ
(t−1)(γn+δ)
1

)
and

F s
k,αn+β

F t
k,γn+δ

=

(
σ
αn+β
1 −σ

αn+β
2

σ1−σ2

)s
(

σ
γn+δ
1

−σ
γn+δ
2

σ1−σ2

)t =
(
σ1 − σ2

)t−s σ
s(αn+β)
1 +O

(
σ
(s−1)(αn+β)
1

)
σ
t(γn+δ)
1 +O

(
σ
(t−1)(γn+δ)
1

) .
Let us consider n→ ∞. Thus, one has

O
(
σ
(t−1)(γn+δ)
1

)/
σ
t(γn+δ)
1 → 0 and σ

s(αn+β)
1

/
σ
t(γn+δ)
1 → 0

if and only if sα− tγ = 0. Therefore the assertions easily follow. �

����	 2.2� For all k ≥ 1 and n ≥ 1, it holds that

σn−2
1 ≤ Fk,n ≤ σn−1

1 and σn−1
1 < Lk,n < σn+1

1 .

P r o o f. In order to avoid unnecessary repetitions, we shall prove only that
Fk,n ≤ σn−1

1 (the other inequalities are proved in the same way). The proof is
by induction on n. For the basic step note that

Fk,1 = 1 ≤ σ1−1
1 and Fk,2 = k ≤ σ2−1

1 .

Now suppose, by induction hypothesis, that Fk,j ≤ σj−1
1 for all 1 ≤ j ≤ n.

Then
Fk,n+1 = kFk,n + Fk,n−1 ≤ kσn−1

1 + σn−2
1 = σn−2

1 (kσ1 + 1) = σn−2
1 · σ2

1 = σn
1

and the result follows by induction. �

����	 2.3� Let k, s be any positive integers. Then

Lk,s ≤
(
k2 + 2

)s/2
. (2.1)
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P r o o f. We use mathematical induction on s. For s = 1 and s = 2 we have
Lk,1 ≤ (

k2 + 2
)1/2

and Lk,2 ≤ (
k2 + 2

)1
, what easily follows from the Lk,1 = k

and Lk,2 = k2 + 2. For s ≥ 3 we have

Lk,s = kLk,s−1 + Lk,s−2

≤ k(k2 + 2)(s−1)/2 + (k2 + 2)(s−2)/2

≤ (k2 + 2)s/2
(
k(k2 + 2)−1/2 +

(
k2 + 2

)−1
)

≤ (k2 + 2)s/2
k
√
k2 + 2 + 1

k2 + 2
≤ (k2 + 2)s/2,

as k
√
k2+2+1
k2+2 ≤ 1 immediately follows from k

√
k2 + 2 < k2 + 1, which clearly

holds for every positive integer k. �

Now, we are ready to deal with the proof of Theorem 1.1.

2.2. The proof of Theorem 1.1

Suppose that F s
k,n+1+F s

k,n−1= Lk,t(n) for infinitely many positive integers n

(say n belongs to an infinite set S), where t(n) is an integer function.

By using the estimates in Lemma 2.2, we shall have

σt(n)−1<Lk,t(n) = F s
k,n+1+F

s
k,n−1<σ

sn + σs(n−2) ≤ σs(n−2)(1 + σ2s)≤σsn+1

and

σt(n)+1>Lk,t(n) = F s
k,n+1+F

s
k,n−1>σ

s(n−1) + σs(n−3)

≥ σs(n−3)(1 + σ2s)≥σs(n−3)σ2s≥σs(n−1).

Thus, sn − s − 1 < t(n) < sn + 2 for all n ∈ S . Therefore, t(n) = ns + t,
for all n ∈ S ′ ⊆ S , where S ′ is an infinite set and t is a constant, which depends
only on s. Then, we consider the equation

F s
k,n+1 + F s

k,n−1 = Lk,ns+t

and divide it by Lk,ns+t. Therefore,

F s
k,n+1

Lk,ns+t
+
F s
k,n−1

Lk,ns+t
= 1. (2.2)

Now we consider n → ∞ (in S ′) in the previous equation. Thus, using Lem-
ma 2.1 we have

lim
n→∞,n∈S′

(
F s
k,n+1

Lk,ns+t
+
F s
k,n−1

Lk,ns+t

)
= (σ1 − σ2)

−s 1

σt+s
1

+ (σ1 − σ2)
−s 1

σt−s
1

= (σ1 − σ2)
−s 1

σt+s
1

(
1 + σ2s

1

)
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Hence, we obtain the Diophantine equation

1 + σ2s
1 =

(√
k2 + 4

)s
σs+t
1 . (2.3)

M a r q u e s and T o g b é [7] found lower bounds for linear forms in logarithms
to solve similar equation for Fibonacci numbers. But this approach is not usable,
as the equation (2.3) is not purely exponential (because of the k in the basis).
Instead of linear forms, we shall use a little taste of algebraic and Galois theory.

Now, note that σ1, σ2 ∈ K := Q(
√
k2 + 4), then by conjugating the rela-

tion (2.3) by the automorphism ψ : σ1 	→ σ2 of Gal(K/Q), we obtain

1 + σ2s
2 =

(
−
√
k2 + 4

)s
σs+t
2 . (2.4)

By multiplying (2.3) by (2.4) and by using that σ1σ2 = −1, we obtain

1 + (−1)2s + σ2s
1 + σ2s

2 = (−1)2s+t(k2 + 4)s, (2.5)

which can be rewritten, using Binet’s formula for k-Lucas numbers and using
a clear condition that t has to be even, by the following way

Lk,2s = (k2+ 4)s − 2. (2.6)

For s=1 the last equality holds for any k. For s ≥ 2 with respect to Lemma 2.3
and the clear fact that

(k2 + 2)s < (k2 + 4)s − 2

holds for every positive integers k, s, we see that the solution does not exist.
The proof is then complete. �
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