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PLIMPTON 322 :

A UNIVERSAL CUNEIFORM TABLE

FOR OLD BABYLONIAN MATHEMATICIANS,

BUILDERS, SURVEYORS AND TEACHERS

Rudolf Hajossy

ABSTRACT. This article deals with the damaged and incomplete Old Babylo-

nian tablet Plimpton 322 which contains 4 columns and 15 rows of a cuneiform
mathematical text. It has been shown that the presumed original table with its 7
columns and 39 rows represented: a table of square roots of numbers from 0 to 2
for mathematicians; an earliest rudiments of a trigonometric table for builders
and surveyors where angles are not measured as an arc in a unit circle but as

a side of a unit right-angled triangle; a list of the 39 exercises on reciprocal pairs,
unit and integer-side right triangles (rectangles), factorization and square num-
bers for teachers.

The article provides new arguments in favor of old disputes (squares of diag-
onals or widths; mistakes in previous analysis of errors in P322 ). Contradictory
ideas about P322 are discussed: Is it the table of triangle sides or factorization

terms? Was it compiled by a parallel or independent factorization of the sides or
of their squares? Are sides of an initial unit triangle enlarged or reduced by such
a factorization? Does it contain two or four arithmetical errors?

Time and dimensional requirements for calculation and writing of the complete
tablet have been also estimated.

Introduction

The cuneiform clay tablet Plimpton 322 (P322 ) [1], [8], [10], [11], Fig. 1, is very
likely the most famous mathematical product of Old Babylonian era (1900–1600
BCE), written probably in an ancient city Larsa (southern Iraq) several decades
before the city was conquered (1762 BCE) by Hammurabi of Babylon. Opinions
on the tablet have been gradually changing: After its illegal excavation, it was
sold in 1923 for $ 10 by a dealer E. J. B a n k s to a collector G. A. P l i m p t o n
and in 1936 it was bequeathed to Columbia University, New York.

c© 2016 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 01A17.
Keywords: Old Babylonian cuneiform tablet, Plimpton 322, compilation, errors, users, sex-

agesimal numbers, Pythagorean theorem and triplets.
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Figure 1.A. All sides of the cuneiform clay tablet Plimpton 322.
(The photo by Christine Proust from her online article [11] is published
with her permission and by courtesy to Jane Spiegel, the librarian of the
Rare Book and Manuscript Library, University of Columbia, New York.)
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N e u g e b a u e r and S a c h s (1945), [1] revealed mathematical importance
of P322 and supposed that its text deals with “Pythagorean triangles (triplets)”
obtained by generating pairs of regular numbers. B r u i n s (1949), [2] showed
that the triplets could be calculated also from reciprocal pairs and by reduction
of common divisors. D e S o l l a P r i c e (1964), [3] showed how to obtain neces-
sary generating numbers or reciprocal pairs and assumed an original tablet with
38 rows of triangles. His conjecture was supported by the scored reverse side
of the tablet (Fig. 1.A.), suitable to accommodate remaining rows of triangles.
F r i b e r g (1981), [4] reconstructed a complete extended table P322 combin-
ing the proposals of B r u i n s and d e S o l l a P r i c e . H ø y r u p (1990), [5]
gave a geometrical interpretation of the Bruins algebraic relations between re-
ciprocal pairs and right triangles, in accord with other cuneiform texts. J o y c e
(1995), [6] interpreted P322 as a trigonometric table. R o b s o n (2001), [7] recon-
structed the text of damaged headings in P322. She rejected the trigonometric
interpretation and regarded the tablet, together with F r i b e r g, as a teach-
ers’ aid. C a s s e l m a n (2003), [8] briefly and clearly popularized P322, and
showed how to read its cuneiform text in attached photo. B r i t t o n, P r o u s t
and S h n i d e r (2011), [10] offered a detailed review of a current knowledge on
P322. P r o u s t (2015), [11] published new high quality photos of all sides of
P322 enabling to solve long lasting disputes.

The name Plimpton 322 denotes that it is the 322nd item in the catalogue
of the university’s cuneiform tablets where it is described [10] as a very large,
well preserved, burned tablet (measuring some 13×9 cm; its thickness 2–3 cm)
with left-edge broken away, on obverse 4 columns and 16 lines, reverse blank; con-
tent: commercial account. Each of the four columns contains a heading in a mix-
ture of Sumerian and Akkadian and 15 rows of numbers in a sexagesimal posi-
tional system with base 60 (Fig. 2).

Figure 2. The cuneiform notation of sexagesimal digits: Zero is repre-

sented by a blank space. The numbers 1 up to 9 and also 10, 20, 30, 40, 50
have special characters. All other numbers are composed as a sum of these
characters. For example, 11 = 10 + 1 or 59 = 50 + 9.
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Old Babylonians had no signs for zero or floating point – a boundary between the in-
teger and fractional part of a sexagesimal number. The lack makes any interpretation
of a written number to some extent an arbitrary one and leads easily to errors. For
clarity, we write sexagesimal numerals from 0 to 59 as two-place decimal numerals and
denote a floating point as a semicolon “;”.

Multiplication of sexagesimal numbers is laborious as multiplication tables up
to 1 00;×1 00; are beyond the commonmemory. Division is even more challenging.
This is the reason why the Old Babylonians instead of dividing by the number
(igi) x multiplied by its inverse (igibi) 1/x. They learned by heart The standard
table of reciprocal pairs (Tab. 1).

Table 1. The standard table of sexagesimal reciprocal pairs x and y = 1/x
fulfilling the condition xy = 1. Transcription of the cuneiform tablet
MLC 1670 [12] in its original form: with the blank space instead of zero

and the numbers in their relative form without a floating point. The abso-
lute value of the numbers depends on the value of the number 1. (Whether
it is interpreted as 1;, 1 00;, 0;01 or any other power of 60.)

2/3 of 1 is 40 x 1/x x 1/x x 1/x

its 1/2 is 30 igi igibi igi igibi igi igibi

x 1/x 9 6 40 24 2 30 45 1 20

igi igibi 10 6 25 2 24 48 1 15

3 20 12 5 27 2 13 20 50 1 12

4 15 15 4 30 2 54 1 6 40

5 12 16 3 45 32 1 52 30 1 1

6 10 18 3 20 36 1 40 1 4 56 15

8 7 30 20 3 40 1 30 1 21 44 26 40

The table is readable in both directions: e.g., the pair x = 3 and 1/x = 20 corresponds
to the pair x = 30 and 1/x = 2, and vice versa. It enables to extend the table easily by

double-digit numbers, since, e.g., the pair x=50, 1/x= 1 12 corresponds to the
inverted pair x = 112, 1/x = 50.

The ancient mathematicians also knew relations between reciprocal pairs x, y
and sides s, d, h of right triangles (rectangles) used by then builders and surveyors
(Fig. 3 and 4). (Old Babylonians preferred rectangles with 2 sides and diagonal,
but for simplicity, we will talk about triangles with 3 sides.)

As it follows from the Fig. 3 and 4, the diagonal d (şiliptum in Akkadian),
the width s (sag in Sumerian) and the length h (uš in Sumerian) of a rectangle

5



RUDOLF HAJOSSY

Figure 3. Right-angled triangles used by Old Babylonian builders or sur-
veyors:
On the left : A field, a steep wall of a building or a channel with a triangu-

lar cross-section (S,D,H). A similar unit (measuring) triangle with sides
s, d, h = 1. Each side had a Sumerian-Akkadian naming: sag = width (S, s),
şiliptum = diagonal (D, d), uš = length (H,h).
On the right : Unit triangles with different slopes s of diagonals d: a steep
slope (s < 1), a gentle slope (s > 1). The diagonal of unit square has the
slope s = 1. (The slope = šágal in Sumerian.)

In the bottom: A simple turn of a steep triangle changes it to one with a
gentle slope as in a case of embankments or staircases.

or a right triangle obey the following relations

d2 − s2 = h2, (1)

d2 − s2 = xy = (d+ s)(d− s). (2)

The “diagonal” rule (1) enables to calculate one side of the right-angled triangle.
(1000 years before the birth of Pythagoras, it would seem ridiculous to call the
rule “Pythagorean”.)
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Figure 4. Geometric relations between the sides s, h, d of a right-angled
(blue) triangle obtained by means of the square (s + h)2 with the sides
s+h (top picture) or by the difference of squares d2− s2 (bottom picture).
The specific relations can be briefly, though anachronistically, expressed

by modern algebraic relations:
Upper pictures: (s+h)2 = d2+4(1/2 sh) = h2+s2+4(1/2 sh) and therefore
d2 = h2 + s2, s2 = d2 − h2, d2 − s2 = h2.
Lower pictures: d2 − s2 = xy = (d+ s)(d− s), while x = d+ s, y = d − s
or d = (x+ y)/2, s = (x− y)/2.

According to the relations (1) and (2), in case of a unit right triangle with
the length h = 1, the sides

x = d+ s, y = d− s (3)

of a rectangle with the unit area

xy = h2 = 12 (4)

represent a reciprocal pair x, y = 1/x determined by the diagonal d and
the width s of the unit triangle.

Inversely, as it follows from (3), the sides

d = (x+ y)/2, s = (x− y)/2, h = 1 (5)

of a unit triangle could be determined by a reciprocal pair x, y.
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The set of relations (4), (5) can be written in a form of modern quadratic
equations

x2 − 2dx+ 1 = 0 or x2 − 2sx− 1 = 0 (6)

for an unknown number x and known values of the diagonal d or the width s.
Of course, Old Babylonians solved the quadratic equations (6) for an unknown
reciprocal pair x, y in a different way as we would do:

At first, knowing the diagonal d, they calculated its square d2. Gradually, using
the “diagonal” rule (1), the square of width s2 = d2 − 12 and then its square

root, i.e., the unknown width s =
√
d2 − 1, were calculated. Eventually, using

relations (3) for already known pair of sides d, s, they calculated the searched
reciprocal pair

x = d+ s = d+
√
d2 − 1, y = d− s = d−

√
d2 − 1.

In another type of equation (6), with the known width s, by a similar procedure and

relations (1) and (3), they obtained the reciprocal pair x =
√
s2 + 1+s, y =

√
s2 + 1−s.

To obtain these solutions, it was necessary to calculate squares d2 or s2 and
then values of the square roots s =

√
d2 − 12 or d =

√
12 + s2 (probably, using

a suitable table). Since in this case the roots represented sides s, d of a unit tri-
angle then such a table of square roots could be obtained by the relations (5)
from a set of reasonable chosen pairs of reciprocals x, y.

It was natural to use at first the simple, well-known reciprocal pairs x, y from
The standard table (Tab. 1) for calculation of sides s = (x−y)/2, d = (x+y)/2,
h = 1 of unit triangles and their squares s2 or d2 = 1 + s2. The results of such
calculations for the values x from l; to 3; are shown in Tab. 2. This prelim-
inary table does not represent any known cuneiform tablet. In spite of this,
all its data, except of those yellow colored, can be found in the Old Babylonian
tablets MS 3502 (the 8th row of Tab. 2), MS 3971 (the 2nd to 7th row) and
partly in the P322 (the 8th and 9th row) (F r i b e r g (2007), [9]). The green
numbers or letters, shown in Tab. 2, substitute the missing original numbers or
letters in damaged parts of the corresponding clay tablets. Headings in Tab. 2
(in Sumerian-Akkadian mixture) for the parameters x, y, s, d, use the same words
as tablets MS 3502, MS 3971. The rest of headings is in agreement with P322
and is explained in Fig. 5. The squares of the width s2 or the diagonal d2 = 1+s2

in Tab. 2 could have been calculated in several ways:

• By the generating reciprocal pair x, y as

s2 =
[
(x− y)/2

]2
= (x2 + y2)/4− 1/2,

d2 =
[
(x+ y)/2

]2
= (x2 + y2)/4 + 1/2. (7)
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sá

ta
ḱı
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Figure 5. A part of the clay tablet Plimpton 322 with a cuneiform text.

Headings above (in Sumerian-Akkadian transcription) and bellow (in Eng-
lish) the four columns of sexagesimal numbers explain their meaning in the
selected rows with the ordering numbers N = 10 and 11. As s, d, h = 1 are
denoted sides of unit triangles and S,D,H are integer sides of similar
triangles. Also a detail of the tablet with the broken left edge and the dis-

cussed number 1 in the 12th row is included. (Both the images are cut off
from the photos taken by Christine Proust [11].)

• By a direct multiplication s2 = s× s or d2 = d× d of simple two digit
widths s: (0;11, . . . , 1;20) or diagonals d: (1;01, . . . , 1;40). In simple cases also
the Old Babylonian special table of squares (IM 96183, F r i b e r g (2007),
[9, Appendix 7]) or combined multiplication table (F r i b e r g (2007),
[9, Appendix 2]) could have been used.

• By a parallel factorization of multi-digit sides s, d, h of unit triangle:
A multi-digit number can be decomposed into a product of smaller, ideally single-
digit numbers. Then a multiplication by such a number can be performed as
a succession of simple steps. The decomposition of n-digit sexagesimal fractional
number s = 0; s1s2 . . . sn−1 sn can utilize that the last digit sn = fngn×60−n

can be written as a product of the greatest divisor gn and a factor fn. Multiplying
the number

s = 0; s1s2 . . . sn−1sn = 0; s1s2 . . . sn−1 + fngn60
−n

by the reciprocal of the greatest divisor hn = 1 00; /gn causes that the last
fraction disappears. It changes to fn×60−(n−1). In this way, the resulting number

10
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s × hn reduces to n − 1 fractional digits. Thus repeating the multiplication
by the reciprocals hn−1, . . . , h1 of the last greatest divisors gn−1, . . . , g1,
the final (least) factor

S = s× hn × · · · × h1 = s×Hs (8)

will be obtained, where the multiplier Hs and its reciprocal 1/Hs are determined
by the relations

Hs = hn × · · · × h1 = (1/gn)× · · · × (1/g1)× (1 00; )n

and
1/Hs = gn × · · · × g1 × (1 00; )−n. (9)

As gn × hn = 1 00;, the reciprocals gn, hn are single-digit sexagesimals. Then
according to (8) and (9), the inequality S ≥ s is satisfied for the absolute value
of the final factor S and the original number s. Paradoxically, for their relative
values, the opposite expression is valid. Evidently, in accord with (9)

S = sHs ≤ 0; s1 . . . sn × (1 00; )n = s1 . . . sn. (10)

Friberg calls the factorization method: the trailing part algorithm and the final

factor S: the factor-reduced core. (F r i b e r g (2007), [9]).

By this factorization method, the n-digit number s can be reduced to the
final factor (8): S = s×Hs and inversely, it can be decomposed to the product
s = S × (1/Hs).

The factorization can simplify calculation of squares of many-digit-num-
bers s:

s2 = s× s = S2 × (1/Hs)× (1/Hs). (11)

Inversely, by factorization of a square s2 to the reduced factor S2=s2×(Hs×Hs),
supposing that its square root S is known, the square root s=S×(1/Hs) of the
number s2 can be calculated (F r i b e r g (2007), [9]).

It should be mentioned that Old Babylonian scribe had calculated with numbers
in their relative form without the floating point therefore he had to keep the factors
(1 00; )n or (1 00; )−n from relations (9) (more precisely, an idea of the absolute value
of the calculated numbers) in his mind. It could easily lead to errors.

In technical praxis, Old Babylonians had to deal with both small and large ob-
jects. It is illustrated by their length unit system, inherited after Sumers (F r i b e r g
(2007), [9]):

11
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Relations 6 še = 1 šusi 12 kúš = 1 ninda 6 éše = 1 uš

Units 1 še 1 šusi 1 kúš 1 ninda 1 éše 1 uš 1 danna

grain finger cubit reed rope length distance
of barley

≈ 1/360 m 1/60 m 1/2 m 6 m 60 m 360 m 10,800 m

= 2.78 mm 16.7 mm

Relations 30 šusi = 1 kúš 10 ninda = 1 éše 30 uš = 1 danna

This system of different units assisted them in removing ambiguity of the relative
form of inscription of sexagesimal numbers (without a boundary between their integer
and fractional part). Although calculations were done with relative numbers, Old Baby-
lonians were always interested in the absolute value of results: It mattered whether a
purchased field had a width 1 30 ninda (540 m) or 1; 30 ninda (= 18 kúš = 9 m).

The factorization formula (11) can be used independently for a calculation
of squares of width s2 = s × s = S2 × (1/Hs) × (1/Hs) and also diagonal
d2 = d× d = D2 × (1/Hd)× (1/Hd), where the multipliers Hs, Hd are products
of reciprocals from the greatest divisors of the last digits determined indepen-
dently for the side s and d, respectively. However, to obtain Tab. 2, only the
common greatest divisors of the last digits of the both sides s and d have been
used. Therefore, the multipliers Hs = Hd = H have the same value and the final
factors S = sH, D = dH, H = hH in Tab. 2 can be interpreted as integer sides
of triangles which are similar to the original unit triangles s, d, h = 1.

This parallel factorization of sides s and d has an advantage against an indepen-
dent factorization of the sides: the result is simpler (only one multiplier H against
two Hs, Hd). It can accelerate calculations (performed by one scribe) and save a space
in a table of final results. (A similar space saving effect has a replacement of the trivial
side h = 1 of a unit triangle by the integer side H of a similar triangle in Tab. 2.)

For simplicity, only the squares d2 are shown in Tab. 2 as the squares s2 =
d2−1 differ from d2 only by the initial number 1. Moreover, the square d2 is al-
ways unambiguous but not s2 as it can be seen in the second row of Tab. 2 where
d2 = 1; 00 15 00 56 15. Then s2 = 0; 00 15 00 56 15. Relative values of these parameters
1 00 15 00 56 15 and 15 00 56 15, used by ancient scribes, illustrate that the initial digit
1 in d2 does show where the missing floating point should be placed but the miss-
ing beginning zeros in s2 make its absolute value uncertain. The statement is justi-
fied by new high-quality pictures of P322 made by C h r i s t i n e P r o u s t (Fig. 1
and 5) published also in her online article [11]. Her picture has definitely solved
a long lasting dispute on the “s2 or d2?”. In the 12th row with d2 = 1; 29 21. . .
in Fig. 1.B and 5, the sequence: the numeral 1 – blank space – the numeral 29 can
be seen. In the case of s2 = 0; 29 21 . . . , the numeral 29 ought to be seen just at
the vertical line parting the columns. (All numbers in P322 start at the parting
lines!) The free space and the numbers 33 or 35 can be also clearly seen in the rows
11th or 10th in Fig. 5, respectively. (The old black-and-white picture of P322 in the

12



PLIMPTON 322 : A UNIVERSAL CUNEIFORM TABLE

N e u g e b a u e r and S a c h s primary article has unreadable left broken edge [1], [8].
So readers were obliged to believe the lucky persons who had opportunity to see the
original tablet P322.)

As it follows from Tab. 2, the triangles for the simplest integers x = 2 and 3
are similar to the well-known triangle with integer sides 3, 4, 5 used for delin-
eation of perpendiculars in ancient building or surveying. The two triangles
are only mutually turned. In accord with Fig. 3, the number x = 2 provides
a steep triangle (s = 0; 45 < 1) while the number 3 corresponds to a gentle slope
(s = 1; 20 > 1).

The exact boundary between the steep and mild slope of diagonal is
determined by the diagonal in the unit square, with its unit width and length
(s = h = 1) or by the square of the diagonal d2 = 12 + 12 = 2. The Tab. 2
shows that the boundary lies between the row N = 9 with the bold number
x = 2; 24 and the row N = 10 with the magenta number x = 2; 30. The
latter allows to replace the exact condition (0 < s < 1) for the width of steep
triangle by a simpler, though less precise condition (1 < x < 2; 30) for the
generating number x. (Thus, when selecting x, the last condition allows to
decide without further computation, whether a calculated triangle will be steep
or mild. It certainly saves useless calculations and time to compile the table.)

The least steep diagonal (d2 = 1; 59 00 15) in Tab. 2, close to the diagonal
of the square (d2 = 2) is in the ninth triangle (N = 9), calculated for the
number x = 2; 24. The steepest diagonal (d2 = 1; ) is in the first (N = 1) of
the triangles in Tab. 2, with a zero width (s = 0) calculated for x = 1. Such a
“triangle” was certainly a mystery for Old Babylonians. Everything depended
on their interpretation of zero: Whether it was something awfully small (almost
vertical segment in Fig. 3) or something non-existent – “nu” (not in Sumerian)
(N e u g e b a u e r [15, Glossar p. 30]). On the other hand, Tab. 2 is mainly a
table of square roots. From this point of view, the value zero or one of a root is
not so puzzling.

Interest in steep triangles is natural, because their widths s have the upper and lower
limit (0 < s < 1). The limits are also in the corresponding numbers 1 < x < 2; 30.
Triangles with a mild slope are limited only from their lower side by the intervals 1 < s
and 2; 30 < x, so an upper limit of the number x is not known in advance. It will
lead to many useless calculations. It is sufficient to determine only steep triangles since
mild ones can be obtained, in accordance with Fig. 3, by a simple turning of the steep
triangles.

The sides s, d, h = 1 of calculated unit triangles in Tab. 2 were of interest
to builders. Old Babylonian builders did not know an angle as an arc of unit circle
but they could measure it as a side of unit triangle. They measured the slope
of walls or embankments as a deviation s from the vertical or horizontal line
in the unit length h = 1 kúš (Fig. 6).
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Figure 6. Expected measurements of a slope of a steep wall or a mild
embankment by a suitable unit (white) triangle with the sides:
width (sag) s, diagonal d and length (uš) h = 1 cubit (kúš).

A suitably orientated right angle is created by the yellow ruler with the scale
1 cubit (kúš) = 30 fingers (šusi) and set by the (blue) lead line in direction
13 or 42. A slope (šágal) determined by the width s (12) is measured by
the red line in direction 42.

A slope (šágal in Sumerian) represents a ratio between the width s and
the length h of a right-angled triangle (F r i b e r g: [4, p. 311]). To determine
the inclination of the wall (diagonal d) in Fig. 6, the ancient builder would
have used the formulation:

ina uš 1 kúš sag 16 šusi šágal =

in the length 1 cubit the width 16 fingers (is) the slope

It is in agreement with the tablet YBC 4673, R o b s o n [7, p. 183] and
N e u g e b a u e r [15, Glossar p. 32, 12]. Since the width s can serve as an in-
clination rate, the formulation is also included in the headings of the column s
in Tab. 2.

The width s of a unit triangle changes in Tab. 2 continuously with the slope
of diagonal d therefore it is suitable for measurements in building and surveying.
Just opposite, the similar triangles with integer sides S,D,H change errat-
ically. So they cannot be applied for measurements (with the exception of the
well-known triplet 3, 4, 5). But they can help, using the relation (11), to square
the sides of a similar unit triangle.

Because the length 1 kúš (cubit) is small (around 1/2 m), the measuring
unit triangles (e.g., 0;45, 1;15, 1;) in kúš do not guarantee a sufficient accu-
racy of the inclination measurements in surveying. A higher precision
can be achieved by a similar sixty times (1 00; ×) larger triangles with sides
(45; 1 15; 1 00;) kúš where 1 00; kúš ≈ 30 m.
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How the tablet Plimpton 322 was compiled?

Extension of The standard table of reciprocals

The tablet P322 comprises 15 steep triangles but only 2 of them (1th and
11th) are also in Tab. 2. It means that the author of P322 wanted to generate a
more detailed table of the triangles (rectangles) than the Tab. 2 which had been
calculated using only the reciprocal pairs from The standard table of reciprocals
(Tab. 1). To obtain further steep triangles, the author of P322 had to extend
The standard table by new reciprocal pairs x, y with numbers x from the
interval 1 ≤ x < 2; 30, as it has followed from Tab. 2. Such numbers x = p/q > 1
are produced by division of a greater number p by a smaller q. (In today’s terms,
numbers x represent improper fractions with p > q.) Furthermore, dividing
one numerator p by different denominators q, several fractions x = p/q and
consequently several triangles can be determined.

To minimize a computational time, it was necessary to choose the simplest,
single-digit denominator 1 ≤ q < 1 00;. (Of course, the numerator p might be
also two-digital.) If the simple numbers p, q were from The standard table
then a calculation of the improper fraction x = p/q and its reciprocal y = q/p
was within a scribe routine.

The standard table (Tab. 1) shows that the denominator q has 25 values
(1, 2, . . . , 54) and the numerator p could have 40 figures (1, 2, . . . , 40 00;).
From these figures, 25×40=1000 fractions can be assembled, including

(40−1)+· · ·+(40−25) = (39+15)×25/2 = 675 improper fractions x = p/q > 1.

If a scribe calculated the fractions x for a given denominator q and gradually
increased numerators p > q until he found an invalid fraction x ≥ 2; 30, then
all his results, except the last one, were correct. However, many of the correct
results (x < 2; 30) were calculated in vain, because they were equal to the re-
sults already obtained before, for the other (smaller) values of denominators q.
Namely, a gradual increase of denominator q, 2q, 3q, 4q, 5q, . . . leads to an in-
dependent increase of numerator p, 2p, 3p, 4p, 5p, . . . but the value of a fraction
x = p/q = 2p/2q = 3p/3q = 5p/5q does not change by this proportional increase
of the numerator and denominator. To avoid the useless calculation of fractions x
with the same value, it is necessary to exclude the numerators and denom-
inators with a common divisors 2, 3 or 5. (Finding a common divisor was
for a scribe a known operation, used also at the parallel factorization of sides
of a unit triangle.)

The gradual elimination of unsuitable pairs p, q with a common divisor and
the subsequent calculation of fractions from suitable pairs until the first invalid
fraction is found x ≥ 2; 30 save a time and material. (The elimination of a fraction
is faster than its calculation. Moreover, excluded or invalid fractions need not
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be stored for further processing.) The numerator pth of the first invalid fraction
x=pth/q≥2; 30 represents the threshold numerator for a given denomina-
tor q. (All fractions p/q ≥ pth/q are invalid as they give mild triangles.)

Calculation of improper fractions using criteria of the common divisor and slightly
modified invalid fraction x ≥ 2; 25 was first done by d e S o l l a P r i c e [3]. F r i -
b e r g [4] used the condition x ≤ 4. The both authors used, instead of numbers p, q
from The standard table, all regular numbers p ≤ 2 15; and q < 1 00;, including the
numbers 1 36, 1 48, 2 05, 2 08, 2 15 which were not in Tab. 1. (The regular sexagesimal
number x has a finite reciprocal number 1/x. Such number can be written in the form
x = 2a3b5c where exponents a, b, c are integers. The numbers in Tab. 1 are regular.)
However, apart from the 2 05, the additional numbers are eliminated as unsuitable for
calculation of improper fractions. So they do not influence the final extension of The
standard table of reciprocals Tab. 3.

A disadvantage of the criterion of invalid fraction x ≥ 2; 30 is in wasting
time with calculation of the invalid fraction and in the useless elimination of un-
suitable pairs p, q before the threshold numerator pth is reached. The useless
operations can be avoided when the criterion x ≥ 2; 30 is replaced with a con-
dition for the maximum appropriate fraction xmax:

x = p/q < xmax = pmax/q = 2; 30.

Moreover, the last condition can be substituted for simpler criterion for the
maximum numerator

pmax = 2; 30q > p > q. (12)

The maximum numerator pmax can be calculated in advance, so the elimina-
tions of unsuitable pairs p, q and calculation of searched fractions x stop be-
low the maximum value pmax. There is no need to continue the elimination till
the threshold numerator pth > pmax will be reached. (A modified criterion of the
maximum numerator p < 2; 25q was used by F r i b e r g [9] and also suggested
by A b d u l a z i z [13].)

Eventually, the numbers x = p/q, calculated from single-digit denominators q
and numerators p from the interval (12), are shown in Tab. 3. The pairs p, q
themselves are from The standard table (Tab. 1). (Only the magenta numerators
p = 1; and 2 05; in the first and the last row of Tab. 3 have been determined
additionally in an effort to find fractions x with extreme numerators p.) Sorting
of all calculated fractions x in decreasing order gives them the order number N.

According to Tab. 3 , some of denominators q (6, 10, 30, 36, 48) produced no frac-
tion x. Also the greatest denominator q=54 failed as 25 possible numerators (p>54)
from The standard table (Tab. 1) had to be eliminated. In an attempt to obtain the
widest possible spectrum of triangles, the author of P322 tried to find a numerator
beyond Tab. 1 which could not be eliminated. The numerator p cannot have a common
divisor with the denominator q = 54 = 2.33. Only such numerators are the multiples
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Table 3. The extended table of reciprocal pairs: (igi) x = p/q ≥ 1 and (igibi)
y = q/p for a calculation of “all” steep right triangles where the pair p, q is from The
standard table (Tab. 1) and has no common divisor 2, 3 or 5, moreover, 1;≤ q ≤ 54;
and q < p < pmax = 2; 30q. Sorting of all 39 calculated fractions x in decreasing
order gives them the order number N .

q pmax N235 p x = p/q y = q/p Nth pth N

2; 30q igi igibi mu b́ım

1; 2;30 0 1; 1; 1; 39

2; 2; 0;30 1 3; 11

2; 5; 1 3; 1;30 0;40 2 5; 22

3; 7;30 1 4; 1;20 0;45 29

5; 1;40 0;36 1 8; 18

4; 10; 2 5; 1;15 0;48 31

9; 2;15 0;26 40 3 15; 5

5; 12;30 1 6; 1;12 0;50 32

8; 1;36 0;37 30 20

9; 1;48 0;33 20 15

12; 2;24 0;25 2 16; 1

6; 15; 4 – – – 6 25; –

8; 20; 4 9; 1;07 30 0;53 20 34

15; 1;52 30 0;32 3 25; 13

9; 22;30 3 10; 1;06 40 0;54 35

16; 1;46 40 0;33 45 16

20; 2;13 20 0;27 2 25; 6

10; 25; 5 – – – 2 27; –

12; 30; 6 25; 2;05 0;28 48 33 (2 05;) 9

15; 37;30 7 16; 1;04 0;56 15 37

32; 2;08 0;28 07 30 30 (2 08;) 8

16; 40; 6 25; 1;33 45 0;38 24 21

27; 1;41 15 0;35 33 20 2 45; 17

18; 45; 7 25; 1;23 20 0;43 12 29 (2 05;) 27

20; 50; 8 27; 1;21 0;44 26 40 6 1 21; 28

24; 1 00; 9 25; 1;02 30 0;57 36 25 (2 05;) 38

25; 1 02;30 5 27; 1;04 48 0;55 33 20 36

32; 1;16 48 0;46 52 30 30

36; 1;26 24 0;41 40 24

48; 1;55 12 0;31 15 12

54; 2;09 36 0;27 46 40 4 1 21; 7

27; 1 07;30 6 32; 1;11 06 40 0;50 37 30 33

40; 1;28 53 20 0;40 30 23

50; 1;51 06 40 0;32 24 14

1 04; 2;22 13 20 0;25 18 45 3 1 20; 2

30; 1 15; 10 – – – 22 (40 00;) –

32; 1 20; 8 45; 1;24 22 30 0;42 40 26

1 15; 2;20 37 30 0;25 36 2 1 21; 3

36; 1 30; 11 – – – 19 (2 05;) –

40; 1 40; 10 1 21; 2;01 30 0;29 37 46 40 18 (4 03;) 10

45; 1 52;30 10 1 04; 1;25 20 0;42 11 15 17 (2 08;) 25

48; 2 00; 10 – – – 17 (2 05;) –

50; 2 05; 9 1 21; 1;37 12 0;37 02 13 20 16 (4 03;) 19

54; 2 15; 9 2 05; 2;18 53 20 0;25 55 12 16 (10 25;) 4

Total: 152 281
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of the number 5: p = 5, 52 = 25, 53 = 205; or 54 = 10 25;. Due to the additional con-
dition (12) for the denominator q = 54, only the numerators 54 < p < 2 15; can occur.
In this range, there is the only regular numerator p = 5 × 25 = 2 05; with its finite
reciprocal 1/p = (1/5)(1/25) = 0; 0028 48. (Of course, the numerator 2 05 could be
also found by a method of trials and errors.)

It is worthwhile to mention that the pair of the reciprocal (relative) numbers 53=205
and 123 = 2848 served in the Old Babylonian tablets CBS 1215, CBS 10201 and
UM 29.13.21 from Nippur (F r i b e r g [9]) as a base for calculation of new reciprocal
pairs beyond the standard table. It is questionable whether the author of P322 knew
these tablets or their copies.

Considering the divisors of numerators and denominators, the following thre-
shold numerators pth : 53 = (205;), 35 = (403;) or 27 = (208;) have been cal-
culated and shown in Tab. 3.

The yellow denoted parameters in Tab. 3 help to compare calculation de-
mands by the different criteria: the maximum numerator pmax or the thresh-
old value pth. In this case

• N235 is the number of eliminated fractions x, whose denominator q and
numerator p (from the interval q < p < pmax = 2; 30q) have a common
divisor 2, 3 or 5;

• Nth is the number of uselessly checked numerators p from the interval
pmax ≤ p ≤ pth.

As it follows from Tab. 3, the condition (12) for the maximum numerator pmax =
2; 30q reduces the number 675 of improper fractions x=p/q>1 to 191(=152+39), from
which a checking of common divisors eliminates 152 and the remained 39 fractions x
can later on produce 39 steep triangles. A calculation of mild triangles should be more
demanding because it would need to check not 191 but 484(= 675− 191) from the 675
possible fractions x.

Using the threshold numerator pth as a criterion (d e S o l l a P r i c e [3], F r i -
b e r g [4]) increases, due to Tab. 3, the number of uselessly checked numerators p
by 281 and in vain calculated fractions x (with the threshold numerators) by 14.

Time and spatial demands of The extended tablet of reciprocals

Table 3 enables to asses a time demand on its formation:

Calculation of 25 maximum numerators pmax = 2; 30q = 2q + q/2, election of 191
available numerators from the standard Tab. 1 and the intervals q < p < pmax,
exclusion of 152 pair p, q with the common divisors 2, 3 or 5 lasted (to the au-
thor R. H.) 80 minutes.
Calculation of 39 improper sexagesimal fractions x = p/q lasted (without any calcu-
lator) 100 minutes. (For comparison, the same calculation with a simple calculator
lasted only 8 minutes – 13 times less.)
Manual ordering of 39 leaflets with the fraction values x in decreasing order and their
numbering lasted 15 minutes.
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Calculation of 39 reciprocals y = q/p lasted 100 minutes.
An ancient scribe could be faster in multiplication but he had also to prepare record-
ing material.
Preparation of 39 round handy tablets (bringing and shaping of a piece of clay) could
take about 39× 5 min ≈ 200 min.

Thus the calculation and a temporal record of the data represented for one scribe
around 500 min.

Eventually, for a clear arrangement and higher security of obtained results, it was
necessary to rewrite them to a final tablet. It was sufficient to record 39 rows of
the most important parameters x, y, p, q,N . A corresponding time assessment supposes
knowledge of a recording speed (roughly, one edge per second) and a number of
rewritten edges: According to Fig. 2, the smallest sexagesimal digit 1 has two edges
while the greatest numeral 59 has them 28. In average, it is 15 edges per digit.
Due to Tab. 3, the individual columns of parameters have following number of digits:
x(107), y(95), p(45), q(39), N(39). It is altogether 325 digits, 325 × 15 = 4875 edges.
A transcript of the edges on a clay tablet then lasted around

80min(= 4875 sec× 1min/60 sec)

.
If 20 minutes had been spent before preparing the final clay tablet and recording the

headings above individual columns of parameters, then the total time for obtaining
the final version of the extended table of reciprocals (Tab. 3) was approximately
600 min = 10 hours = nearly 2 days of one scribe work.

As it has been already shown, the threshold numerator pth criterion increases
the number of uselessly checked numerators p by 281 and in vain calculated fractions
x by 14. Utilizing the previous time guesses, it will be found that the increased check-
ing needs additional 281×80 min/152≈ 150 min and the vain calculation will spend
14×100 min/39 ≈ 36 min. The less proper criterion protracts the time for obtaining
The extended table of reciprocals (Tab. 3) for approximately 186 min ≈ 3 hours
(in total, to 13 h ≈ 2–3 days). (In this case, the 25 maximum numerators pmax are not
calculated but such saved up 4 minutes are negligible.)

Without any preliminary checking of common divisors, the shorter checking
of N235 = 152 improper fractions will be substituted by a longer calculation of the
fractions. It means that 80 minutes of the checking will be replaced by 152× 100/39 =
390 minutes of the calculations plus 100 minutes of additional computation of 39 invalid
fractions x ≥ 2; 30. It represents in total a protraction 410 min ≈ 7 h in comparison to
10 hours in the case of the criterion of maximum numerators pmax = 2; 30q. Thus,
a complete construction of The extended table of reciprocals (Tab. 3) without
preliminary checking will take approximately 17 hours ≈ 3–4 days per a scribe.
Of course, the construction could be accelerated by division of its calculations among
a higher number of scribes. (A calculation by rude force [18], of all 675 improper
fractions x > 1, lasting 675× 100/39 = 1731 min ≈ 29 h ≈ 6 days per a scribe seems
improbable as it would increase gratuitously a possible 2-day-work to 8 days.)
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Spatial dimensions of the final version: According to Fig. 1.B and 5, the 21
places for digits, a character and gaps cover the width 127 mm of P322, then 6 mm is
an average width of one place. 15 rows of a mathematical text and 3 rows of headings
share the height of 88 mm, then, 5 mm is their average height. A necessary dimension
for a cuneiform text of the extended table (Tab. 3) is determined by the dimension
of a digit: width 6 mm × height 5 mm; the maximum number of digits of individual
parameters in Tab. 3: x(4), y(4), p(2), q(1), N(2); the number of gaps (equal to one
digit) between columns (4 at the 5 columns). In total, it is 17 digits along the width
17× 6 mm=102 mm. 39 rows of numbers and 3 rows of headings would represent the
height 42× 5 mm= 210 mm of one sided text or 105 mm of the text on the obverse
and reverse side of the tablet.

It is evident from the order numbers N in Tab. 3 that The extended table
with the ordered reciprocals had to be constructed en bloc as a complete unit
of all 39 pairs x, y. Individual pairs in the ordered final table cannot be foreseen
in advance (e.g., the first calculated pair: 1; 0, 1; 0 is the last – 39th one in the
ordered table while the last calculated pair: 2; 18 53 20, 0; 25 55 12 in Tab. 3 is
already the 4th one).

Calculations of a complete tablet P322

Using the known reciprocal pairs x, y from the ordered extended table Tab. 3
and applying the same method as in the case of the preliminary table of triangles
Tab. 2, it is possible to make a more detailed table Tab. 4. Actual calculations
can be performed in the following three steps:

1. By means of the reciprocal pairs x, y from Tab. 3, in agreement with the
relations (5), the sides of a unit triangle s = (x − y)/2, d = (x + y)/2,
h = 1 are calculated.

2. From the sides s, d, h of the unit triangle by a parallel factorization, the in-
teger sides

H = Hh, S = Hs, D = Hd (13)

of a similar triangle are determined.

3. Eventually, from squares of the integer sides S2 and the reciprocals 1/H,
the squares of sides of the unit triangle

s2 = S2(1/H)2, d2 = 12 + S2(1/H)2 (14)

are calculated.

During calculation, obtained parameters s, d, h; S,D,H; S2, 1/H; s2, d2, N
have been temporarily registered on at least 8 individual tablets. (Initial pa-
rameters p, q, x, y,N were written before on a special tablet, similar to Tab. 3.)
The constant unit side h = 1 was useless to register. From the squares s2, d2,
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it was sufficient to record the more unambiguous d2. After getting all parame-
ters for a given number x (a row of the complete P322 ), for a transparency and
security reasons, the results were transcribed to a separate, the most likely ver-
tical tablet. Eventually, after a calculation of all 2×39 triangles it was supposed

to rewrite the important results s, d,H, d2, S,D,N on a final (two-sided) tablet

similar to Tab. 4. (The tablet P322 illustrates that already 15 rows, still incom-
plete half of all rows, have been rewritten on the obverse side of the horizontal
tablet.)

The most important part of Tab. 4 is the triple of parameters s, d,H, probably

located on the broken off part of the original complete tablet P322. From the triple,
all remaining parameters could be determined: x, y (by means of (4)); S,D (by means
of (13)); s2, d2 (by means of (14)). Only initial pairs of numbers p, q cannot be deter-
mined. They had to be laboriously compiled in Tab. 3. If there was a desire to made
a universal table with all data interesting for practice but also with those strenuously
obtained then the initializing pair p, q could be placed on the left and right side of the
tablet (similarly, as it is in Tab. 4).

Of course, a selection of parameters for the lost part of P322 is speculative but it
should be done on a reasonable conjecture of the aim of the tablet. The initial words
assign a similar problem in MS 3502 :

igi 2 uš sag ú šiĺıptum ennam

Number 2. What are the length, width and diagonal?

and the proper text presenting solution of the problem show that its significant pa-

rameters are x, y, s, d, h = 1, s2, d2. It is natural that the missing yellow parameters

occur in the supposed lost part of P322 : x, y, s, d —in F r i b e r g [9] and s, d –

–in B r i t t o n, P r o u s t, S h n i d e r [10]. A part of the parameters S,D, H, 1/H, S2

which might be used for the calculation of squares s2, d2 will still be missing in their
contemplated complete tablet P322. Evidently, the most important of the 5 missing

parameters is the length (multiplier) H . Without it, the sheer integer sides (the factor-
reduced core) S,D are inutile as they are insufficient for a calculation of desired squares

s2 = S2(1/H)2 or d2 = D2(1/H)2. (The calculation of H =
√
D2 − S2 itself was be-

yond a common scribe knowledge. On the other hand, the calculation of S = sH or
D = dH was within his ability.) For F r i b e r g [9], the key parameter of P322 has
been the square d2 from which all remnant parameters could be determined by an
independent factorization of squares d2 and s2=d2−1, including the factors Hd, Hs.

An inclusion of the pair Hd, Hs together with proposed parameters x, y, s, d would

lead to an extremely large lost part of P322. However, by omitting the pair Hd, Hs,
the factors S,D have become inutile in P322. B r i t t o n et al. [10] have considered

the ordering s, d,H, d2, S,D unnatural. In contrary, we regard it as a short cut of the

natural set of parameters s, d, h = 1, d2, S,D,H,N .
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A full agreement of the ordering numbers N in the calculated tables Tab. 3,
Tab. 4 and the real tablet P322 and a perfect accord of sexagesimal numbers
in the corresponding data in Tab. 4 and P322, demonstrates a correct under-
standing of the technic by means of which the cuneiform tablet had been com-
piled. But it does not mean that the two tables (Tab. 4 and P322 ) have been
obtained by an identical procedure.

For example, the author of P322 could avoid the parallel factorization of
sides s, d during calculation of the integer sides S, D, H. It was sufficient to
realize that the reciprocal pairs

x = p/q, y = q/p

represented fractions. Then a common fractional part of the sides

s = (p/q − q/p)/2 and d = (p/q + q/p)/2

was the factor
1/H = (1/q)(1/p)(1/2).

To get rid of the common fractional part 1/H in the sides s, d, h, it is enough
to multiply the sides by the reciprocal value of the factor 1/H

H = 2pq (15)

(The same effect is also provided by a factorization of the sides.) Usage of the
multiplier (15) can strongly simplify the calculation of integer sides. They
could be calculated independently. There would be no need to follow common
divisors of the last fractional digits. It could accelerate such calculation and
diminish the number of errors that could arise at a factorization.

Short comments on the colors used in the Table 4:

The yellow data are added to the existing extant of the damaged and uncom-

plete tablet P322.

The green data are unreadable in P322 extant.

The magenta data are correct but point out the errors made by ancient scribes

in the real tablet.

The blue values S,D,H of integer sides are obtained by factorization of simple,
two-digit sides s, d, h = 1 of unit triangles. In these cases instead of the blue
factorized values S,D,H shown in Tab. 4, the simple original values s, d, h = 1
of the unit triangles are presented in the real tablet P322 and also used for a
direct calculation of the square d2.
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It is even less probable that the author of P322 was known with the relations
between the triangle sides and the initial numbers p, q which are today easy
obtainable from the relations (5) and (13) by simple algebraic operations

s = (x− y)/2 = (p/q − q/p)/2 = (p2 − q2)/(2pq),

d = (x+ y)/2 = (p/q + q/p)/2 = (p2 + q2)/(2pq),

h = 1,

H = 2pq, S = p2 − q2, D = p2 + q2. (16)

When the initial numbers p, q (underlined italics in Tab. 4) are odd, then the integer
length is calculated as H = pq. The relations (16) are currently used for calculation
of the “Pythagorean” triangles (triples). They were also used by N e u g e b a u e r and
S a c h s [1] for proving a hypothesis that the tablet P322 has dealt with 15 Pythagorean
triangles.

Errors in the previous error analysis

Comparing the numbers from Tab. 4 and from P322, it follows that Old Baby-
lonians have made 6 errors in their tablet. (The original numbers of P322 can
be found in Fig. 1.B or in the black-and-white photo of P322 in [8].) A position
of the errors is denoted in Tab. 4 by the magenta color. Two of the errors are re-
sults of an insufficient attention during a transcription of data from an auxiliary
to the final tablet:

– In the 9th row in the parameter S, there is, instead of the correct
numeral 8, a similarly looking but incorrect digit 9 (Fig. 2).

– In the 2nd row in the parameter d2, there is, instead of the correct pair
of digits 50 06, an incorrect numeral 56. The error should be caused by
a too small work tablet where the blank space representing zeros in the
numbers 50 06 was too small. So, two numbers 50 06 have been misread
as one number 56.

The remnant 4 errors are of an arithmetic character:

In spite of this, the mistakes are extremely useful since they prove that the data in
P322 have been obtained in the order and way described above by the three steps.

The 1st error: In the 8th row in the parameter d2, there is, instead of the
correct pair of digits 45 14, an incorrect numeral 59 (= 45 + 14).

This parameter should be gained by the relation (14) as d2 = 12 + S2(1/H)2,
where values of the sides S,H are provided by factorization of the sides s, d.
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The factorization has given for the 8th row in Tab. 4 values S = 13 19; and
H = 16 00 = 4× 4× 1 00 and also 1/H = 0; 15× 0; 15× 0; 01 = 0; 00 03 45. Then

S2 × (1/H)2 = (13 19)2 × (0; 15× 0; 15× 0; 01)2

= 2 46 15 00 56 15× (15× 0; 016) = 0; 41 33 45 14 03 45.

Eventually, the correct result for the square d2 = 12+0; 41 33 45 14 03 45, shown
in Tab. 4, is obtained.

However, if the blank space (zero 00 ) in the last multiplication

2 46 15 00 56 15× (15× 0; 016)

is overlooked, the telescoped number will be multiplied and it will lead to the
faulty result

s2 = 2 46 15 56 15× (15× 0; 016) = 0; 00 41 33 59 03 45.

The whole calculation of P322 is made with the reciprocal pairs x = p/q and
y = q/p, therefore the product xy = 1; 00 is exactly equal to the unit. According
to (2), the unit had to be respected also in the calculation of the square d2 =
1; 00 + s2. So an incorrect result

d2 = 1; 00 + 0; 00 41 33 59 03 45 = 1; 00 41 33 59 03 45

should be obtained.

As the ancient scribe made the calculations with relative sexagesimals, he
obtained the result d2 = 1+41 33 59 03 45 = 1 41 33 59 03 45, where he had done
a second error – omitted the second (yellow) zero. Thus, due to the double error,
he finally obtained the incorrect result written in P322.

Evidently, a calculation with relative numbers and blank spaces instead of zero
had to be a frequent source of errors. However, the error connected with an incor-
rectly determined fractional part of the calculated number is done by nowadays
authors, too:

F r i b e r g [4, p. 297] calculated squares s2 and d2 directly as S2(1/H)2 and
D2(1/H)2. After an omission of zero and calculation with relative numbers, he ob-

tained the wanted results s2 = 41 33 59 03 45 and d2 = 141 33 59 03 45 which, as he

stated, obey the condition d2 = s2+1, so the incorrect results cannot be revealed. But
respecting absolute values and the unit 1; 00, he could reveal the mistake. He would

have to calculate the values s2 = 0; 00 41 33 59 03 45 and d2 = 0; 01 41 33 59 03 45 which

do not obey the condition d2 = s2 + 1; 00.

Similarly, wanting to get the incorrect result d2=141 33 59 03 45 by the N e u g e -
b a u e r and S a c h s procedure (16), the authors (B r i t t o n et al., [10, p. 537] show
at first the correct result d2 = (p2 + q2)2/(4p2q2) =

(7 13 2 0 01)× (0; 00 03 30 56 15)× (0; 00 04) = 1; 41 33 45 14 03 45
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for p = 32 and q = 15. However, if 7 13 2 0 01 is mistaken as 7 13 21 then, according to
the authors, the wanted incorrect result is obtained

d2 = (7 13 21)× (0; 00 03 30 56 15) × (0; 00 04) = 1; 41 33 59 03 45.

But they are wrong. They should have got the value d2 = 0; 01 41 33 59 03 45 which
should warn them about a mistake, since a diagonal of a unit triangle must be greater
than 1; 00.

The discussed errors of the authors do not reduce the quality of their articles. They
only document that who does numerical calculations he makes the numerical errors
− today, just like 4,000 years ago.

The bad value of the square d2 in the 8th row of P322, due to omission of zeros,
can be obtained even by two other ways:

1. B r u i n s [17] started from the value s = 0; 49 56 15 (Tab. 4) of which square he
counted directly as

s2 = (0; 50− 0; 00 03 45)2

= 0; 41 40− 0; 00 06 15 + 0; 00 00 00 14 03 45

= 0; 41 33 45 14 03 45.

If a scribe omitted one of the zeros in the third term and telescoped it to the

value 0; 00 00 14 03 45, then he gained the wrong result s2 = 0; 41 33 59 03 45.

This error would be transferred to square d2 = 1;+s2 as well.

2. A n a g n o s t a k i s and G o l d s t e i n [14] applied the relations (7) between
squares s2, d2 and reciprocal pairs x, y. The triangles in the 8th row of Tab. 4
have the ordering number N=8, for which Tab. 3 gives the values x = 2; 08 and
y = 0; 28 07 30. Then, according to (7)

d2 = (2; 082 + 0; 28 07 302)/4 + 1/2

= (4; 33 04 + 0; 13 11 00 56 15)/4 + 0; 30

= 1; 41 33 45 14 03 45.

If a scribe overlooked the zero in the second term and telescoped it to the value

0; 13 11 56 15, then he got the wrong result d2 = 1; 41 33 59 03 45.

The incorrect value of square d2 while the sides S,D are correct in the 8th row
of P322, suggests that the squares s2, d2 were calculated either later than S,D,H
or independently: from the numbers p, q, reciprocal pairs x, y or as a direct square
of the side s. The reverse steps (from d2 to S,D), promoted by F r i b e r g [9] and
R o b s o n [7], should lead to wrong sides S,D, but those are, however, in the
8th row right.
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The 2nd error: In the 13th row in the parameter S , there is, instead
of the correct number 2 41, the incorrect value 712 01 = 2 412.

This error relates to the fact that for calculating a square s2 = S2/(1/H)2

of a unit triangle, it is necessary to calculate and store a square S2 of a similar
integer triangle. During transcription of results from auxiliary tablets
to the final tablet, the value S2 was mistakenly written instead of S.

This error is explained similarly by F r i b e r g [4] but R o b s o n [7] and B r i t t o n
et al. [10] suggest another explanation: They suppose that during a factorization instead
of the sides s, d, the pair s2, d was mistakenly factorized. It should lead to the incorrect
result S2,D. Their conjecture is wrong. As it follows from (13), the parallel factorization
is a linear process: the sides s, d increase linearly to S,D. After such factorization, the
pair s2, d enlarges to some value S2 = Hs2 and D = Hd. The value S2 = Hs2 will differ
from the wanted S2 = H2s2, shown in P322. (It is proven by direct calculations, too.)
Also none of the other methods that explained successfully the previous error in the
2nd row (numbers p, q; reciprocal pairs x, y; direct square of s) can explain this error
in the 13th row.

The 3rd error: In the 2nd row in the parameter D, there is, instead of the
correct number 12025, the incorrect value

3120100≈1 20 25×12×12=3 13 00 00.

This error can be explained as a consequence of two mistakes: a different
factorization of the initial sides s = 0; 58 27 17 30 and d = 1; 23 46 02 30 from

Tab. 4 and a subsequent omission of zero during a calculation of the value
D = 3 13 00 00.

After two factorization steps, the initial (yellow) sides s, d, h of a unit triangle
changed to the values

0;58 27 17 30 × 2× 12 = 23; 22 55 ,

1;23 46 02 30 × 2× 12 = 33; 30 25 ,

1 × 2× 12 = 24.

The last (green) numbers have a common divisor 5, and then in the third factorization
step it was necessary to multiply by a reciprocal value of the divisor – by the number 12.
From some reason (darkness, a higher priority work, exchange of scribes), the third
round of factorization was interrupted. Before the interruption, the calculator just
managed to multiply the diagonal

1;23 46 02 30 × 2× 122 = 642; 05.

Restoring the calculations (perhaps next day, with new tablets), the scribe con-
tinued to multiply by 12. From the previous records, he found that the sides s, h had
already been multiplied by 12 (forgetting that it had been done in the second round).
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Thus, by mistake, instead of the sides s, h, he again multiplied the diagonal d. Thus,
the third factorization round ended with the final triplet

0;58 27 17 30 × 2× 12 = 23; 22 55 ,

1;23 46 02 30 × 2× 123= 120 25 ,

1 × 2× 12 = 24 .

After another two rounds of a correct factorization of this incorrect triplet, he finally
obtained for integer sides of a triangle the result

S = 0;58 27 17 30 × 2× 123 = 56 07,

D = 1;23 46 02 30 × 2× 125 = 3130000,

H = 57 36 = 1 × 2× 123

with the correct values of S and H shown in Tab. 4 and the incorrect value D=
3130000 slightly different from D = 3 12 01 00 which is written in P322. The last
erroneous value could occur again due to omission of the blank space (zero) during the
fourth round of factorization:

D = 1;23 46 02 30 × 2× 124 × 12 = 16 05 00× 12 = (16 00 00 + 5 00)× 12

= 3 12 00 00 + 1 00 00 = 3 13 00 00− a “correct” result in Tab. 4

= 3 12 00 00 + 1 00 = 3 12 01 00− an “ incorrect” result in P322.

A probability of this error is increased by the fact that it could be produced also
by interruptions in the second or fourth round of factorization.

This erroneous diagonal D was explained by B r u i n s [17] and later
by F r i b e r g [4], R o b s o n [7], B r i t t o n et al. [10] as an excessive factorization
made by a calculator who did not realize that he had already removed all fractional
digits. It is implausible as he knew in advance how many fractional digits should be
removed (only four in this case). Moreover, at the excessive factorization, the number 5
is no more a common divisor. Therefore its reciprocal 12 is no more suitable for such
factorization. On the other hand, the incorrect relative value D = 312 01 is explained
by them as a transcript mistake because the sexagesimal numerals 12 01 and 13 can be
with a little incaution easily confused.

The wrong diagonal D suggests that the square d2 of a unit triangle is deter-
mined using the equation (14) only from the square S2 of integer triangle and not
from D2 because in the latter case the wrong value of D would lead to a signifi-
cant error in the calculated square d2 in the 2nd row of P322. The wrong diago-
nal D also shows that no accuracy checking of the calculated squares d2 = s2+1;
envisaged by F r i b e r g [4], has been performed. (It is understandable. It would
have significantly prolonged calculations.)

The wrong value of diagonal D = 3 13 00 00 is 122-times larger than the cor-
rect value 1 20 25. It suggests that the author of P322 did not know the rela-
tion (15) for the multiple H = 2pq between the sides of unit and integer triangles.
The relation could help him to get rid of errors connected with a factorization.
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Actually, due to Tab. 4, the numbers p, q in the 2nd row have values 1 04 and 27,
respectively. Then H = 2pq = 2×1 04;×27 = 2×82×33 = 2×12×122 = 57 36.
Evidently, using the multiple (15), the wrong result D should preferably consist
of the elementary multipliers 1 04, 27, 9, 8, 3 but not of the numbers 12 or 122

typical for factorization in this case.

The 4th error: In the 15th row in the parameter S, there is, instead of the
correct number 28, the incorrect value 56(= 28× 2).

There is a general meaning (B r u i n s [17], F r i b e r g [4], R o b s o n [7],
B r i t t o n et al. [10]) that the error is a consequence of a different factoriza-
tion of the individual sides s = 0; 37 20 and d = 1; 10 40 from Tab. 4. We suppose
that it should be provoked by a time distress when the data of the last (15th) row
were calculated in the last moment, just during transcription of results to the
tablet P322. Such distress should require dividing the factorization between two
scribes. The scribes factorized the sides s and d in the following two steps:

The first scribe The second scribe The comment

0; 37 20 × 3 = 1; 52 1; 10 40 × 3 = 3; 32 20 is a divisor and 3 its reciprocal.

S = 1; 52 × 30 = 56 D = 3; 32 × 15 = 53 2 or 4 are divisors,
Hs = 3× 30 = 90 Hd = 3× 15 = 45 30 and 15 their reciprocals.
Ds = dHs = 146 Sd = sHd = 28

Evidently, the first scribe overlooked the divisor 4 for the last fractional digit 52 and
obtained twice larger values S=56 and Hs=90 instead of 28 and 45 shown in Tab. 4.
Nevertheless, he could obtain the correct value of the square

d2 = 1;+S2(1/Hs)
2 = 1;+(56×0; 20×0; 02)2 = 1; 23 13 46 40

shown both in Tab. 4 and P322. The same correct value might be calculated also by
the second scribe: d2= D2(1/Hd)

2= (53× 0; 20× 0; 04)2= 1; 23 13 46 40. Of course, the
values S = 56 and D = 53 in P322 do not correspond to the same integer triangle.

Paradox of the tablet P322

Just this opinion, that P322 is not the table of integer triangles (Py-
thagorean triplets) S,D,H but only factors S,D provided by independent
factorizations of squares s2, d2 of sides of a unit triangle (rectangle), is hold
by F r i b e r g [9].

Paradoxically, F r i b e r g in his earlier article ( [4, pp. 290–292]) still talked about
Pythagorean triangles (triplets). He compiled the extended tablet P322 in agreement
with the relations (5), (13), (14) and by application of the parallel factorization of
sides s, d. He still considered errors in line 2 and 15 as a result of an incorrect parallel
factorization.
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The key position of the squares s2, d2 in later Friberg’s interpretation means
that P322 should be completed just in an opposite way as in the case when it
represented a table of triangles:

s2, d2 −→ S2 = s2 ×H2
s , D2= d2 ×H2

d −→
−→ S =

√
S2, Hs, D =

√
D2, Hd −→ s = S/Hs, d = D/Hd.

The way of obtaining the squares s2, d2 is not discussed by him but there is a possi-
bility to calculate them, due to (7), from reciprocal numbers x, y as (x2 + y2)/4± 1/2.

Individual members S,D,Hs, 1/Hs, Hd, 1/Hd of the factorization are interesting
in calculation of square roots of multidigital numbers (s2, d2) which occur
when quadratic problems are solved. Multidigital squares are decomposed into less-
digital multiples with easier computed roots. For example, in the line 10 in Tab. 4, the
square d2 is a 9-digit number; side d has 5 digits; factorization terms D,H
− F r i b e r g’ s reduced factorization cores − have 3 digits. (This Old Babylo-
nian problem of multiplication of huge numbers by their decomposition to smaller
multipliers has remained until now. Only today’s computers with limited registers use
fast, more sophisticated algorithms of decomposition, for example, K a r a t s u b a mul-
tiplication [19].)

In agreement with the procedure, F r i b e r g [9] proposes the following content
of P322 extended by its lost (yellow) part:

x, y, s, d, d2, S, D, N.

Factorized multiples Hs, Hd are missing in the supposed table, though they would
be more interesting for a table owner than the reciprocal pair x, y, which could be
easily calculated as a sum or difference of the sides d, s using the relation (3). Without
the multiples Hs, Hd, the meaning of the reduced cores S,D is doubtful because only
a simultaneous knowledge of the multiples and values S,D enables to calculate the
sides s, d or their squares s2, d2.

F r i b e r g [9, p. 436] promotes factorization by squares. Thus the mistake in line 13,
the number S2 = 7 12 01 in column 3 is a result of such factorization. Then, after
F r i b e r g: “the author of Plimpton 322 may have forgotten to compute the square
side of 7 12 01. The correct entry in line 13 of column 2 would be 2 41(=

√
7 12 01).”

There is only a question whether such type of factorization was performed indeed.
The discussion of the 1st error (d2 in 8th row) has shown that it was not.

According to F r i b e r g [9], in the case of the independent factorization, the discussed
data from the 2nd and 15th row are already no more errors. There is only a difference
in the number of factorization steps: The square s2 in the 2nd row is factorized four
times with the overall multiple H2

s = 22×122×122×122, while the square of diagonal d2

is factorized 6 times with the overall multiple H2
d = 22 × 122 × 122 × 122 × 122 × 122.

According to F r i b e r g [9, p. 436], this should be “similarly in the case of line 15”, too.
An independent factorization of squares s2 and d2 should give the entries S = 56 and
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D = 53 in the line 15. We will show, however, that such factorization cannot give
such numbers:

Evidently, in this case due to Tab. 4, the square d2 = 1; 23 13 46 40 . Then, square

s2 = d2−1= 0; 23 13 46 40 . The equal trail number 6 40 =400=202 has the recipro-

cal 32. Then, from the initial squares after the first round of factorization the following
numbers are obtained

1; 23 13 46 40× 32 = 12; 29 04 and 0; 23 13 46 40× 32 = 3; 29 04 .

Again the common new trail number 4 = 22 has the reciprocal 302. Then, after the
second round of factorization, the numbers

12; 29 04×302=307 16=D2

and

3; 29 04 × 302 = 52 16 = S2

are obtained. Their square roots give the factorization terms

D = 146, S = 56, Hd = Hs = 3× 30 = 130,

in accord with the above discussed results of the first scribe for the line 15. How-
ever, the “independent” factorizations of the squares s2, d2 fail to explain why
only the value D = 1 46 can be computed but not the correct value 53, envisaged by
F r i b e r g [9] and found by the second scribe.

Of course, it is possible to obtain the value D = 53, but it will need squares of the divi-
sor 4 and his reciprocal 15, used by the second scribe in the second round of factorization

of the current numbers 1; 23 13 46 40×32 = 12; 29 04 and 0; 23 13 46 40×32 = 3; 29 04 .

It will need a new trail number 9 04 = 544 = 16 × 34 which contains the searched

divisor 16 = 42 with its reciprocal 152. Then, after the second round of factorization,

the numbers 12; 29 04 × 152 = 46 49 = D2 and 3; 29 04 × 152 = 13 04 = S2 are ob-
tained. Their square roots give the results D = 53, S = 28, Hd = Hs = 3× 15 = 45,
of the second scribe for the line 15. The reproduction of the second scribe results is
very artificial and depends on the previous knowledge, in contrast to a very natural
procedure of the first scribe. So the independent factorizations of squares s2, d2

cannot explain the error in the line 15 because it will provide only results of the first
scribe.

The observed equality of the multiples Hd = Hs is no surprise. It could be ex-
pected even at the independent factorization of squares s2, d2 because the factorized
fractional parts of these squares are exactly equal. Inequality of multiples Hd, Hs

occurs in P322 only in two cases (line 2 and 15). Therefore, it is plausible that the in-
equality of Hd, Hs is a result of an accidental miscalculation and not of an intentionally
independent factorization.

There is also an additional argument against the independent factorization of the
squares s2, d2: From the wrong d2 in the lines 2 and 8 of P322, also incorrect values of
parameters S,D should be expected. However, three of them are correct and also the
incorrect value of the fourth parameter (D in the line 2) has already been explained by a
forced interruption of calculations and not as an intentional independent factorization.
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The width S = 56 and diagonal D = 53 could appear in the line 15 only when
the sides s, d themselves are independently factorized but not the squares s2, d2. Even
the factorization of the sides s, d cannot be considered intentionally independent. If it
actually was, the author of P322 ought to continue in factorization of the side S = 1 05
in the 5th row or of the sides S = 45, D = 1 15 in the line 11 of the P322.

Besides the qualitative difference between the triangle and factorization core interpre-
tation of P322, there is also a paradoxical quantitative difference: From one point of
view, the factorization enlarges fractional sides s, d, h = 1 of a unit triangle H-times
to the integer sides S = sH, D = dH, H of a similar triangle. After F r i b e r g [4],
however, the same original sides s = S × 1/H, d = D × 1/H are reduced 1/H-
-times to the factorization cores S,D. For example, in the line 15 in Tab. 4, the sides
S = 28, D = 53 are 3× 15 = 45-times larger than the initial sides s = 0; 37 20 and
d = 1; 10 40. On the other hand, according to F r i b e r g [4], [9], the factorization cores
S = 28, D = 53 are 20 × 4 = 80-times smaller than the original side s = 37 20 and
d = 110 40 expressed in relative numbers. Which of the contradictory statements is
correct?

A brief mathematical answer to the question is given by the inequality (10). However,
a deeper insight in the paradox is provided by the relation (2) between sides of a unit
triangle d2−s2 = xy. In the first case, a calculation with absolute values gives the result

d2 − s2 = 1; 10 402 − 0; 37 202 = 1; 23 13 46 40− 0; 23 13 46 40 = 1;00. (17)

In the second case, a calculation with the relative values gives

1 10 402 − 37 202 = 123 13 46 40− 23 13 46 40 = 1(00 00 00 00). (18)

Since the tablet P322 has been obtained from reciprocal pairs x = p/q and y = q/p,
then their product xy can only have one possible absolute value xy = 1;00. Thus,
the first interpretation with integer triangles is correct. It does not mean that the
second version with the relative values is principally faulty. It only solves another task:

Instead of the initial side d = 1; 10 40, it starts implicitly with the 10000-times larger
integer side 1 10 40. Subsequently, this too large side is reduced 80-times to the final
integer value D = 53. Taking into account the implicit increase and the subsequent
explicit reduction, the correct final 1 00 00/80 = 45-times increase, forecasted by
the absolute values, is obtained.

In case of the independent factorization of the initial sides s = 0; 37 20, d = 1; 10 40, the
final values S = 56, D = 53 in P322 are not the sides of a triangle and therefore they
do not obey to relation (2). In this case, the version with the increase of initial sides by
factorization is supported by unambiguous values of reciprocal pairs: Actually, due
to Tab. 3 in the row N = 15, there are generating numbers p = 9, q = 5 and the
reciprocal pair x=p/q=1; 48, y=q/p=0; 33 20. From the pair and the relation (5), the
width s = (x− y)/2 = 0; 37 20 < 1; of a steep unit triangle, is determined. The width s
can be written in an ambiguous relative form as 37 20, but the form cannot change its
unambiguous absolute value which must be respected at any factorization.

It must be strictly distinguished between the formation of the tablet P322 and its later
application. The case: F r i b e r g (1981), [4] versus F r i b e r g (2007), [9] covers the
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whole span between the formation and the application of P322. Analysis of the errors
supports the simpler, more natural F r i b e r g [4] version, suitable for construction
of P322 as a table of ordered roots and squares s, d, d2, (s2) using The extended table
of reciprocals. As it will be shown later, this simpler construction of P322 would
last around a month. The latter version [9] would be much more time consuming
as it supposed calculation of roots S,D of some apparently random squares S2, D2

which was beyond the common scribe skill. It would be a great luxury to perform
calculations lasting for several month (without permanent registration of the crucial
parameters S2, D2) just for a list of 39 numerical exercises. For this purpose, The
standard table of reciprocals would be absolutely sufficient.

The majority of arguments shows that the author of P322 used parallel
factorization of sides s, d with the same multiples Hs = Hd = H which
together with the factorization terms S,D represent sides of an integer triangle
(rectangle).

It is undeniable that original sides s, d, h = 1 are the sides of a unit right-angled

triangle. (It is indicated by their names sag, šiĺıptum, uš in P322 or MS 3052.) Then

proportional multiples of these sides S, D, H represent sides of a similar triangle (re-

gardless of considering them triangles or not). Although P322 gives only 2 sides S, D,

the author of the tablet had known also the third side H. (By factorization, all three

sides were determined simultaneously. In addition, the side H should be displayed

in the lost part of the tablet.)

Spatial and temporal requirements
for a complete tablet P322

Dimensions of a clay tablet containing the parameters of triangles s, d,H,
d 2, S, D, N from Tab. 4 can be determined in a similar manner as the di-
mension of the tablet with parameters of Tab. 3 – from the average width 6mm
of a sexagesimal digit, the height 5 mm of a row and the height 15 mm of head-
ings.

According to Tab. 4, the individual parameters are expressed by the following
number of digits: s(4), d(5), H(2), d2(9), S(3), D(3), N(3). Adding yet 8 blank
one-digit-spaces between columns and at the edges of tablet, the width of the
complete tablet should be less than 37× 6mm = 222mm. (The width of the
missing and remnant part should take up 15× 6mm = 90mm and 22× 6mm =
132mm, respectively.)

A heading equivalent to 3 rows and 39 rows of triangles written on the obverse
and reverse side would need a tablet less than 42 × 5/2 mm = 105 mm high.

The left and right side of the tablet might be hypothetically utilized for
a record of generating integers p, q with Akkadian headings igibu (=numerator)
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and igu (= denominator) [15], respectively. (Numbering of rows N on the ob-
verse, reverse and flank sides would be shared.) The two-place numerator, one-
place denominator and 2 blank spaces suppose less than 5×6 mm= 30 mm of
thickness, similar to that of P322.

A complete tablet, with a horizontal writing of text, could have a shape
of a clay brick less than 222 mm × 105 mm × 30 mm. Initial dimensions should
be larger, as the wet clay volume shrinks 7–14 % by drying [16].

Similar dimensions (223×90×32 in mm) has also a completely filled vertical tablet
MS 3052, as it follows from its photo (F r i b e r g [9]). Its reverse side is oval, just
like P322, but not quite symmetrical. The oval shape is no problem for a vertical
tablet with a dominating verbal text. For long horizontal rows with a numerical text,
however, a planar shape of all sides is preferable. (Also on the unfinished P322, the
mathematical text is on its strait not oval side.) A finished table with a full text should
therefore have a shape of a thin rectangular parallelepiped.

To get at least a misty insight into the time demand of calculations,
Tab. 4 was obtained from relations between individual parameters and the ini-
tial integers p, q, using decimal addition, subtraction, multiplication and division
by a simple Microsoft calculator. The same way was also used at the final trans-
formation of decimals to sexagesimals. The results of the calculations were later
checked by Excel computations which repeatedly used the worksheet functions
INT(number)&“;”&INT(60*MOD(number;1)) for the transformation.

Computing of 15 rows of Tab. 4 took 3 hours. The decimal operations need
only a “click”. All results are initially registered in the calculator memory and
display, and finally simply transcribed to Word tables. On the contrary, clumsy
sexagesimal operations, inscriptions and transcriptions into sets of clay tablets
had to last many times longer.

An experience with 39 improper fractions x = p(1/q) of Tab. 3 has shown that their
calculation by a simple calculator lasted 8 min while by a simple manual multiplication
of two sexagesimal numbers, without any technical aid, lasted 100 min (about 13 times
longer). Then a manual computing of 15 rows of Tab. 4 could last as minimum
13 × 3 hours = 39 hours. Preparation of, maybe, 6 handy tablets for parameters
(s, d;S;D;H;S2; s2) of the same row needed at least additional 6 × 5min = 30min
plus 10min for one final complete tablet for the given row N . Then, completion of
the whole Tab. 4 with its 39 rows could last as minimum

127 h (= 39 × 39 h/15 + 39 rows × (40/60) h/row),

i.e., more than 3 hours per row.

So a compilation of Plimpton 322, often being interrupted, lasted not hours
but weeks. A rude guess at velocity of the compilation could be 1–2 rows of the
complete table of triangles per day and per one scribe.

35



RUDOLF HAJOSSY

A time estimate of transcription of the calculated results on the final
cuneiform tablet is simpler. It is sufficient to suppose similarly, as in the case
of Tab. 3: one wedge per second as a velocity of script, and 15 wedges as an
average per a sexagesimal numeral. According to P322 (Fig. 1.B and white
part of Tab. 4), individual columns of parameters (within 15 rows of the ex-
tant P322 ) have the following quantity of numerals: d2(90), S(30),D(32),N(30),
in total 182 numerals and 182 × 15 = 2730 wedges. It means that a transcrip-
tion of 15 rows of the extant P322 lasted around 2730 s. Supposing the head-
ings are equal to 3 rows, then their engraving lasted 2730 × 3/15 = 546 s.
Then writing of the extant P322 took around 3 300s = 55 min. The writing
of 15 rows of the original P322, including of missing columns s, d,H, should be
managed within 2 hours. Copying a complete table with 39 rows should last
around 4 hours. (Formation of a clay tablet and its preliminary vertical and
horizontal scoring could last no more than half an hour.) All copying in a hot
climate should be carried out at once, within a half-day during which a clay
tablet is suitable for engraving, i.e., till its surface gets “skinny” (a half way be-
tween wet and dry). In such case, an observed unified manuscript of the word ki
or the same depth of wedges in numbers [10], [16] can be expected.

Established time for writing the complete table (several hours) is negligi-
ble against the computational time (weeks). Then there is no problem to com-
pile varied types of tables from all laboriously calculated data: e.g., unit tri-
angles for builders and surveyors (s, d, h = 1, N); for mathematicians wanting
to have a table of square roots and reciprocal pairs for solving quadratic prob-
lems (x, y, s, d, d2, N); for teachers wanting to have material for training of paral-
lel factorization leading to integer triangles (triplets) (s, d, S,D,H,N), suitable
for computing squares of multidigital numbers (d2, S2, 1/H, N). The most use-
ful is a complete set s, d,H, d 2, S, D, N. Its universal part s, d,H should have
been on the missing part of P322 and would have required (see above) less
than 90 mm from the whole expected width 222 mm of the complete tablet.
Any attempt to estimate the missing contents is speculative.

There is an argument against the complete universal table that no extant duplicate

of it has been found, compared to many hundreds duplicates of other types of standard

mathematical or metrological tables [7]. The lack of the duplicates can be explained

by a few numbers of specialized users, too little duplicates and consequently, a small

probability of their preservation and excavation. Moreover, even if some duplicate or its

part was found it might not have been deciphered. (Plimpton 322 itself was for decades

taken to be a commercial account.) There is also a sad possibility that a propagation of

the table from the ancient city Larsa could be stopped out by the capture of the city by

Hammurabi’s warriors. (The “circles of Archimedes” had also been forever disrupted

by a soldier during the capture of Syracuse.)
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Conclusions

The mathematical text of the tablet Plimpton 322 is probable an exten-
sion of an older, less precise table compiled by means of The standard
table of reciprocals to solve the problems with powers, roots and right triangles.
(Data from the older table might have become part of teaching texts written
on the cuneiform tablets MS 3052 and MS 3971 from Uruk. Then it seems
less probable that the tablets represent a proof of the existence of a com-
plete tablet P322 with the extended 38 rows of triangles as it is suggested
by F r i b e r g [9, p. 447] or B r i t t o n et al. [10, p. 561].)

Supposed contribution of the article

1. Explanation of the interest in triangles with a steep diagonal which corre-
sponds, nowadays, to angles from 45◦ to 90◦: A slope of a diagonal d in a unit right
triangle (or rather, in a rectangle) of a width s and a length h = 1 is restricted by the
interval of widths 0 ≤ s ≤ 1. The restriction simplifies calculations of a table with dif-
ferent inclinations. (Such table of steep triangles requires checking of 191 fractions as
minimum. For moderate triangles, it is up to 484 fractions.) The restriction to steep
triangles is not such limiting as it might seem, since a simple rotation can change steep
triangles (s < 1) into moderate ones (s > 1), with an inclination of their diagonals
from 0◦ to 45◦.

2. A final decision that the first column of P322 contains squares of diagonals
d2 = 12+s2 (starting with the numeral 1) and not squares of widths s2 of a unit triangle
follows from: unambiguous values of d2; a location of fractional numerals near
the broken left edge of the tablet and from a new, high-quality photo of the text on
the obverse side of P322 made by C h. P r o u s t where the numeral 1 in the line 12
on the left damaged edge of P322 is still visible. (The left edge on the P322 photos in
the original N e u g e b a u e r–S a c h s article [1] and C a s s e l m a n [8] is illegible.)

3. Comparison of a computational complexity of construction of The extended
table of reciprocal pairs x=p/q and y=1/x in dependency on the restriction conditions:
a maximum numerator p<pmax=2; 30q or a maximum fraction x < xmax = 2; 30.
In the first case, it is necessary to check 191 improper fractions x > 1. In the latter,
it is 295.

4. Determination of a computational sequence during compilation of The ex-
tended table P322 : A critical analysis of errors in the existing extant of P322 has shown
that by a parallel factorization of sides of a unit triangle s, d, h, the integer sides of
a similar triangle S,D,H were calculated. From those, the squares s2 = S2(1/H)(1/H),
d2 = 1+ s2 were later obtained. This sequence of calculations can naturally explain all
4 arithmetical errors in P322. The independent factorization of squares of diagonal d2

and of width s2, promoted by F r i b e r g [9], can explain only 2 of the 4 errors and fails
to clarify correctness of sides S,D by incorrect values of the initial squares s2, d2. Only
one independent factorization of the sides s, d has occurred, probably in a time stress,
at calculation of the last row (N = 15) of P322 by two different calculators.
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5. Explanation of a paradox of factorization: On one side, the factorization
of absolute numbers leads to an enlargement of a unit triangle to that with integer
sides. On the other hand, the factorization of relative values of sexagesimal numbers
leads to a diminishing of the unit triangle. As the table P322 has been calculated from
reciprocal pairs x = p/q, y = q/p by the condition xy = 1; 00, only the factorization
of absolute values respect this condition.

6. The broken off part of P322 with the supposed parameters s, d,H could make
from the complete table P322 with parameters s, d, d2 a table of 78 square roots
of numbers which increase with an average step 0, 025 in the interval from 0 to 2.

7. The broken off part of P322 with the supposed parameters s, d,H could make
from the complete table P322 with parameters s, d,H,S,D a table of 39 unit and 39
similar integer right triangles with a diagonal steeper than that of a square (with
the inclination from 45◦ to 90◦, increasing with an average step 1◦ around). However,
the results are applicable also for triangles with a moderate slope of diagonal (from 0◦

to 45◦). The table is potentially interesting for builders and surveyors. It represents
the earliest seeds of trigonometry where angles are not measured as an arc of a
unit circle but as a width of a unit triangle.

8. Bringing to attention a possible existence of the 39th row in The extended
table P322 which belongs to the simplest reciprocal pair x = y = 1; 00. In this row,
there is a triangle with questionable sides s = 0, d = h = 1 but also roots of the number
1 and the problematic zero (“nu” = not, nothing in Sumerian).

9. Except of the known triangle 3, 4, 5, the integer triangles S,D,H from the com-
plete table P322 are not suitable for measurements as they change irregularly with
a continuously increasing slope of their diagonal. However, the integer triplets S,D,H
(obtained by a parallel factorization of sides s, d of similar unit triangles) were used
for calculation of squares s2 = S2(1/H)(1/H); d2 = D2(1/H)(1/H) = 1 + s2.
The advantage of decomposition of sides s, d with multidigital values to less digital
triplets by the factorization manifests when the squares s2, d2 of the multidigital sides
are calculated. Conversely, in case of the unit triangle 0; 45, 1; 15, 1; 00 with few dig-
its, compilers of P322 did not do a tedious factorization leading to the known integer
triangle 3, 5, 4 but they calculated the squares s2, d2 directly by multiplication of the
initial sides by itself. (It is illustrated by the relative values S = 45, a D = 115 in
the line 11 of P322.) Such direct multiplication, instead of factorization, can be ex-
pected also in the lines 18, 22, 32 and 39 with the few-digit sides of unit triangles in the
extended tablet P322.

10. Time demands: for compilation of The extended table of reciprocals (2–8 days
per scribe, depending on the used manner of preliminary checking of calculated im-
proper fractions x); for preparation of The extended table P322 (a month, i.e., 1–2 rows
per day per scribe); for transcription of currently registered results to a final tablet
of the size 222 × 105 × 30 in mm (less than a half-day). A possibility to save lengthy
and tediously calculated parameters by their brief transcription might lead, besides
the completion of P322, also to a creation of several types of specialized tables.
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Two lessons

Even error may be useful:

Analysis of 4 arithmetical errors in P322 demonstrated that its author(s) used
the simplest procedures and made it as a table of integer triangles (triples)
S,D,H and not as a table of factorization terms (cores) S,D generated by an in-
dependent factorization of squares of sides s2, d2 of a unit triangle (rectangle).

Writing in clay can be more durable than in a stone:

The Old Babylonian king Hammurabi and the anonymous author of Plimp-
ton 322 were, more or less, contemporaries. The former is known for his law
code carved in stone, the latter – for his numerals inscribed in the clay tablet.
While Hammurabi’s realm disappeared and a majority of provisions of his code
has already lost their applicability, the eight-placed sexagesimal data in Plimp-
ton 322 has sustained its validity to the last digit, even after 4000 years. Evi-
dently, mathematics provides more lasting knowledge than legislation.

��������	
�����
� Author’s personal experience with a clay treating was
obtained due to helpfulness of Mgr. Art M i l a n H a n k o (Škola úžitkového
výtvarńıctva, Bratislava). Information on clay properties provided by him and
professional potters M a r e k and H e n r i e t a H a u p t v o g l influenced and
changed the author’s näıve minds on fabrication of P322.

Author would like to express his gratitude also to the anonymous reviewer for
his valuable advice, language corrector Z u z a n a M i n a r e c h o v á , technical
editors I v a n a G e r i a k o v á and M á r i a M a l a š č u k o v á for preparation
of the final version of this article.
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