THE ORDER OF APPEARANCE OF THE PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

Diego Marques - Pavel Trojovský

Abstract

Let F_{n} be the nth Fibonacci number and let L_{n} be the nth Lucas number. The order of appearance $z(n)$ of a natural number n is defined as the smallest natural number k such that n divides F_{k}. For instance, $z\left(F_{n}\right)=n=$ $z\left(L_{n}\right) / 2$ for all $n>2$. In this paper, among other things, we prove that

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)=\frac{n(n+1)(n+2)(n+3)(n+4)}{12}
$$

for all positive integers $n \equiv 0,8(\bmod 12)$.

1. Introduction

Let $\left(F_{n}\right)_{n}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. Let $\left(L_{n}\right)_{n}$ be the Lucas sequence which follows the same recursive pattern as the Fibonacci numbers, but with initial values $L_{0}=2$ and $L_{1}=1$. These numbers are well-known for possessing amazing properties (for example consult [4]). The period $k(m)$ of the Fibonacci sequence modulo a positive integer m is the smallest positive integer n such that

$$
F_{n} \equiv 0(\bmod m) \quad \text { and } \quad F_{n+1} \equiv 1(\bmod m)
$$

The study of the divisibility properties of Fibonacci numbers has always been a popular area of research. Let n be a positive integer, the order (or rank) of appearance of n in the Fibonacci sequence, denoted by $z(n)$, is defined as the smallest positive integer k, such that $n \mid F_{k}$ (some authors also call it order of apparition, or Fibonacci entry point). There are several results about $z(n)$ in the literature. For example, $z(m) \leq 2 m$, for all $m \geq 1$ (see [15] and [10] for improvements) and in the case of a prime number p, one has the better upper bound $z(p) \leq p+1$, which is a consequence of the known congruence

[^0]$F_{p-\left(\frac{p}{5}\right)} \equiv 0(\bmod p)$ for $p \neq 2,5$, where $\left(\frac{a}{q}\right)$ denotes the Legendre symbol of a with respect to a prime $q>2$. We will use Pochhammer polynomial $n^{(k)}=n(n+1)(n+2) \ldots(n+k-1)$ for the simplification of notation in the following text.

In recent papers, the first author [5]-9 found explicit formulas for the order of appearance of integers related to Fibonacci and Lucas numbers, such as $C_{m} \pm 1, C_{n} C_{n+1} C_{n+2} C_{n+3}$ and C_{n}^{k}, where C_{n} represents F_{n} or L_{n}.

In this paper, we continue this program by studying the order of appearance of the product of five consecutive Lucas numbers. Our main result is the following.

Theorem 1.1. Let n be any nonnegative integer. Then

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)= \begin{cases}n^{(5)}, & n \equiv 1(\bmod 6) ; \tag{1.1}\\ \frac{1}{2} n^{(5)}, & n \equiv 2,10,14,18,22,30,34(\bmod 36) ; \\ \frac{1}{3} n^{(5)}, & n \equiv 3,5(\bmod 6) ; \\ \frac{1}{4} n^{(5)}, & n \equiv 4(\bmod 12) ; \\ \frac{1}{6} n^{(5)}, & n \equiv 6,26(\bmod 36) ; \\ \frac{1}{12} n^{(5)}, & n \equiv 0,8(\bmod 12) .\end{cases}
$$

Remark 1. The completeness of cases in Theorem 1.1 follows from the fact that the first case and the third case together include all positive odd integers n and the other cases include all nonnegative even integers n.

2. Auxiliary results

Before proceeding further, we recall some facts on Fibonacci numbers for the convenience of the reader.

The p-adic valuation (or order) of $r, \nu_{p}(r)$, is the exponent of the highest power of a prime p which divides r. The p-adic order of the Fibonacci and Lucas numbers was completely characterized, see [14], [16] and [12]. For instance, from the main results of Leng yel [12, we extract the following result.
Lemma 2.1. Let p be any prime. For $n \geq 1$, we have

$$
\begin{aligned}
& \nu_{2}\left(F_{n}\right)= \begin{cases}0 & \text { if } n \equiv 1,2(\bmod 3) ; \\
1 & \text { if } n \equiv 3(\bmod 6) ; \\
3 & \text { if } n \equiv 6(\bmod 12) \\
\nu_{2}(n)+2 & \text { if } n \equiv 0(\bmod 12)\end{cases} \\
& \nu_{5}\left(F_{n}\right)=\nu_{5}(n),
\end{aligned}
$$

ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

and for any prime $p \neq 5$ and $p>2$

$$
\nu_{p}\left(F_{n}\right)= \begin{cases}\nu_{p}(n)+\nu_{p}\left(F_{z(p)}\right) & \text { if } n \equiv 0(\bmod z(p)) ; \\ 0 & \text { if } n \not \equiv 0(\bmod z(p))\end{cases}
$$

Lemma 2.2. Let p be any prime, let $k(p)$ be the period modulo p of the Fibonacci sequence. For $n \geq 1$, we have

$$
\nu_{2}\left(L_{n}\right)= \begin{cases}0, & n \equiv 1,2(\bmod 3) \\ 2, & n \equiv 3(\bmod 6) \\ 1, & n \equiv 0(\bmod 6)\end{cases}
$$

and for any prime $p>2$,

$$
\nu_{p}\left(L_{n}\right)= \begin{cases}\nu_{p}(n)+\nu_{p}\left(F_{z(p)}\right), & k(p) \neq 4 z(p) \text { and } n \equiv \frac{z(p)}{2}(\bmod z(p)) \\ 0, & \text { otherwise }\end{cases}
$$

Remark 2. Since $k(5)=20$ and $z(5)=5$, we have $k(5)=4 z(5)$ and so the previous lemma yields $\nu_{5}\left(L_{n}\right)=0$. In fact, the same happens for the primes

$$
13,17,37,53,61,73,89,97,109,113,137,149,157,173,193,197, \ldots
$$

which is the OEIS sequence A053028. We point out an interesting result of La garias [11] concerning the density of this set of primes.

Lemma 2.3 (Cf. Lemma 2.1 [9]). We have
(a) $F_{n} \mid F_{m}$ if and only if $n \mid m$.
(b) $L_{n} \mid F_{m}$ if and only if $n \mid m$ and m / n is even.
(c) $L_{n} \mid L_{m}$ if and only if $n \mid m$ and m / n is odd.
(d) $F_{2 n}=F_{n} L_{n}$.
(e) $\operatorname{gcd}\left(L_{n}, L_{n+1}\right)=\operatorname{gcd}\left(L_{n}, L_{n+2}\right)=1$.

Lemma 2.4 (Cf. Lemma 2.2 of [9]). We have
(a) If $F_{n} \mid m$, then $n \mid z(m)$.
(b) If $L_{n} \mid m$, then $2 n \mid z(m)$.
(c) If $n \mid F_{m}$, then $z(n) \mid m$.

Lemma 2.5. Let k, n, m be any positive integers. We have
(a) If $n \equiv 0,3(\bmod 6)$, then $2 F_{n} \mid F_{2 n}$.

If $n \equiv 2(\bmod 4)$, then $3 F_{n} \mid F_{2 n}$.
(b) If $n \equiv 1,2(\bmod 3)$, then $2 F_{n} \mid F_{3 n}$.
(c) If $n \equiv 6(\bmod 12)$, then $6 F_{n} \mid F_{2 n}$.
(d) If $n \equiv 2(\bmod 4)$, then $6 F_{n} \mid F_{6 n}$.
(e) If $m \nmid F_{k n}$, then $m \nmid F_{n}$.
(f) If $n \equiv 2,10,14,18,22,30(\bmod 36)$, then $L_{n} L_{n+4} \nmid F_{\frac{1}{3} n^{(5)}}$.
(g) If $n \equiv 2(\bmod 4)$, then $L_{n+2} \nmid F_{\frac{1}{4} n^{(5)}}$.
(h) If $1 \leq k \leq 5$, then $\nu_{2}\left(\prod_{i=0}^{k} L_{n+i}\right) \leq 3$.

Proof.
(a) Using the identity $F_{2 n}=F_{n} L_{n}$ and Lemma 2.2, we clearly obtain the assertion.
(b) Using the identity $F_{3 n}=F_{n}\left(L_{2 n}+(-1)^{n}\right)$, see [4, p. 92], the fact that $L_{2 n}$ is odd for $n \equiv 1,2(\bmod 3)$ by Lemma 2.2 we clearly obtain the assertion.
(c) Using the identity $F_{2 n}=F_{n} L_{n}$ and Lemma 2.2 we obtain the assertion.
(d) Using the identity $F_{6 n}=F_{3 n} L_{3 n}=L_{3 n} F_{n}\left(L_{2 n}+(-1)^{n}\right)$, see [4, p. 92], and the fact that $6 \mid L_{3 n}$ for $n \equiv 2(\bmod 4)$, with respect to Lemma 2.2, we have the assertion.
(e) Let us consider that $m \mid F_{n}$. Using the well-known property $F_{n} \mid F_{k n}$ we obtain $m \mid F_{k n}$.
(f) To prove the assertion it is suffice to show that $\nu_{3}\left(L_{n} L_{n+4}\right)>\nu_{3}\left(F_{\frac{1}{3} n^{(5)}}\right)$ for $n \equiv 2,10,14,18,22,30(\bmod 36)($ thus $n \equiv 2(\bmod 4)$ and $n \not \equiv 6,26,34$ $(\bmod 36))$. Using Lemmas 2.1, 2.2 and the clear fact that $4 \left\lvert\, \frac{1}{3} n^{(5)}\right.$ for any nonnegative integer n we obtain

$$
\begin{align*}
& \nu_{3}\left(L_{n}\right)= \begin{cases}\nu_{3}(n)+1, & n \equiv 2(\bmod 4) ; \\
0, & n \not \equiv 2(\bmod 4),\end{cases} \tag{2.1}\\
& \nu_{3}\left(F_{n}\right)= \begin{cases}\nu_{3}(n)+1, & n \equiv 0(\bmod 4) ; \\
0, & n \not \equiv 0(\bmod 4),\end{cases}
\end{align*}
$$

hence

$$
\begin{aligned}
\nu_{3}\left(L_{n} L_{n+4}\right) & =\nu_{3}\left(L_{n}\right)+\nu_{3}\left(L_{n+4}\right) \\
& =\left(\nu_{3}(n)+1\right)+\left(\nu_{3}(n+4)+1\right) \\
& =\nu_{3}(n)+\nu_{3}(n+4)+2
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{3}\left(F_{\frac{1}{3} n^{(5)}}\right) & =\nu_{3}\left(\frac{1}{3} n^{(5)}\right)+1=\nu_{3}\left(n^{(5)}\right) \\
& =\nu_{3}(n)+\nu_{3}(n+4)+1
\end{aligned}
$$

as clearly $\nu_{3}((n+1)(n+2)(n+3))=1$ holds for $n \not \equiv 6,7,8(\bmod 9)$ and all cases from the assertion are in this form.
(g) For $n \equiv 2(\bmod 4)$ we have $\frac{1}{4} n^{(5)} /(n+2) \equiv 1(\bmod 2)$, hence the assertion follows from Lemma 2.3 (b).
(h) Since there are unique ϵ and δ belonging to $\{0, \ldots, 5\}$ such that

$$
n+\epsilon \equiv 3(\bmod 6) \quad \text { and } \quad n+\delta \equiv 0(\bmod 6)
$$

we have

$$
\nu_{2}\left(\prod_{i=0}^{k} L_{n+i}\right) \leq \sum_{i=0}^{5} \nu_{2}\left(L_{n+i}\right)=\nu_{2}\left(L_{n+\epsilon}\right)+\nu_{2}\left(L_{n+\delta}\right)=2+1=3
$$

Thus the lemma follows.
Remark 3. The reader may be wondering why this paper deals with Lucas numbers, but it does not study the Fibonacci case. The reason is exactly that the previous item (h) does not hold for Fibonacci numbers. Actually, $\nu_{2}\left(\prod_{i=0}^{k} F_{n+i}\right)$ can be sufficiently large which causes the substantial increasing in the number of cases to be studied.

3. The proof of Theorem 1.1

Since there are at least two even numbers among $n, n+1, n+2, n+3, n+4$, we conclude (using Lemma 2.3 (b)) that

$$
\begin{equation*}
L_{n+i} \mid F_{n^{(5)}} \quad \text { for } i=0,1,2,3,4 \tag{3.1}
\end{equation*}
$$

We will consider these cases:

- Let $n \equiv 1(\bmod 6)$. Then $\operatorname{gcd}\left(L_{n}, L_{n+3}\right)=\operatorname{gcd}\left(L_{n}, L_{n+4}\right)=1$. This together with Lemma 2.3 (e) implies that the numbers $L_{n}, L_{n+1}, L_{n+2}, L_{n+3}$ and L_{n+4} are pairwise coprime. Thus (3.1), together with Lemma[2.4 (c), leads to

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \mid n^{(5)} . \tag{3.2}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$ with respect to Lemma 2.4 (b). Since $n, \frac{n+1}{2}, 2(n+2), \frac{n+3}{2}, n+4$ are pairwise coprime, then

$$
\begin{equation*}
\left.2 n \frac{n+1}{2} 2(n+2) \frac{n+3}{2}(n+4) \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) . \tag{3.3}
\end{equation*}
$$

Combining (3.2) and (3.3)

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)=n^{(5)} .
$$

- Let $n \equiv 4(\bmod 12)$. Using Lemma 2.3 (b) we clearly have that

$$
\begin{equation*}
L_{n+i} \left\lvert\, F_{\frac{1}{4} n^{(5)}}\right. \tag{3.4}
\end{equation*}
$$

for $i=0,1,2,3,4$. Further $\operatorname{gcd}\left(L_{n}, L_{n+3}\right)=\operatorname{gcd}\left(L_{n}, L_{n+4}\right)=1$. This together with Lemma 2.3 (e) yields that the numbers $L_{n}, L_{n+1}, L_{n+2}, L_{n+3}$, and L_{n+4} are pairwise coprime. Thus Lemma 2.4 (c) implies that

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \left\lvert\, \frac{1}{4} n^{(5)}\right. \tag{3.5}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Since $n / 2, n+1,(n+2) / 2, n+3$, $(n+4) / 2$ are pairwise coprime, then

$$
\begin{equation*}
\left.2 \frac{n}{4}(n+1) \frac{n+2}{2}(n+3) \frac{n+4}{2} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) . \tag{3.6}
\end{equation*}
$$

Thus, combining (3.5) and (3.6) we have

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{8} n^{(5)}, \frac{1}{4} n^{(5)}\right\} .
$$

Now, we show that

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \nmid F_{\frac{1}{8} n^{(5)}} .
$$

In fact, by using Lemma 2.3 (b) we have

$$
\begin{array}{rll}
L_{n} & \nmid F_{\frac{1}{8} n^{(5)}} & \text { for } n \equiv 16(\bmod 24), \\
L_{n+4} & \nmid F_{\frac{1}{8} n^{(5)}} & \text { for } n \equiv 4(\bmod 24) .
\end{array}
$$

- Let $n \equiv 8(\bmod 12)$. Using Lemma 2.3 (b) we clearly have that

$$
\begin{equation*}
L_{n+i} \left\lvert\, F_{\frac{1}{12} n^{(5)}}\right. \tag{3.7}
\end{equation*}
$$

for $i=0,1,2,3,4$. Further $\operatorname{gcd}\left(L_{n}, L_{n+3}\right)=\operatorname{gcd}\left(L_{n}, L_{n+4}\right)=1$ and together with Lemme2.3 (e), we observe that the numbers L_{n}, L_{n+1}, L_{n+2}, L_{n+3} and L_{n+4} are pairwise coprime. Thus Lemma 2.4 (c) implies that

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \left\lvert\, \frac{1}{12} n^{(5)} .\right. \tag{3.8}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Observe that there exist $a, b, c, d \in\{0,1\}$, with $a+b=c+d=1$, such that $n / 4^{a},(n+1) / 3^{c},(n+2) / 2$, $n+3,(n+4) /\left(4^{b} \cdot 3^{d}\right)$ are pairwise coprime, then

$$
\begin{equation*}
\left.\frac{1}{24} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) / 2 \tag{3.9}
\end{equation*}
$$

Thus, using (3.8) and (3.9) we have

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)=\frac{1}{12} n^{(5)} .
$$

ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

- Let $n \equiv 0(\bmod 12)$. Using Lemma 2.3 (b) we clearly have that

$$
\begin{equation*}
L_{n+i} \left\lvert\, F_{\frac{1}{12} n^{(5)}}\right. \tag{3.10}
\end{equation*}
$$

for $i=0,1,2,3,4$. Further $\operatorname{gcd}\left(\frac{L_{n}}{2}, L_{n+3}\right)=1$ and $\operatorname{gcd}\left(L_{n}, L_{n+4}\right)=1$. Hence using Lemma 2.5 (a) we obtain

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|2 F_{\frac{1}{12} n^{(5)}}\right| F_{\frac{1}{6} n^{(5)}}
$$

and

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \left\lvert\, \frac{1}{6} n^{(5)}\right. \tag{3.11}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Observe that there exist $a, b, c, d \in\{0,1\}$, with $a+b=c+d=1$, such that $n /\left(4^{a} \cdot 3^{c}\right), n+1,(n+2) / 2$, $(n+3) / 3^{d},(n+4) / 4^{b}$ are pairwise coprime, then

$$
\begin{equation*}
\left.\frac{1}{24} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) / 2 \tag{3.12}
\end{equation*}
$$

and therefore

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{12} n^{(5)}, \frac{1}{6} n^{(5)}\right\}
$$

We show that

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{12} n^{(5)}}\right.
$$

The proof will be based on comparing p-adic orders of

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \quad \text { and } \quad F_{\frac{1}{12} n^{(5)}} \quad \text { for all primes } p .
$$

Thus we shall prove that

$$
\begin{equation*}
\nu_{p}\left(F_{\frac{1}{12} n^{(5)}}\right) \geq \nu_{p}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \tag{3.13}
\end{equation*}
$$

holds for all primes p.
Using Lemma 2.5 (h), Lemma 2.1 and the clear fact that

$$
\frac{1}{12} n^{(5)} \equiv 0(\bmod 48)
$$

we have

$$
\begin{aligned}
\nu_{2}\left(F_{\frac{1}{12} n^{(5)}}\right) & =\nu_{2}\left(\frac{1}{12} n^{(5)}\right)+2 \\
& =\nu_{2}\left(n^{(5)}\right)-2+2 \geq 6 \\
& >\nu_{2}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)
\end{aligned}
$$

Now, we will consider $p \neq 2$. Suppose that $\nu_{p}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \neq 0$ (otherwise the desired inequality is directly proved). Since $\frac{L_{n}}{2}, L_{n+1}, L_{n+2}$, L_{n+3} and L_{n+4} are pairwise coprime, p divides only one of L_{n}, L_{n+1}, L_{n+2}, L_{n+3}, L_{n+4}, say $p \mid L_{n+\delta}$ for some $\delta \in\{0,1,2,3,4\}$. Thus $p\left|L_{n+\delta}\right| F_{\frac{1}{12} n^{(5)}}$

DIEGO MARQUES - PAVEL TROJOVSKÝ

implying $z(p) \left\lvert\, \frac{1}{12} n^{(5)}\right.$, by Lemma 2.4 (c). Therefore using Lemma 2.1 and Lemma 2.2 we obtain

$$
\begin{aligned}
\nu_{p}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) & =\nu_{p}\left(L_{n+\delta}\right) \\
& \leq \nu_{p}(n+\delta)+\nu_{p}\left(F_{z(p)}\right) \\
& \leq \nu_{p}\left(\frac{1}{12} n^{(5)}\right)+\nu_{p}\left(F_{z(p)}\right) \\
& =\nu_{p}\left(F_{\frac{1}{12} n^{(5)}}\right) .
\end{aligned}
$$

- Let $n \equiv 3(\bmod 6)$. Using Lemma 2.3 (b) we clearly have that

$$
\begin{equation*}
L_{n+i} \left\lvert\, F_{\frac{1}{3} n^{(5)}} \quad\right. \text { for } i=0,1,2,3,4 \tag{3.14}
\end{equation*}
$$

Further $\operatorname{gcd}\left(\frac{L_{n}}{2}, L_{n+3}\right)=\operatorname{gcd}\left(L_{n}, L_{n+4}\right)=\operatorname{gcd}\left(L_{n+1}, L_{n+4}\right)=1$ and together with Lemma 2.3 (e) the numbers $\frac{L_{n}}{2}, L_{n+1}, L_{n+2}, L_{n+3}$ and L_{n+4} are pairwise coprime. Hence using Lemma 2.5 (a) we obtain

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|2 F_{\frac{1}{3} n^{(5)}}\right| F_{2 \frac{1}{3} n^{(5)}}
$$

In particular,

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \left\lvert\, \frac{2}{3} n^{(5)} .\right. \tag{3.15}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Observe that there exist $a, b, c, d \in\{0,1\}$, with $a+b=c+d=1$, such that $n / 3^{a},(n+1) / 2^{c}, n+2$, $(n+3) /\left(3^{b} \cdot 2^{d}\right), n+4$ are pairwise coprime, then

$$
\begin{equation*}
\left.\frac{1}{6} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) / 2 \tag{3.16}
\end{equation*}
$$

Thus, using (3.15) and (3.16) we have

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{3} n^{(5)}, \frac{2}{3} n^{(5)}\right\} .
$$

We show that

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{3} n^{(5)}} .\right.
$$

The proof will be again based on comparing p-adic orders of

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \quad \text { and } \quad F_{\frac{1}{3} n^{(5)}}
$$

for all primes p. Thus we prove that

$$
\begin{equation*}
\nu_{p}\left(F_{\frac{1}{3} n^{(5)}}\right) \geq \nu_{p}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \tag{3.17}
\end{equation*}
$$

holds for all primes p. This relation clearly holds for $p=5$ with respect to Lemma 2.1 and Lemma 2.2. Using Lemma 2.5 (h), Lemma 2.1 and

ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

the clear fact that $\frac{1}{3} n^{(5)} \equiv 0(\bmod 24)$ we obtain

$$
\begin{aligned}
\nu_{2}\left(F_{\frac{1}{3} n^{(5)}}\right) & =\nu_{2}\left(\frac{1}{3} n^{(5)}\right)+2=\nu_{2}\left(n^{(5)}\right)+2 \\
& \geq 5>\nu_{2}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)
\end{aligned}
$$

When $p \neq 2$ and $p \neq 5$, the proof of (3.17) can be done by the same way as in the case $n \equiv 0(\bmod 12)$.

- Let $n \equiv 5(\bmod 6)$. Using Lemma $2.3(\mathrm{~b})$ we clearly have that

$$
L_{n+i} \left\lvert\, F_{\frac{1}{3} n^{(5)}} \quad\right. \text { for } i=0,1,2,3,4
$$

Further $\operatorname{gcd}\left(L_{n}, L_{n+3}\right)=\operatorname{gcd}\left(L_{n}, L_{n+4}\right)=\operatorname{gcd}\left(\frac{L_{n+1}}{2}, L_{n+4}\right)=1$, and together with Lemma 2.3 (e) the numbers $L_{n}, \frac{L_{n+1}}{2}, L_{n+2}, L_{n+3}$ and L_{n+4} are pairwise coprime. Hence using Lemma 2.5(b) we obtain

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|2 F_{\frac{1}{3} n^{(5)}}\right| F_{3 \frac{1}{3} n^{(5)}}
$$

and then

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \mid n^{(5)} \tag{3.18}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Observe that there exist $a, b, c, d \in\{0,1\}$ with $a+b=c+d=1$, such that $n,(n+1) /\left(2^{a} \cdot 3^{b}\right), n+2$, $(n+3) / 2^{b},(n+4) / 3^{b}$ are pairwise coprime, then

$$
\begin{equation*}
\left.\frac{1}{6} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) / 2 \tag{3.19}
\end{equation*}
$$

Thus, using (3.18) and (3.19) we have

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{3} n^{(5)}, \frac{2}{3} n^{(5)}, n^{(5)}\right\} .
$$

The fact that $L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{3} n^{(5)}}\right.$ holds can be proved in the same way as in the case $n \equiv 3(\bmod 6)$.

- Let $n \equiv 6(\bmod 36)$. Using Lemma 2.3 (b) we clearly have that

$$
L_{n+i} \left\lvert\, F_{\frac{1}{6} n^{(5)}} \quad\right. \text { for } i=0,1,2,3,4
$$

Further $\operatorname{gcd}\left(\frac{L_{n}}{2}, L_{n+3}\right)=\operatorname{gcd}\left(\frac{L_{n}}{2}, \frac{L_{n+4}}{3}\right)=\operatorname{gcd}\left(L_{n+1}, \frac{L_{n+4}}{3}\right)=1$ and together with Lemma 2.3 (e) the numbers $\frac{L_{n}}{2}, L_{n+1}, L_{n+2}, L_{n+3}$ and $\frac{L_{n+4}}{3}$ are pairwise coprime. Hence using Lemma 2.5 (c) we obtain

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|6 F_{\frac{1}{6} n^{(5)}}\right| F_{\frac{1}{3} n^{(5)}}
$$

and

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \left\lvert\, \frac{1}{3} n^{(5)} .\right. \tag{3.20}
\end{equation*}
$$

DIEGO MARQUES - PAVEL TROJOVSKÝ

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Since $n / 6, n+1, n+2, n+3$, $(n+4) / 2$ are pairwise coprime, we have that

$$
\begin{equation*}
\left.\frac{1}{12} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) / 2 \tag{3.21}
\end{equation*}
$$

Thus, using (3.20) and (3.21) yields

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{6} n^{(5)}, \frac{1}{3} n^{(5)}\right\} .
$$

So, it remains to prove that

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{6} n^{(5)}}\right.
$$

Using Lemma2.5 (h) and the clear fact $\frac{1}{6} n^{(5)} \equiv 0(\bmod 12)$ by Lemma 2.1, we get

$$
\begin{aligned}
\nu_{2}\left(F_{\frac{1}{6} n^{(5)}}\right) & =\nu_{2}\left(\frac{1}{6} n^{(5)}\right)+2=\nu_{2}\left(n^{(5)}\right)+1 \\
& \geq 5>\nu_{2}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)
\end{aligned}
$$

For $p>2$ we can prove that $\nu_{p}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \leq \nu_{p}\left(F_{\frac{1}{6} n^{(5)}}\right)$ in the same way as in the case $n \equiv 0(\bmod 12)$.

- Let $n \equiv 26(\bmod 36)$. Using Lemma 2.3 (b) we clearly have that

$$
L_{n+i} \left\lvert\, F_{\frac{1}{6} n^{(5)}} \quad\right. \text { for } i=0,1,2,3,4 .
$$

Further $\operatorname{gcd}\left(\frac{L_{n}}{3}, L_{n+3}\right)=\operatorname{gcd}\left(\frac{L_{n}}{3}, \frac{L_{n+4}}{2}\right)=\operatorname{gcd}\left(L_{n+1}, \frac{L_{n+4}}{2}\right)=1$ and this together with Lemma 2.3 (e) implies that the numbers $\frac{L_{n}}{3}, L_{n+1}, L_{n+2}$, L_{n+3} and $\frac{L_{n+4}}{2}$ are pairwise coprime. Hence using Lemma 2.5(d) we obtain

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|6 F_{\frac{1}{6} n^{(5)}}\right| F_{n^{(5)}}
$$

and

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \mid n^{(5)} . \tag{3.22}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Since $n / 2, n+1, n+2, n+3$, $(n+4) / 6$ are pairwise coprime, we have that

$$
\begin{equation*}
\left.\frac{1}{12} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) / 2 \tag{3.23}
\end{equation*}
$$

Thus, (3.22) and (3.23) yield
$z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{6} n^{(5)}, \frac{1}{3} n^{(5)}, \frac{1}{2} n^{(5)}, \frac{2}{3} n^{(5)}, \frac{5}{6} n^{(5)}, n^{(5)}\right\}$.
So, it remains to prove that $L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{6} n^{(5)}}\right.$, but the proof is the same as in the previous case.

ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

- $n \equiv 2,10,14,18,22,30,34(\bmod 36)$. Using Lemma 2.3 (b) we clearly have for $i=0,1,2,3,4$:
* If $n \equiv 2,14,18,30(\bmod 36)$, then $L_{n+i} \left\lvert\, F_{\frac{1}{6} n^{(5)}}\right.$.
* If $n \equiv 10,22,34(\bmod 36)$, then $L_{n+i} \left\lvert\, F_{\frac{1}{2} n^{(5)}}\right.$.

It can be seen that:

* If $n \equiv 2,14(\bmod 36)$, then $\operatorname{gcd}\left(\frac{L_{n}}{3}, L_{n+3}\right)=\operatorname{gcd}\left(\frac{L_{n}}{3}, \frac{L_{n+4}}{2}\right)=\operatorname{gcd}\left(L_{n+1}, \frac{L_{n+4}}{2}\right)=1$.
* If $n \equiv 10(\bmod 36)$, then
$\operatorname{gcd}\left(\frac{L_{n}}{3}, L_{n+3}\right)=\operatorname{gcd}\left(\frac{L_{n}}{3}, L_{n+4}\right)=\operatorname{gcd}\left(L_{n+1}, L_{n+4}\right)=1$.
* If $n \equiv 18,30(\bmod 36)$, then $\operatorname{gcd}\left(\frac{L_{n}}{2}, L_{n+3}\right)=\operatorname{gcd}\left(\frac{L_{n}}{2}, \frac{L_{n+4}}{3}\right)=\operatorname{gcd}\left(L_{n+1}, \frac{L_{n+4}}{3}\right)=1$.
* If $n \equiv 22,34(\bmod 36)$, then
$\operatorname{gcd}\left(L_{n}, L_{n+3}\right)=\operatorname{gcd}\left(L_{n}, \frac{L_{n+4}}{3}\right)=\operatorname{gcd}\left(L_{n+1}, \frac{L_{n+4}}{3}\right)=1$.
By Lemma 2.5 (a), (d) we obtain:
* If $n \equiv 2,14,18,30(\bmod 36)$, then
$L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|6 F_{\frac{1}{6} n^{(5)}}\right| F_{6 \frac{1}{6} n^{(5)}}$.
* If $n \equiv 10,22,34(\bmod 36)$, then

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\left|3 F_{\frac{1}{2} n^{(5)}}\right| F_{2 \frac{1}{2} n^{(5)}}
$$

Thus in all cases we have

$$
\begin{equation*}
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \mid n^{(5)} \tag{3.24}
\end{equation*}
$$

On the other hand, for $i=0,1,2,3,4$ clearly $L_{n+i} \mid L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}$, hence $2(n+i) \mid z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$. Since:

* $n \equiv 2,14(\bmod 36)$, then $n / 2,(n+1) / 3, n+2, n+3,(n+4) / 2$ are pairwise coprime.
* $n \equiv 10,22,34(\bmod 36)$, then $n / 2, n+1, n+2, n+3,(n+4) / 2$ are pairwise coprime.
* $n \equiv 18,30(\bmod 36)$, then $n / 2, n+1, n+2,(n+3) / 3,(n+4) / 2$ are pairwise coprime.
Thus:
* $n \equiv 2,14,18,30(\bmod 36)$ implies $\left.\frac{1}{6} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$.
* $n \equiv 10,22,34(\bmod 36)$ implies $\left.\frac{1}{2} n^{(5)} \right\rvert\, z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right)$.

Summarizing, we have:

* $n \equiv 2,14,18,30(\bmod 36)$ implies

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{k}{6} n^{(5)}: k \in\{0, \ldots, 5\}\right\}
$$

* $n \equiv 10,22,34(\bmod 36)$ implies

$$
z\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) \in\left\{\frac{1}{2} n^{(5)}, n^{(5)}\right\} .
$$

DIEGO MARQUES - PAVEL TROJOVSKÝ

To prove the assertion for this case we must prove that:

* $L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{2} n^{(5)}}\right.$ if $n \equiv 10,22,34(\bmod 36)$, and
* $L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \nmid F_{\frac{1}{3} n^{(5)}}$ and $L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{2} n^{(5)}}\right.$ if $n \equiv 2,14,18,30(\bmod 36)$.
First, we shall prove that

$$
\begin{equation*}
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \nmid F_{\frac{1}{3} n^{(5)}} \text { for } n \equiv 2,14,18,30(\bmod 36) . \tag{3.25}
\end{equation*}
$$

In fact, if $n \equiv 2,30(\bmod 36)$, then

$$
\nu_{3}\left(L_{n} L_{n+4}\right)=3>2=\nu_{3}\left(F_{\frac{1}{3} n^{(5)}}\right) .
$$

If $n \equiv 14(\bmod 36)$, then

$$
\begin{aligned}
\nu_{3}\left(L_{n} L_{n+4}\right) & =\nu_{3}(n+4)+2>\nu_{3}(n+4)+1 \\
& =\nu_{3}(n)+\nu_{3}(n+4)=\nu_{3}\left(F_{\frac{1}{3} n^{(5)}}\right)
\end{aligned}
$$

If $n \equiv 18(\bmod 36)$, then

$$
\begin{aligned}
\nu_{3}\left(L_{n} L_{n+4}\right) & =\nu_{3}(n)+2>\nu_{3}(n)+1 \\
& =\nu_{3}(n)+\nu_{3}(n+4)=\nu_{3}\left(F_{\frac{1}{3} n n^{(5)}}\right) .
\end{aligned}
$$

In summary, $L_{n} L_{n+4} \nmid F_{\frac{1}{3} n^{(5)}}$ for $n \equiv 2,14,18,30(\bmod 36)$.
Now, we shall prove that

$$
L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4} \left\lvert\, F_{\frac{1}{2} n^{(5)}}\right.
$$

for all $n \equiv 2,10,14,18,22,30,34(\bmod 36)$. For that, we use the same p-adic valuation argument as before. For $p \neq 2$ and $p \neq 5$, we proceed exactly as in the case $n \equiv 0(\bmod 12)$. For the case $p=2$, we have

$$
\begin{aligned}
\nu_{2}\left(F_{\frac{1}{2} n^{(5)}}\right) & =\nu_{2}(n)+\nu_{2}(n+2)+\nu_{2}(n+4)+1 \\
& \geq 5>3 \geq \nu_{2}\left(L_{n} L_{n+1} L_{n+2} L_{n+3} L_{n+4}\right) .
\end{aligned}
$$

Therefore, the proof is complete.

REFERENCES

[1] BENJAMIN, A.-QUINN, J.: The Fibonacci numbers - Exposed more discretely, Math. Mag. 76 (2003), 182-192.
[2] HALTON, J. H.: On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1966), 217-240.
[3] KALMAN, D.-MENA, R.: The Fibonacci numbers - exposed, Math. Mag. 76 (2003), 167-181.
[4] KOSHY, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York, 2001.
[5] MARQUES, D.: On integer numbers with locally smallest order of appearance in the Fibonacci sequence, Internat. J. Math. Math. Sci., Article ID 407643 (2011), 4 pages.

ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

[6] MARQUES, D.: On the order of appearance of integers at most one away from Fibonacci numbers, Fibonacci Quart. 50 (2012), 36-43.
[7] MARQUES, D.: The order of appearance of product of consecutive Fibonacci numbers, Fibonacci Quart. 50 (2012), 132-139.
[8] MARQUES, D.: The order of appearance of powers Fibonacci and Lucas numbers, Fibonacci Quart. 50 (2012), 239-245.
[9] MARQUES, D.: The order of appearance of product of consecutive Lucas numbers, Fibonacci Quart. 50 (2012), 239-245.
[10] MARQUES, D.: Sharper upper bounds for the order of appearance in the Fibonacci sequence, Fibonacci Quart. 51 (2013), 233-238.
[11] LAGARIAS, J. C.: The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461.
[12] LENGYEL, T.: The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), 234-239.
[13] RIBENBOIM, P.: My Numbers, My Friends: Popular Lectures on Number Theory. Springer-Verlag, New York, 2000.
[14] ROBINSON, D. W.: The Fibonacci matrix modulo m, Fibonacci Quart. 1 (1963), 29-36.
[15] SALLÉ, H. J. A.: Maximum value for the rank of apparition of integers in recursive sequences, Fibonacci Quart. 13 (1975), 159-161.
[16] VINSON, J.: The relation of the period modulo m to the rank of apparition of m in the Fibonacci sequence, Fibonacci Quart. 1 (1963), 37-45.
[17] VOROBIEV, N. N.: Fibonacci Numbers. Birkhäuser, Basel, 2003.

Diego Marques
Departamento de Matemática
Universidade de Brasilia
70910-900 Brasília, DF BRAZIL
E-mail: diego@mat.unb.br
Pavel Trojovský
Departament of Mathematics
Faculty of Science
University of Hradec Králové
Rokitanského 62
50003 Hradec Králové CZECH REPUBLIC
E-mail: Pavel.Trojovsky@uhk.cz

[^0]: (c) 2014 Mathematical Institute, Slovak Academy of Sciences. 2010 Mathematics Subject Classification: 11B39.
 Keywords: Fibonacci numbers, Lucas numbers, order of appearance, p-adic order. Research supported in part by DPP-UnB, FAP-DF, CNPq and IPCZ.

