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CONVERGENCE OF THE SOLUTIONS

FOR A NEUTRAL DIFFERENCE EQUATION

WITH NEGATIVE COEFFICIENTS

George E. Chatzarakis — George N. Miliaras

ABSTRACT. In this paper, we investigate the asymptotic behavior of the solu-
tions of a neutral type difference equation of the form

Δ

[
x(n) +

w∑
j=1

cjx
(
τj(n)

)]
+

(−p(n)
)
x
(
σ(n)

)
= 0, n ≥ 0,

where τj(n), j = 1, . . . , w are general retarded arguments, σ(n) is a general de-

viated argument, cj ∈ R, j = 1, . . . , w,
(
p(n)

)
n≥0

is a sequence of positive real

numbers such that p(n) ≥ p, p ∈ R+, and Δ denotes the forward difference
operator Δx(n) = x(n+ 1)− x(n).

1. Introduction

A neutral difference equation is a difference equation in which the higher
order difference of the unknown sequence appears in the equation both with and
without delays or advances. See, for example, [1], [4], [5], [12] and the references
cited therein. We should note that, the theory of neutral difference equations
presents complications, and results which are true for non-neutral difference
equations may not be true for neutral equations [19].

The study of the asymptotic and oscillatory behavior of the solutions of neu-
tral difference equations presents a strong theoretical interest. Aside from the
mathematical interest, the study of those equations is motivated by their appli-
cations. Neutral difference equations arise in several areas of applied mathemat-
ics, including circuit theory, bifurcation analysis, population dynamics, stability
theory, the dynamics of delayed network systems and others. Neutral differ-
ence equations are used in the analysis of computer networks containing lossless
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transmission lines, as in high speed networks where lossless transmission lines
serve to connect switching circuits in the network. Neutral difference equations
also come up in the study of vibrating masses attached to an elastic bar, as for
example, the Euler equation is used in some variational problems and in the the-
ory of automatic control. As a result of the wide range of applications, neutral
difference equations have attracted a great interest in the literature.

Consider the neutral difference equation in which the difference of the un-
known sequence appears in the equation both with and without more than one
delays

Δ

[
x(n) +

w∑
j=1

cjx
(
τj(n)

)]
+
(−p(n)

)
x
(
σ(n)

)
= 0, n ≥ 0, (E)

where
(
p(n)

)
n≥0

is a sequence of positive real numbers such that

p(n) ≥ p, p ∈ R+, cj ∈ R, j = 1, . . . , w,
(
τj(n)

)
n≥0

, j = 1, . . . , w

are increasing sequences of integers that satisfy

τj(n) ≤ n− 1, j = 1, . . . , w ∀n ≥ 0, limn→∞ τj(n) = +∞
and

τ�(n) < τm(n+ 1), ∀�,m ∈ [1, w] ∩ N

(1.1)

and
(
σ(n)

)
n≥0

is an increasing sequence of integers such that

σ(n) ≤ n− 1 ∀n ≥ 0, limn→∞ σ(n) = +∞,
or

σ(n) ≥ n+ 1 ∀n ≥ 0.

(1.2)

Define

k1 = − min
n≥0

1≤j≤w

τj(n), k2 = −min
n≥0

σ(n) and k = max {k1, k2} .

(Clearly, k is a positive integer.)

By a solution of the neutral difference equation (E) we mean a sequence of real
numbers

(
x(n)

)
n≥−k

which satisfies (E) for all n ≥ 0. It is clear that, for each

choice of real numbers c−k, c−k+1, . . ., c−1, c0, there exists a unique solution(
x(n)

)
n≥−k

of (E) which satisfies the initial conditions

x(−k) = c−k, x(−k + 1) = c−k+1, . . . , x(−1) = c−1, x(0) = c0.

A solution
(
x(n)

)
n≥−k

of the neutral difference equation (E) is called oscillatory

if the terms x(n) of the sequence are neither eventually positive nor eventually
negative. Otherwise, the solution is said to be nonoscillatory.
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In the special case, where τj(n) = n − aj and σ(n) = n ± b, aj , b ∈ N,
the equation (E) takes the form

Δ

[
x(n) +

w∑
j=1

cjx(n− aj)

]
+
(−p(n)

)
x(n± b) = 0, n ≥ 0. (E1)

In the last few decades the asymptotic behavior of neutral difference equations
has been extensively researched and developed. Hence, a large number of related
papers have been published. See [2], [3], [6]–[11], [13]–[27], and the references cited
therein. The objective in this paper is to investigate the convergence and diver-
gence of the solutions of the equation (E) in the case of general delay arguments
τj(n), j = 1, 2, . . . , w and a general deviated argument σ(n), depending on real
constants cj, j = 1, . . . , w.

2. Some preliminaries

Assume that
(
x(n)

)
n≥−k

is a nonoscillatory solution of (E). Then it is either

eventually positive or eventually negative. As
(−x(n)

)
n≥−k

is also a solution

of (E), we can restrict ourselves only to the case where x(n) > 0 for all large n.
Let n1 ≥ −k be an integer such that x(n) > 0, ∀n ≥ n1. Then, there exists
n0 ≥ n1 such that

x
(
σ(n)

)
> 0, x

(
τj(n)

)
> 0, j = 1, 2, . . . , w, ∀n ≥ n0.

Set

z(n) = x(n) +

w∑
j=1

cjx
(
τj(n)

)
. (2.1)

In view of (2.1), the equation (E) becomes

Δz(n)− p(n)x
(
σ(n)

)
= 0. (2.2)

Taking into account that p(n) ≥ p > 0, we have

Δz(n) = p(n)x
(
σ(n)

) ≥ px
(
σ(n)

)
> 0, ∀n ≥ n0,

which means that the sequence
(
z(n)

)
is eventually strictly increasing, regardless

of the values of the real constants cj .

Let the domain of τj be the set D(τj) = Nn∗
j
=
{
n∗
j , n

∗
j + 1, n∗

j + 2, . . .
}
,

where n∗
j is the smallest natural number such that τj is defined with. Set

n∗ = max
1≤j≤w

n∗
j .

Then τj, j = 1, 2, . . . , w is defined in the set Nn∗ = {n∗, n∗ + 1, n∗ + 2, . . .}.
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Let the subsequence

x
(
τρ(n)(n)

)
= max

{
x
(
τ1(n)

)
, x
(
τ2(n)

)
, . . . , x

(
τw(n)

)}
, (2.3)

where ρ(n) is a sequence that takes values in the set {1, 2, . . . , w}. Clearly,
condition (1.1) guarantees that

(
x(τρ(n)(n))

)
is a subsequence of

(
x(n)

)
.

Notice that

τj1

(
τj2
(· · · τj�(n)

))
= τj1(ns), where ns = τj2

(· · · τj�(n)
)
, 1 ≤ ji ≤ w.

(2.4)
The following lemma provides us with some useful tools for establishing the main
results.

����� 2.1� Assume that
(
x(n)

)
n≥−k

is a positive solution of (E). Then the

following statements hold:

(i) If ∞∑
i=n0

p(i)x
(
σ(i)

)
= S0 < +∞,

then

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
, A ∈ R. (2.5)

(ii) If ∞∑
i=n0

p(i)x
(
σ(i)

)
= +∞,

then

z(n) > 0, eventually. (2.6)

P r o o f. Summing up (2.2) from n0 to n, n ≥ n0, we obtain

z(n+ 1) = z(n0) +

n∑
i=n0

p(i)x
(
σ(i)

)
. (2.7)

For the above relation, exactly one of the following can be true:

∞∑
i=n0

p(i)x
(
σ(i)

)
= S0 < +∞, (2.7.a)

or
∞∑

i=n0

p(i)x
(
σ(i)

)
= +∞. (2.7.b)
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Assume that (2.7.a) holds. Since p(n) ≥ p > 0, we have

+∞ > S0 =

∞∑
i=n0

p(i)x
(
σ(i)

) ≥ p

∞∑
i=n0

x
(
σ(i)

)
.

The last inequality guarantees that

∞∑
i=n0

x
(
σ(i)

)
< +∞

and consequently,

lim
n→∞x

(
σ(n)

)
= 0. (2.8)

Also, (2.7.a) guarantees that limn→∞ z(n) exists as a real number. Set

lim
n→∞

z(n) = A ∈ R.

Since
(
z(σ(n))

)
is a subsequence of

(
z(n)

)
, we have

lim
n→∞ z

(
σ(n)

)
= A,

or

lim
n→∞

[
x
(
σ(n)

)
+

w∑
j=1

cjx
(
τj
(
σ(n)

))]
= A.

Using (2.8), we obtain

lim
n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
= A.

Thus

lim
n→∞ z(n) = A = lim

n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
.

The proof of the part (i) of the lemma is complete.

Assume that (2.7.b) holds. Then, by taking limits on both sides of (2.7),
we obtain

lim
n→∞ z(n) = +∞

which in conjunction with that fact that the sequence
(
z(n)

)
is eventually strictly

increasing, means that

z(n) > 0, eventually.

The proof of the part (ii) of the lemma is complete.

The proof of Lemma 2.1 is complete. �
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3. Main results

Throughout this section we are going to use the following notation

c =

w∑
j=1

cj . (3.1)

The asymptotic behavior of the solutions of the neutral difference equation (E)
is described by the following theorem:

����	�� 3.1� For every nonoscillatory solution
(
x(n)

)
of the equation (E) the

following statements hold:

(I) If the constants cj are all nonpositive and c < −1, then
(
x(n)

)
either has

at least one real accumulation point which is zero or tends to infinity.

(II) If the constants cj are all nonpositive and c = −1, then
(
x(n)

)
either tends

to zero or it is bounded with more than one real accumulation point besides
zero or tends to infinity.

(III) If the constants cj are all nonpositive and −1 < c < 0, then
(
x(n)

)
either

tends to zero or tends to infinity.

(IV) If the constants cj are all equal to zero, then
(
x(n)

)
tends to infinity.

(V) If the constants cj are all nonnegative and 0 < c < 1, then
(
x(n)

)
is

unbounded.

(VI) If the constants cj are all nonnegative and c ≥ 1, then
(
x(n)

)
does not

converge in R.

P r o o f. Assume that
(
x(n)

)
n≥−k

is a nonoscillatory solution of (E). Then it is

either eventually positive or eventually negative. As
(−x(n)

)
n≥−k

is also a so-

lution of (E), we can restrict ourselves only to the case, where x(n) > 0 for all
large n. We define the sequence

(
z(n)

)
as in (2.1) and reformulate the equa-

tion (E) as in (2.2), in the preliminaries. From the preliminaries, we also have
that since p(n) ≥ p > 0, the sequence

(
z(n)

)
is eventually strictly increasing,

regardless of the values of the real constants cj .

Assume that the constants cj are all nonpositive and c < −1.

If (2.7.a) holds, then, in view of part (i) of Lemma 2.1, we have

lim
n→∞ z(n) = A = lim

n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
, A ∈ R,

which means, the sequence
(
x(n)

)
has at least one accumulation point, which is

zero, since (2.8) is satisfied.
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If (2.7.b) holds, then, in view of (2.7), we have

lim
n→∞ z(n) = +∞,

which guarantees that

lim
n→∞

x(n) = +∞.

The proof of the part (I) of the theorem is complete.

Assume that the constants cj are all nonpositive and c = −1.

If (2.7.a) holds, then, in view of part (i) of Lemma 2.1, we have

lim
n→∞ z(n) = A = lim

n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
, A ∈ R

which guarantees that A ≤ 0.

Since
(
z(n)

)
is eventually strictly increasing, we have

z(n) = x(n) +

w∑
j=1

cjx
(
τj(n)

)
< A ≤ 0.

Using (2.3), (2.4) and (3.1), the last inequality becomes

x(n) +

(
w∑

j=1

cj

)
x
(
τρ1(n)(n)

)
< 0,

or

x(n) < x
(
τρ1(n)(n)

)
,

where

x
(
τρ1(n)(n)

)
= max

1≤j≤w

{
x
(
τj(n)

)}
.

Thus

x(n) < x
(
τρ1(n)(n)

)
< · · · < x

(
τρm(n)

(n∗)
)
,

where m(n) is a natural number which determines the number of steps we make
in order to reach n∗. This means that the sequence

(
x(n)

)
is bounded.

Let A < 0. Set
lim sup x(n) = M .

Then there exists a subsequence
(
x(θ(n))

)
of
(
x(n)

)
such that

lim
n→∞x

(
θ(n)

)
= M .
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Therefore

lim
n→∞

⎡
⎣x(θ(n))+ w∑

j=1

cjx
(
τj
(
θ(n)

))⎤⎦= A,

or

− lim
n→∞

⎡
⎣ w∑
j=1

cjx
(
τj
(
θ(n)

))⎤⎦= M − A,

or

lim
n→∞

⎡
⎣ w∑
j=1

(−cj)x
(
τj
(
θ(n)

))⎤⎦= M −A.

Consequently,

lim sup

⎡
⎣ w∑
j=1

(−cj)x
(
τj
(
θ(n)

))⎤⎦= M −A,

or
w∑

j=1

(−cj) lim supx
(
τj
(
θ(n)

)) ≥ M −A,

or
w∑

j=1

(−cj)M ≥ M −A.

Hence

M

w∑
j=1

(−cj) ≥ M −A,

or

M ≥ M − A, since

w∑
j=1

(−cj) = 1

which contradicts to our assumption that A < 0. Therefore

A = 0, i.e., lim
n→∞ z(n) = 0.

This means that
(
x(n)

)
has at least one real accumulation point which is zero.

If (2.7.b) holds, then, in view of (2.7), we have

lim
n→∞ z(n) = +∞,

which guarantees that

lim
n→∞x(n) = +∞.

The proof of the part (II) of the theorem is complete.
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Assume that the constants cj are all nonpositive and −1 < c < 0.

If (2.7.a) holds, then, in view of part (i) of Lemma 2.1, we have

lim
n→∞ z(n) = A = lim

n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
, A ∈ R

which guarantees that A ≤ 0.

Since
(
z(n)

)
is eventually strictly increasing, we have

z(n) = x(n) +

w∑
j=1

cjx
(
τj(n)

)
< A ≤ 0.

Using (2.3), (2.4) and (3.1) the last inequality becomes

x(n) +

⎛
⎝ w∑

j=1

cj

⎞
⎠x
(
τρ1(n)(n)

)
< 0,

or
x(n) < −cx

(
τρ1(n)(n)

)
.

Thus

x(n) < −cx
(
τρ1(n)(n)

)
< · · · < (−c)m(n)x

(
τρm(n)

(n∗)
)→ 0 as n → ∞

and consequently,
lim

n→∞ x(n) = 0.

If (2.7.b) holds, then, in view of (2.7), we have

lim
n→∞ z(n) = +∞,

which guarantees that
lim
n→∞

x(n) = +∞.

The proof of the part (III) of the theorem is complete.

Assume that the constants cj are all nonnegative. Then c ≥ 0. By (2.7)
we have

z(n+ 1) = z(n0) +

n∑
i=n0

p(i)x
(
σ(i)

)
> 0.

Therefore
lim

n→∞ z(n) > 0.

Assume that the constants cj are all equal to zero. Then c = 0, and consequently
z(n) = x(n). Using (2.7), we take

x(n+ 1) = x(n0) +

n∑
i=n0

p(i)x
(
σ(i)

)
> 0,
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which guarantees that

lim
n→∞ x(n) > 0.

Thus
(
x(σ(n))

)
cannot tend to zero, and therefore

lim
n→∞

x(n) = +∞.

The proof of the part (IV) of the theorem is complete.

Assume that the constants cj are all nonnegative and 0 < c < 1.

If (2.7.a) holds, then, in view part (i) of Lemma 2.1, we have

lim
n→∞ z(n) = A = lim

n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
, A ∈ R.

Clearly,
(
z(n)

)
is bounded and therefore

(
x(n)

)
is bounded. Set

lim sup x(n) = M.

Then there exists a subsequence
(
x(θ(n))

)
of
(
x(n)

)
such that

lim
n→∞ x

(
θ(n)

)
= M.

Therefore

lim
n→∞

⎡
⎣x(θ(n))+ w∑

j=1

cjx
(
τj
(
θ(n)

))⎤⎦= A,

or

lim
n→∞

⎡
⎣ w∑
j=1

cjx
(
τj
(
θ(n)

))⎤⎦= A−M ≥ 0,

i.e.,

M ≤ A. (3.2)

On the other hand,

lim
n→∞

z
(
σ(n)

)
= A,

or

lim
n→∞

⎡
⎣x(σ(n))+ w∑

j=1

cjx
(
τj
(
σ(n)

))⎤⎦= A.
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Using (2.8), the last relation becomes

lim
n→∞

w∑
j=1

cjx
(
τj
(
σ(n)

))
= A

and consequently

lim sup

⎡
⎣ w∑
j=1

cjx
(
τj
(
σ(n)

))⎤⎦= A.

Hence
w∑

j=1

cj lim sup x
(
τj
(
σ(n)

)) ≥ A,

or

M

w∑
j=1

cj ≥ A,

or
M > cM ≥ A

which contradicts (3.2). Therefore
(
x(n)

)
is unbounded. Thus (2.7.a) is not

satisfied, and therefore (2.7.b) holds. By (2.7), we have

lim
n→∞ z(n) = +∞,

which guarantees that

lim
n→∞x(n) = +∞.

The proof of the part (V) of the theorem is complete.

Assume that the constants cj are all nonnegative and c ≥ 1.

If (2.7.a) holds, then

lim
n→∞ z(n) = A ≥ 0, A ∈ R.

Since c > 0, then, in view of part (IV) of theorem, we have

lim
n→∞ z(n) > 0,

which means that A > 0. Combined with the fact that limn→∞ x
(
σ(n)

)
= 0,

we conclude that
(
x(n)

)
has more than one real accumulation point. Thus

(
x(n)

)
does not converge in R.

If (2.7.b) holds, clearly limn→∞ z(n) = +∞, which means that
(
x(n)

)
is

unbounded, and therefore
(
x(n)

)
does not converge in R.

The proof of the part (VI) of the theorem is complete.

The proof of Theorem 3.1 is complete. �
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As a consequence of Theorem 3.1, we postulate the following corollary.


�	����	� 3.1� For every nonoscillatory solution
(
x(n)

)
of the equation (E1)

the following statements hold:

(i) If the constants cj are all nonpositive and c < 0, then
(
x(n)

)
either tends

to zero or tends to infinity.

(ii) If the constants cj are all equal to zero, then
(
x(n)

)
tends to infinity.

(iii) If the constants cj are all nonnegative and c > 0, then
(
x(n)

)
is unbounded.
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the solutions of a dynamic equation on discrete time scales, Abstr. Appl. Anal., Vol. 2012,
Article ID 580750, 20 p., 2012.

[10] GEORGIOU, D. A.—GROVE, E. A.—LADAS, G.: Oscillation of neutral difference equa-
tions with variable coefficients, in: Differential Equations, Stability and Control, Lecture

Notes in Pure and Appl. Math., Vol. 127, Dekker, New York, 1991, pp. 165–173.

[11] GYŐRI, I.—HORVÁTH, L.: Asymptotic constancy in linear difference equations: limit
formulae and sharp conditions, Adv. Difference Equ., Vol. 2010, Article ID 789302,
20 p., 2010.
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