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ASYMPTOTIC INTEGRATION OF SOME CLASSES

OF FRACTIONAL DIFFERENTIAL EQUATIONS

Milan Medveď

ABSTRACT. In this paper we deal with the problem of asymptotic integration

of nonlinear higher order fractional differential equations of the Caputo’s type.
We give some conditions under which all global solutions of these equations behave
like linear functions as t → ∞.

1. Introduction

In the asymptotic theory of nth order nonlinear ordinary differential equations

y(n) = f
(
t, y, y′, . . . , y(n−1)

)
(1)

the classical problem is to establish some conditions for the existence of a solu-
tion which approaches to a polynomial of degree 1 ≤ m ≤ n − 1 as t → ∞.
The first paper concerning this problem was published by D. C a l i g o [5]
in 1941. He proved that if

|A(t)| < k

t2+ρ
(2)

for all large t, where k, ρ > 0 are given, then any solution y(t) of the linear
differential equation

y′′(t) +A(t)y(t) = 0, t > 0, (3)

satisfying the initial conditions

y(1) = c1, y′(1) = c2

can be represented asymptotically as y(t) = c+dt+o(1) when t → +∞, c, d ∈ R

(see [1]).
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This assertion can easily be proved as follows

y(t) = c1 + c2(t− 1)−
t∫

1

(t− s)A(s)y(s) ds, t ≥ 1

and therefore |y(t)|
t

≤ C + k

t∫
1

1

s1+ρ

|y(s)|
s

ds,

where C = |c1|+ |c2|. From the Gronwall inequality we obtain

|y(t)|
t

≤ K := Cek
∫ ∞
1

1

s1+ρ ds<∞, t ≥ 1 (4)

and
|y′(t)| ≤ K, t ≥ 1. (5)

From the equation (4) it follows that

t∫
1

|A(s)|y(s)|ds ≤ K1 := K

∞∫
1

|A(s)|sds < ∞.

This inequality yields the existence of the limit d := limt→∞ y′(t) and using
the l’Hôpital rule we obtain

lim
t→∞

y(t)

t
= lim

t→∞ y′(t) = d.

Therefore there is a real number c such that limt→∞
[
y(t)− (c+ dt)

]
= 0.

The first paper on the nonlinear second order differential equations

y′′(t) = f
(
t, y(t)

)
(6)

was published by W. F. T r e n c h [31] in 1963 and then by D. S. C o h e n [7],
T. K u s a n o and W. F. T r e n c h [13] and [14], F. M. D a n n a n [10],
A. C o n s t a n t i n [8] and [9], Y. V. R o g o v c h e n k o [27], S. P. R o g o v -
c h e n k o [28], O. G. M u s t a f a, Y. V. R o g o v c h e n k o [23], J. T o n g [30],
O. L i p o v a n [15] and others. In the proofs of their results the key role plays the
B i h a r i inequality (see [4]) which is a generalization of the Gronwall inequality.
Some results on the existence of solutions of the nth order differential equation
approaching to a polynomial function of the degree m with 1 ≤ m ≤ n − 1 are
proved by C h. G. P h i l o s, I. K. P u r n a r a s and P. C h. T s a m a t o s [25].
Their proofs are based on an application of the Schauder Fixed Point Theo-
rem. The paper by R. P. A g a r w a l, S. D. D j e b a l i , T. M o u s s a o u i
and O. G. M u s t a f a [1] surveys the literature concerning the topic in the
asymptotic integration theory of ordinary differential equations. Several condi-
tions under which all solutions of the one dimensional p-Laplacian equation

(|y′|p−1y′)′= f(t, y, y′), p > 1 (7)
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are asymptotic to a+ bt as t → ∞ for some real numbers a, b are proved in [21]
and some sufficient conditions for the existence of such solutions of the equation(

Φ(y(n))
)′
= f(t, y), n ≥ 1, (8)

where Φ: R → R is an increasing homeomorphism with a locally Lipschitz inverse
satisfying Φ(0) = 0 are given in the paper [19].

The problem of asymptotic integration of fractional differential equations
of the Riemann-Liouville type is studied in the papers [2], [3], where some condi-
tions for the existence at least one solution of this type of equations approaching
to a linear function as t → ∞ are given. In the proofs of these results the fixed
point method is applied.

We study asymptotic behavior of differential equations of the Caputo type
of the fractional order r, where n − 1 < r < n, n = [r] + 1, n ∈ N . The aim
of the paper is to give some more general conditions than in the paper [20]
under which for any solution x(t) of the equation there exists a real number c
such that

x(t) =
c

(n− 1)!tn−1
+ o(tn−1) for t → ∞.

In the proofs of these results a desingularization method of nonlinear inte-
gral inequalities with weakly singular kernels developed in the papers [17], [18]
is applied.

2. Preliminaries

In this section, we introduce basic notions, definitions and preliminary facts
which are used throughout this paper. They can be found, e.g., in [12], [24]
or [29].

���������� 2.1� For a function x(t) of the class Cn on the interval [a,∞), a ≥ 0
the Caputo derivative of the fractional order r of this function is defined as

cDr
ax(t) =

1

Γ(n− r)

t∫
a

(t− s)n−r−1x(n)(s) ds,

where n = [r] + 1.

���������� 2.2� The Riemann-Liouville integral, or fractional integral of the
order q with n− 1 < r < n, of the function h : [a,∞) → R, a ≥ 0, is defined as

Irah(t) =
1

Γ(r)

t∫
a

(t− s)r−1h(s) ds.
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	�

� 2.3� If r > 0, n = [r] + 1, then the differential equation

cDr
ax(t) = 0

has a general solution

x(t) = c0 + c1(t− a) + · · ·+ cn−1(t− a)n−1,

where c0, c1, . . . , cn−1 ∈ R are arbitrary constants.

	�

� 2.4� If r > 0, n = [r] + 1, then

Ira
(c
Dr

ax(t)
)
= x(t)− c0 − c1(t− a)− · · · − cn−1(t− a)n−1.

for arbitrary c0, c1, . . . , cn−1 ∈ R.

As a consequence of Lemma 2.4 we obtain

	�

� 2.5� If r > 0, n = [r] + 1 and g(t) is a continuous function on the
interval [a,∞), a ≥ 0, then the initial value problem

cDr
ax(t) = g(t),

x(a) = c0, x
′(a) = c1, . . . , x

(n−1)(a) = cn−1

has the solution

x(t) = c0 + c1(t− a) + · · ·+ cn−1

(n− 1)!
(t− a)n−1 +

1

Γ(r)

t∫
a

(t− s)r−1g(s) ds.

3. Asymptotic behavior of fractional differential equations
of the order r ∈ (1, 2)

In the paper [20] the fractional differential equation of the Caputo’s type

cDα+1
a x(t) = f

(
t, x(t)

)
, a ≥ 1, α ∈ (0, 1) (9)

is studied. A sufficient condition under which all solutions of this equation are
asymptotic to at+ b, a, b ∈ R, is proved. The following theorem is proved there.

�
����
 3.1� Suppose that α ∈ (0, 1), p > 1, p(α− 1)+1 > 0, a ≥ 1, q = p
p−1

and the function f(t, u) satisfies the following conditions:

(i) f(t, u) is continuous in D =
{
(t, u) : t ∈ [0,∞), u ∈ R

}
;
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(ii) There are continuous nonnegative functions h : [0,∞) → R+, g : [0,∞) →
→ R+, g is nondecreasing and γ > 0 with p(γ − 1) + 1 > 0 such that

|f(t, x)| ≤ tγ−1h(t)g

( |x|
t

)
, t > 0, (t, x) ∈ D, (10)

where γ = 2− α− 1
p , i.e., Θ := p(α+ γ − 2) + 1 = 0 and

∞∫
a

h(s)qds < ∞. (11)

(iii) ∞∫
a

τ q−1dτ

g(τ)q
= ∞. (12)

Then every solution x(t) of the equation (9) is asymptotic to c + dt for t → ∞,
where c, d ∈ R.

We will prove the following generalization of Theorem 3.1 concerning the
equation

cDα+1
a x(t) = f

(
t, x(t), x′(t)

)
, a ≥ 1, α ∈ (0, 1). (13)

�
����
 3.2� Suppose that α ∈ (0, 1), p > 1, p(α− 1)+1 > 0, a ≥ 1, q = p
p−1

and the function f(t, u, v) satisfies the following conditions:

(i) f(t, u, v) is continuous in D =
{
(t, u, v) : t ∈ [0,∞), u, v ∈ R

}
;

(ii) There are continuous nonnegative functions hi : [0,∞) → R+, i = 1, 2, 3
and continuous nonnegative and nondecreasing functions gj : R+ → R+,
j = 1, 2 and γ > 0 with p(γ − 1) + 1 > 0 such that

|f(t, u, v)| ≤ tγ−1

[
h1(t)g1

( |u|
t

)
+ h2(t)g2(|v|) + h3(t)

]
,

t > 0, (t, x) ∈ D, (14)

where γ = 2− α− 1
p , i.e., Θ := p(α+ γ − 2) + 1 = 0.

∞∫
a

hi(s)
qds < ∞, i = 1, 2, 3; (15)

(iii) ∞∫
a

τ q−1dτ

g1(τ)q + g2(τ)q
= ∞. (16)

Then every solution x(t) of the equation (13) is asymptotic to c+ dt for t → ∞,
where c, d ∈ R.
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The proof of this result is based on a desingularization method proposed by
the author in the paper [17] (see also [18]) in the study of nonlinear integral
inequalities with weakly singular kernels and by the method used in the papers
by [27], [28] and by the authors of the papers mentioned above. In the proof the
following lemma (see [16], [26]) is used.

	�

� 3.3� Let β, γ and p be positive constants such that

p(β − 1) + 1 > 0, p(γ − 1) + 1 > 0.

Then t∫
0

(t− s)p(β−1)sp(γ−1)ds ≤ tΘB, t ≥ 0,

where

B :=B
[
p(γ−1)+1, p(β−1)+1

]
, B[ξ, η] =

1∫
a

sξ−1(1−s)η−1 ds (ξ>0, η>0)

and

Θ = p(β + γ − 2) + 1.

We use this lemma also in the next section.

P r o o f o f T h e o r e m 3.2. Let x(t) be a solution of the equation (13) satisfy-
ing the initial conditions x(a) = c0, x

′(a) = c1. Then

x(t) = c0 + c1(t− a)

+
1

Γ(α+ 1)

t∫
a

(t− s)(t− s)α−1f
(
s, x(s), x′(s)

)
ds, t ≥ a, (17)

x′(t) = c1 +
1

Γ(α)

t∫
a

(t− s)α−1f
(
s, x(s), x′(s)

)
ds, t ≥ a. (18)

From the condition (ii) it follows

|x(t)|
t

≤ z(t) := C +B1

t∫
a

(t− s)α−1sγ−1

[
h1(s)g1

( |x(s)|
s

)
+

+ h2(s)g2
(|x′(s)|)+ h3(s)

]
ds, t ≥ a, (19)

where

B1 =
1

α+ 1
, C = |c0|+ |c1| and |x′(t)| ≤ z(t), t ≥ a. (20)
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Since the functions g1, g2 are nondecreasing the inequalities (19), (20) yield

z(t) ≤ C +B1

t∫
a

(t− s)α−1sγ−1
[
h1(s)g1

(
z(s)

)
+

+ h2(s)g2
(
z(s)

)
+ h3(s)

]
ds, t ≥ a. (21)

Using the Lemma 3.3 and Hölder inequality we obtain for i = 1, 2

t∫
a

(t− s)α−1sγ−1hi(s)gi
(
z(s)

)
ds ≤ B1Bt

Θ
p

⎛
⎝ t∫

a

hi(s)
qgi

(
z(s)

)q
ds

⎞
⎠

1
q

,

where

B = B
[
p(α− 1) + 1

]
,

[
p(α− 1) + 1

]
, Θ = p(α+ γ − 2) + 1 = 0.

From these inequalities it follows

z(t) ≤ C +B1B

⎡
⎢⎣
⎛
⎝ t∫

a

h1(s)
qg1

(
z(s)

)q
ds

⎞
⎠

1
q

+

+

⎛
⎝ t∫

a

h2(s)
qg2

(
z(s)

)q
ds

⎞
⎠

1
q

+

⎛
⎝ t∫

a

h3(s)
qds

⎞
⎠

1
q

⎤
⎥⎦ .

Now, apply the inequality (a+ b+ c+ d)q ≤ 4q−1(aq + bq + cq + dq) for arbitrary
nonnegative numbers a, b, c, d we obtain

z(t)q ≤ 4q−1

⎛
⎝Cq + (B1B)q

⎡
⎣ t∫

a

h1(s)
qg1

(
z(s)

)q
ds +

+

t∫
a

h2(s)
qg2

(
z(s)

)q
ds+

t∫
a

h3(s)
qds

⎤
⎦
⎞
⎠ .

If we denote u(t) = z(t)q, then we have

u(t) ≤ A+D

t∫
a

(
h1(s)

q + h2(s)
q
)
ω
(
u(s)

)
ds,

where A = 4q−1Cq,

D = 4q−1[(B1B)q] +

∞∫
a

h3(s)
qds < ∞, ω(u) = g1

(
u

1
q

)q
+ g2

(
u

1
q

)q
.
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As a consequence of the Bihari inequality we have

u(t) ≤ K0 := Ω−1

⎡
⎣Ω(A) +D

∞∫
a

(
h1(s)

q + h2(s)
q
)
ds

⎤
⎦< ∞,

where

Ω(v) =

v∫
v0

dσ

ω(σ)
, v ≥ v0 > 0.

This yields

z(t) ≤ K1 := K
1
q

0

and therefore
|x(t)|
t

≤ K1, |x′(t)| ≤ K1, t ≥ a. (22)

From the condition (ii) and the above estimates it follows that

t∫
a

(t− s)α−1
∣∣f(s, x(s), x′(s)

)∣∣ds ≤ K
1
q

0 .

Therefore d := limt→∞ x′(t) exists and by the l’Hôpital rule we obtain

lim
t→∞

|x(t)|
t

= lim
t→∞

x′(t) = d

and thus there exists a real number c such that limt→∞
(
x(t)− (c+dt)

)
= 0. �

If we study the asymptotic properties of solutions of the equation (13) with
the initial condition x(a) = 0, we need not to assume a ≥ 1. If a = 0 and
a solution x(t) satisfies the condition limτ→0 x(τ) = 0, then it is of the form

x(t) = ct+
1

Γ(r)

t∫
0

(t− s)(t− s)α−1f
(
s, x(s), x′(s)

)
ds, t ≥ 0, (23)

and the proof of the inequalities (22) is the same as for the case a > 1. Therefore
the following theorem holds.

�
����
 3.4� Let all assumptions of Theorem 3.2 be fulfilled for a = 0.
Then for any solution x(t) of the equation (13) satisfying the initial condition
limτ→0 x(τ) = 0 there exist numbers c, d ∈ R such that

lim
t→∞

(
x(t)− (c+ dt)

)
= 0.

Example 1. Let p > 1, r = 2 − 1
2p = 1 + α, α = 1 − 1

2p , γ = 2 − α − 1
p ,

i.e., Θ = p(α + γ − 2) + 1 = 0, q = p
p−1 , i.e., 1

p + 1
q = 1, g1(u) = g2(u) =

= u
q−1
q ln(2 + u)

1
q , u ≥ 0, f(t, u, v) = tγ−1

[
h1(t)g1(

u
t ) + h2(t)g2(|v|) + h3(t)

]
,
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where hi : R+ → R+, i = 1, 2, 3 are continuous functions with
∫∞
a

hi(s)
qds < ∞,

i = 1, 2, 3. Obviously, 0 < α < 1, p(α− 1) + 1 = 1
2 , p(γ − 1) + 1 = 1

2 and

∞∫
a

τ q−1

g1(τ)q + g2(τ)q
dτ =

1

2

∞∫
a

1

ln(2 + τ)
dτ = ∞.

We have proved that all conditions of Theorem 3.2 are satisfied and by this
theorem any solution of the equation (13) is asymptotic to a linear function
c+ dt as t → ∞.

Example 2. Let us consider a fractional analogue of the linear differential equa-
tion (3) studied by D. C a l i g o [5], which we have analysed in Introduction.

cD2− 1
2px(t) +A(t)x(t) = 0, p > 1,

r = 2− α− 1
p , α = 1− 1

2p .

|A(t)| ≤ kt2−α− 1
p

1

t
2+ρ
q

= tr−1h1(t), ρ > 0, k > 0,

h1(t) = k t
1
q
−1

t
2+ρ
q

.

Obviously, for f(t, u) = −A(t)u we have

|f(t, x)| = |A(t)| t |x|
t

≤ tr−1h(t)
|x|
t
,

h(t) = th1(t) = k t
1
q

t
2+ρ
q

,

∞∫
a

h(s)qds =

∞∫
a

1

s1+ρ
ds < ∞.

All assumptions of Theorem 3.1 are satisfied and therefore any solution of the
equation (9) is asymptotic to a linear function c + dt as t → ∞.

4. Asymptotic integration of higher order fractionally
differential equations

Consider the fractional differential equation

cDr
ax(t) = f

(
t, x(t)

)
, t > 0, 0 < α < 1, a ≥ 1, (24)

where r = α+n−1, α ∈ (0, 1), n ≥ 1 is a natural number, a ≥ 1 with the initial
value conditions

x(a) = c0, x′(a) = c1, x(n−1)(a) = cn−1. (25)
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���������� 4.1� A function u : [0, T ) → R, 0 < T ≤ ∞, is called a solu-
tion of the equation (24) if u ∈ Cn on the interval (0, T ), limτ→0 u(τ) exists
and u(t) satisfies the equation (24) on the interval (0, T ). This solution is called
global if it exists for all t ∈ [0,∞).

We assume the following hypotheses:

(H1) Every solution of the equation (24) is global;

(H2) The function f(t, u) is continuous in D =
{
(t, u) : t ∈ [a,∞), u ∈ R

}
;

(H3) There exist continuous nonnegative functions k1, k2 : [a,∞) → R, a contin-
uous positive nondecreasing function g : [0,∞) → R and numbers q > 1,
γ > 0 such that

ki =

∞∫
1

kqi (s)ds < ∞, i = 1, 2,

|f(t, u)| ≤ tγ−1

[
k1(t)g

( |u|
tn−1

)
+ k2(t)

]
, t ≥ 1;

(H4) p(γ − 1) + 1 > 0, p(α− 1) + 1 > 0, γ = 2− α− 1

p
,

i.e., Θ = p(α+ γ − 2) + 1 = 0, where p =
q

1− q
;

(H5)
∞∫
0

τ q−1dτ

g(τ)q
= ∞.

�
����
 4.2� Let r = α+ n− 1, where α ∈ (0, 1), n is a natural number and
let the conditions (H1)–(H5) be satisfied. Then for any solution x(t) of the initial
value problem (24), (25), defined on the interval [0,∞, ) there is a number c ∈ R

such that

x(t) =
c

(n− 1)!
tn−1 + o(tn−1) as t → ∞. (26)

P r o o f. Let x(t) be a solution of the initial value problem (24), (25). From
Lemma 2.4 it follows that it is a continuous solution of the integral equation

x(t)=c0+c1(t−a)+· · ·+ cn−1

(n− 1)!
(t−a)n−1+

1

Γ(r)

t∫
a

(t−s)r−1f
(
s, x(s)

)
ds. (27)

128



ASYMPTOTIC INTEGRATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

Using the condition (H3) we obtain

|x(t)| ≤
(
|c1|+ |c2|

2!
+ · · ·+ |cn−1|

(n− 1)!

)
tn−1

+
1

Γ(r)
tn−1

t∫
a

(t− s)α−1sγ−1

[
k1(s)g

( |x(s)|
sn−1

)
+ k2(s)

]
ds.

(28)

Applying the Hölder inequality and Lemma 3.3 we obtain the estimates

t∫
a

(t− s)α−1sγ−1k1(s)g

( |x(s)|
sn−1

)
ds ≤ B

1
p

⎛
⎝ t∫

a

k1(s)
qg

( |x(s)|
sn−1

)q

ds

⎞
⎠

1
q

,

t∫
a

(t− s)α−1sγ−1k2(s) ds ≤ B
1
p

⎛
⎝ t∫

0

k2(s)
q ds

⎞
⎠

1
q

and thus the inequality (28) yields

u(t) ≤ M +N

⎛
⎝ t∫

a

k1(s)
qg

( |u(s)|
sn−1

)q

ds

⎞
⎠

1
q

, (29)

where u(t) =
|x(t)|
tn−1

,

M = |c1|+ |c2|
2!

+ · · ·+ |cn−1|
(n− 1)!

+
1

Γ(r)
B

1
p

⎛
⎝ t∫

0

k2(s)
q ds

⎞
⎠

1
q

< ∞, N =
1

Γ(r)
B

1
p .

Using the inequality (a + b)q ≤ 2q−1(aq + bq) for any a ≥ 0, b ≥ 0, we obtain
the integral inequality

u(t)q ≤ P +Q

t∫
a

k2(s)
qg
(
u(s)

)q
ds,

where P = 2q−1M q, Q = 2q−1N q.

If we denote z(t) = u(t)q, then we can rewrite this inequality into the form

z(t) ≤ P +Q

t∫
a

k2(s)
qg

(
z(s)

1
q

)q
ds.
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From the Bihari inequality we obtain

z(t) = u(t)q ≤ K := G−1

⎛
⎝G(P ) +Q

∞∫
a

k1(s)
qds

⎞
⎠< ∞.

Since u(t) = |x(t)|
tn−1 we have the inequality

|x(t)|
tn−1

≤ K1 := K
1
q , t ≥ a. (30)

This inequality and the condition (H3) yields∣∣f(t, x(t))∣∣ ≤ tγ−1

[
k1(t) sup

0≤v≤N
g(v) + k2(t)

]
, t ≥ a. (31)

Now, by using this inequality, we derive

t∫
0

(t− s)α−1
∣∣f(s, x(s))∣∣ds ≤ L

:= B
1
q

⎛
⎝ sup

0≤v≤N
g(v)

∞∫
a

k1(s)
qds+

∞∫
a

k2(s)
qds

⎞
⎠< ∞.

Therefore the integral
∫ t

0
(t−s)α−1

∣∣f(s, x(s))∣∣ds exists. This yields the existence
of the limit

c = lim
t→∞ x(n−1)(t) = cn−1 +

1

Γ(α)
lim
t→∞

t∫
0

(t− s)α−1
∣∣f(s, x(s))∣∣ds < ∞.

Therefore using the l’Hôpital rule we obtain

lim
t→∞

x(t)

tn−1
=

1

(n− 1)!
lim
t→∞ x(n−1)(t) =

c

(n− 1)!

and thus the solution x(t) satisfies (26). �
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[18] MEDVEĎ, M.: Integral inequalities and global solutions of semilinear evolution equations,
J. Math. Anal. Appl. 37 (2002), 871–882.
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[20] MEDVEĎ, M.: On the asymptotic behavior of solutions of nonlinear differential equations

of integer and also of non-integer order, in: Proc. 9th Colloquium on the Qual. Theory
of Differ. Equ., Szeged, Hungary, 2011, Electron. J. Qual. Theory Differ. Equ. 10 (2012),
pp. 1–9.
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