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THE DARTH VADER RULE
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ABSTRACT. Using Henstock’s generalized Riemann integral, we show that, for
any almost surely non-negative random variable X with probability density func-
tion fX and survival function sX (x) :=

∫∞
x fX(t) dt, the expected value of X is

given by E(X) =
∫∞
0 sX (x) dx.

In life insurance mathematics, the concept of a survival function is commonly
used in life expectancy calculations. The survival function of a random variableX
is defined at x as the probability that X is greater than a specific value x. For
a non-negative random variable whose expected value exists, the expected value
equals the integral of the survival function. We propose to designate this result
as the Darth Vader Rule1. It holds for any type of random variable, although its
most general form relies on the integration by parts formula for the Lebesgue-
-Stieltjes integral, fully developed by H e w i t t [3]. This result, while known (and
stated in F e l l e r [1]), is not widely disseminated except in life insurance math-
ematics texts; but it is worth knowing and popularizing because it provides an
efficient tool for calculation of expected value, and gives insight into a property
common to all types of random variables.

We give a proof of the Darth Vader Rule which works for all random vari-
ables which are non-negative almost surely and whose expected value exists.
The proof is based not on the Lebesgue integral formulation of [3], but on the
generalized Riemann integration of H e n s t o c k and K u r z w e i l [2], [4]. Since
every Lebesgue integrable function is also generalized Riemann integrable, the
proof here includes all cases covered by [3].

While the result is simple to state and comprehend, its proof using Lebesgue
integral theory is somewhat complex. We present the result in the traditional way,

c© 2012 Mathematical Institute, Slovak Academy of Sciences.
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1This is not a reference to a discoverer. But the designation may capture the somewhat counter-
intuitive—if not slightly unsettling and surreal—impression which the result can evoke on first

encounter.
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and then demonstrate that its proof follows directly from a simple and elegant
proof of the integration by parts formula for the generalized Riemann integral.

1. Traditional derivation

When an event has probability one, we say that it happens almost surely.
Consider a random variableX that is non-negative almost surely, whose expected
value exists. If X is absolutely continuous with probability density function fX ,
then

E(X) =

∞∫
−∞

xfX(x) dx =

∞∫
0

xfX(x) dx

= x
(−sX(x)

)∣∣x→+∞
x=0

+

∞∫
0

sX(x) dx

= − lim
x→∞xsX(x) +

∞∫
0

sX(x) dx

=

∞∫
0

sX(x ) dx.

The second line is obtained by integrating by parts, taking

u = x, du = dx, v = −sX(x), dv = fX(x) dx.

Note that E(X) =
∫∞
0

tfX(t) dt exists, that x < t < ∞, and that

sX(x) =

∞∫
x

fX(t) dt;

so

0 ≤ lim
x→∞xsX(x) = lim

x→∞x

∞∫
x

fX(t) dt ≤ lim
x→∞

∞∫
x

tfX(t) dt = 0.

Therefore we can conclude that

lim
x→∞xsX(x) = 0.

This implies that E(X) =
∫∞
0

sX(x) dx provided X is continuous and non-
-negative almost surely.
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What if X is discrete and non-negative almost surely? Then, by definition of
expected value of a discrete random variable,

E(X) =
∑
x∈R

xfX(x).

Assume first that we can form

x0 = 0 < x1 < x2 < · · · ,
the sequence of values where the probability function fX is positive; but put
x0 = 0 at the beginning of this sequence regardless of whether X attains that
value with probability zero or with positive probability. Then, because of the
step-function structure of the survival function,

E(X) = x0fX(x0) + x1fX(x1) + x2fX(x2) + x3fX(x3) + · · ·
= x0

(
fX(x0) + fX(x1) + fX(x2) + · · ·)

+ (x1 − x0)
(
fX(x1) + fX(x2) + fX(x3) + · · ·)

+ (x2 − x1)
(
fX(x2) + fX(x3) + fX(x4) + · · ·)

+ (x3 − x2)
(
fX(x3) + fX(x4) + fX(x5) + · · ·)

...

=

∞∑
j=1

(xj − xj−1)sX(xj−1)

=

∞∫
0

sX(x) dx.

In the case when X is discrete and assumes only positive integer values, we have
the following special rule:

E(X) =

∞∑
n=1

(
n− (n− 1)

)
sX(n− 1)

=

∞∑
n=0

Prob(X > n)

=

∞∑
n=1

Prob(X ≥ n).

The above proof assumes that the point masses can be put in an increasing
sequence. But there may be discrete probability distributions that violate that
assumption. The simplest example of such a distribution would be an assignment
of positive probability to every positive rational number in such a way that their
probabilities, as they should, add up to one.
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However, the most general result follows from integration by parts for the
Lebesgue-Stieltjes integral, proved by E d w i n H e w i t t [3]. The formula is
given in the following form. Let μ and ν be measures defined for Borel subsets
of [a, b] and let

M (t) :=
1

2

(
μ
(
[a, t]

)
+ μ

(
[a, t[

))
,

N(t) :=
1

2

(
ν
(
[a, t]

)
+ ν

(
[a, t[

))
.

Then Hewitt’s integration by parts formula is

b∫
a

M (t) dν(t) +

b∫
a

N(t) dμ(t) = μ
(
[a, b]

)
ν
(
[a, b]

)
.

Consider a random variable X defined on the interval [0,∞[. Assume that E(X)
exists and fX is well-defined. Define the measures μ and ν as follows:

μ
(
[0, x]

)
:= 1− sX(x),

ν
(
[0, x]

)
:= x.

Thus

M (x) :=
1

2

(
μ
(
[0, x]

)
+ μ

(
[0, x[

))
= 1− sX(x),

N(x) :=
1

2

(
ν
(
[0, x]

)
+ ν

(
[0, x[

))
= x.

Then Hewitt’s formula implies, on an interval of the form [0, b],

b∫
0

(
1− sX(x)

)
dx+

b∫
0

xfX(x) dx =

⎛
⎝ b∫

0

fX(x) dx

⎞
⎠ (b− 0),

or

b∫
0

xfX(x) dx =

b∫
0

sX(x) dx+ b

b∫
0

fX(x) dx− b

=

b∫
0

sX(x) dx− b

∞∫
b

fX(x) dx.

Note that

0 ≤ b

∞∫
b

fX(x ) dx =

∞∫
b

bfX(x) dx ≤
∞∫
b

xfX(x) dx.
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Also

lim
b→∞

∞∫
b

xfX(x) dx = 0

since E(X) exists. We conclude that

∞∫
0

xfX(x) dx =

b∫
0

sX(x) dx.

F e l l e r [1] also notes that for a random variable whose nth moment exists,

E(Xn) = n

∞∫
0

xn−1sX(x) dx.

Note also that if X is a mixed random variable which is nonnegative almost
surely then the result applies, as the mean of X is a probability-weighted average
of the means of the distributions that are mixed in its creation. Of course,
Hewitt’s formula applies to this case as well. This means that for any random
variable X which is nonnegative almost surely, and whose expected value exists,
the expected value equals the integral of the survival function.

We will call this important result the Darth Vader Rule.

2. The Henstock-Kurzweil generalized Riemann integral

For R =] −∞,∞[, denote by I the family of intervals in R of the following
generic type:

]−∞, a] or ]a, b] or ]b,∞[ or ]−∞,∞[

where a, b are any real numbers with a < b.

For I ∈ I, a point-interval pair (x, I) is associated if, for any a < b,

I = ]−∞, a] and x = −∞; or

I = ]a, b] and x = a or b; or

I = ]b,∞[ and x = ∞.

A partition of R is a finite collection of disjoint I ∈ I whose union is R. A divi-
sion of R is a finite collection D of associated pairs (x, I) such that the collection{

I : (x, I) ∈ D}
is a partition of R. If J ∈ I is given, partitions and divisions of J are similarly
defined.
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A gauge in R is a positive-valued function δ(x) defined for each x ∈ R̄.
An associated pair (x, I) is δ-fine if

I = ]−∞, a] and a < −δ(x)−1,

I = ]a, b] and b− a < δ(x),

I = ]b,∞[ and b > δ(x)−1.

The idea is that, for each x, the value δ(x) constraining any interval I associated
with x can be taken progressively smaller. Thus, if I is a bounded interval ]a, b],
then the length of I decreases in accordance with δ(x), x being one of end-points
of I. If I is an infinite interval ]b,∞[ with x = ∞, then decreasing δ(∞) forces b
to be successively larger; while if I =] −∞, a], decreasing δ(x) = δ(−∞) forces
a leftward, in the negative direction.

Given a gauge δ and J ∈ I, a division D of J is δ-fine if each (x, I) ∈ D is
δ-fine.

If a real- or complex-valued function f is defined on R, its definition is ex-
tended to R̄ = R ∪ {−∞,∞} by taking

f(−∞) = f(∞) = 0.

A distribution function F is a non-negative function defined on I, and finitely
additive on intervals I ∈ I. If F (R) = 1, then F is a probability distribution
function.

Given J ∈ I, a real- or complex-valued function f defined on R, and a dis-
tribution function F defined on I, the function f is integrable in J with respect
to F (in the generalized Riemann sense) with integral α, if, for any given ε > 0,
there exists a gauge δ such that, for each δ-fine division Dδ of J, the following
inequality holds ∣∣∣α−

∑{
f(x)F (I) : (x, I) ∈ Dδ

}∣∣∣ < ε.

We write the Riemann sum and the integral as follows∑{
f(x)F (I) : (x, I) ∈ Dδ

}
= (Dδ)

∑
f(x)F (I),

α =

∫
J

f(x)F (I).

In [2] it is shown that f is Lebesgue integrable with respect to F if and only
if f is generalized Riemann integrable with respect to F, and the latter theory,
like the former, has monotone and dominated convergence theorems, and other
properties expected in an integral.
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3. The Darth Vader Rule

To prove the Darth Vader Rule, suppose a probability space (Ω,A, P ) is given,
and suppose X is a random variable, non-negative P -almost everywhere, with
expected value E(X). For I ∈ I, define the probability distribution of X,

FX(I) := P (X ∈ I).

Then

E(X) =

∫
Ω

X(ω)dP =

∞∫
−∞

xdFX =

∫
R

xFX(I).

The last integral is generalized Riemann, and the preceding two integrals are
Lebesgue and Lebesgue-Stieltjes, respectively.

Define the survival function s(v) :=
∫
[v,∞[

FX(I). Since X is non-negative

almost everywhere, FX

(
]−∞, 0[

)
= 0. For I ∈ I, define

|I| =
{
v − u if I = ]u, v],

0 otherwise.

We wish to prove the Darth Vader Rule,

E(X) =

∫
R

s(x)|I|.

That is, in traditional notation, we seek to prove

E(X) =

∞∫
−∞

xdFX =

∞∫
−∞

s(x) dx.

First we prove some lemmas.

����� 1� If 0 < v < ∞, and

μ(v) :=

∫
[0,v]

xFX(I), μ̄(v) :=

∫
]v,∞[

xFX(I),

then these integrals exist and satisfy

μ(v) + μ̄(v) = E(X). (3.1)

P r o o f. These results follow from Theorem 5.1 of [2]. �

����� 2� μ(v) is monotone increasing to E(X) as v → ∞, and μ̄(v) is mono-
tone decreasing to 0 as v → ∞.
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P r o o f. We can write

μ(v) =

∫
[0,∞]

1[0,v](x)xFX(I) and μ̄(v) =

∫
[0,∞]

1[v,∞](x)xFX(I),

and since 1[0,v](x)xFX(I) converges monotonically to xFX(I) in [0,∞[ as
v → ∞, the results then follow from (3.1) and the monotone convergence theo-
rem [2, Theorem 8.1]. �
����� 3� μ̄(v) < ε implies vs (v) ≤ ε.

P r o o f. If we form Riemann sums over any division of [v,∞[, we have∑
xFX(I) > v

∑
FX(I)

and the result follows from this. �
����	�� 1 (Darth Vader Rule)� If X is an almost everywhere non-negative
random variable whose expectation exists, then

E(X) =

∫
R

s(x)|I|.

P r o o f. For intervals J =]u, v], the survival function s(v) =
∫
]v,∞[

FX(I) satisfies

s(u)− s(v) =

∫
]u,∞[

FX(I)−
∫

]v,∞[

FX(I) =

∫
J

FX(I).

Every Riemann sum estimate of
∫
J
FX(I) has the form

∑
FX(I) where the

intervals I partition J . Therefore, by the additivity of FX , we have∑
FX(I) = FX(J) =

∫
J

FX(I) and s(u)− s(v) = FX(J).

Now suppose J has the form ]b,∞[. If we define s(∞) to be zero, then, using
Riemann sum estimates as before, we also find that

s(b)− s(∞) = FX(J).

Define

s(I) :=

{
s(v)− s(u) if I = ]u, v],

s(∞)− s(b) if I = ]b,∞[,

so s(I) = −FX(I) for all intervals. Now define

h(x, I) := −xs(I)− s(x)|I| with h(x, I) := 0 if x = ∞.

Recall that |I| = v − u whenever I has the form ]u, v] and |I| = 0 whenever I
has the form ]b,∞[. Since h(x, I) is the same as xFX(I)− s(x)|I|, our object is
to prove that

∫
[0,∞[

h(x, I) = 0.
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If I =]u, v] and x = u, then

h(x, I) = x
(
s(u)− s(v)

)− s(x)(v − u)

= (v − u)
(
s(v)− s(u)

)
+ us(u)− vs(v).

If I =]u, v] and x = v, then

h(x, I) = x
(
s(u)− s(v)

)− s(x)(v − u)

= (v − u)
(
s(u)− s(v)

)
+ us(u)− vs(v).

If I =]b,∞[, with x = ∞, then h(x, I) = 0 by definition. Thus, for any division
D of [0,∞[, ∣∣∣(D)

∑
h(x, I)

∣∣∣ ≤ (D)
∑∣∣(v − u)

(
s(u)− s(v)

)∣∣
+

∣∣∣(D)
∑(

us(u)− vs(v)
)∣∣∣ . (3.2)

With ε > 0 given, choose vε so that μ̄(vε) < ε. Now define a gauge δ so that

δ(x) <

⎧⎪⎨
⎪⎩
ε if x = 0,

min{x, ε} if 0 < x < ∞,

v−1
ε if x = ∞.

The definition of δ(0) ensures that any δ-fine division D of [0,∞[ includes a term(
x, ]0, v]

)
with x = 0. Then

D =
{(
0, ]0, v1]

)
, . . . ,

(
x, ]ū, v̄]

)
,
(∞, ]v̄,∞[

)}
where v̄ is the largest of those v for which the partitioning intervals I are bounded
(that is have the form ]u, v]); and satisfies v̄ > vε. Therefore, by the monotonicity
of μ̄(v), we have

ε > μ̄(vε) > μ̄(v̄),

and hence, by Lemma 3,

v̄s(v̄) ≤ ε.

Let E denote the division {(
0, ]0, v1]

)
, . . . ,

(
x, ]ū, v̄]

)}
.

Then E is a δ-fine division of [0, v̄], and inequality (3.2) gives∣∣∣(D)
∑

h(x, I)
∣∣∣ ≤ (E)

∑∣∣(v − u)
(
s(u)− s(v)

)∣∣
+
∣∣∣(E)∑(

us(u)− vs(v)
)∣∣∣ .

The first Riemann sum on the right satisfies

(E)
∑∣∣(v − u)

(
s(u)− s(v)

)∣∣ = (E)
∑

|I|FX(I) < ε(E)
∑

FX(I) < ε,
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and by cancelation the second Riemann sum on the right satisfies∣∣∣(E)∑(
us(u)− vs(v)

)∣∣∣ = v̄s(v̄) ≤ ε.

Thus, for every δ-fine division D of [0,∞[, we have∣∣∣(D)
∑

h(x, I)
∣∣∣ < 2ε,

and this completes the proof. �

4. “Use the Force, �Lukasz!”

At first sight, the idea that the expected value of a variable can be established
from the properties of the outlook function s(x) suggests precognition. It has
“something of the night” about it. The following example illustrates this.

Consider two random variables X and Y jointly uniformly distributed on the
unit disk; that is, the region where x2 + y2 ≤ 1. Pick a random point (x, y) in
the unit disk, and let R be the random variable for distance from the origin, so

R =
√
X2 + Y 2, r =

√
x2 + y2.

The expected value of R is given by

E(R) =

1∫
−1

√
1−x2∫

−√
1−x2

√
x2 + y2

π
dy dx.

This, of course, can be calculated by transformation into polar coordinates. But
it requires the student to expend effort, care, and time. On the other hand, for
0 ≤ r ≤ 1, let A(r) denote the area within the unit disk but outside the disk of
radius r centered at (0,0), so the probability that R exceeds r is A(r) divided
by the area of the unit disk. That is,

sR(r) = P (R > r) = FR(R > r) =
A(r)

π
=

π − πr2

π
= 1− r2

with sR(r) = 0 for r > 1. Since R is non-negative with probability 1,

E(R) =

1∫
0

sR(r) dr =

1∫
0

(
1− r2

)
dr = 1− 1

3
=

2

3
.

Is this not conclusive evidence of the power of the Dark Side?
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