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A PREDATOR-PREY MODEL WITH ALLEE EFFECT

AND FAST STRATEGY EVOLUTION DYNAMICS OF

PREDATORS USING HAWK AND DOVE TACTICS

Jitka Kühnová — Lenka Přibylová

ABSTRACT. In this work we present the predator-prey model with Allee effect
and Hawk and Dove tactics in fighting over caught prey implemented as fast

strategy evolution dynamics. We extend the work of Auger, Parra, Morand and
Sánchez (2002) using the prey population embodying Allee effect and analogously
to this work we get two connected submodels with polymorphic and monomorphic
predator population. We get much richer dynamics, in each submodel we find local
bifurcations (saddle-node, supercritical Hopf caused by Allee effect and Bogdanov-
-Takens) and a global bifurcation of limit cycles caused by the strategy evolution

that is not possible in any of the submodels that can lead to a bluesky extinction
of both populations.

1. The model

In our model, we expect the prey is limited by a carrying capacity and a thre-
shold of survivance, which means that prey becomes extinct when its density is
lower than θ. It is typical for a lot of populations — only few could grow up from
just one or two individuals. This so called Allee effect is not considered in [1].

The predator population is divided into two types related to the predator
behaviour. Whenever two predators meet after catching the prey, they choose
their behaviour strategy. They can initiate aggressive behaviour and fight over
the prey (we expect they are equally likely to be injured) or they retreat. The
first predators are so called Hawks, the second are Doves. From the game theory
it is known as the Hawk and Dove game. Whenever two Hawk predators meet,
they both initiate aggressive behaviour, the conflict results and one of them gets
the prey (gain G > 0). The cost of the conflict (C — given effort and got injuries)
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reduces individual fitness of the other by some positive constant value C. When
a Hawk meets a Dove, the Dove immediately retreats and the Hawk obtains the
resource and when two Doves meet the resource is shared equally between them.
The fitness payoffs for the Hawk-Dove game can be summarized according to
the following matrix A =

( G−C
2

G

0 G
2

)

. (1)

Let the function p in time t be the function of the number of predators which
is the sum of Hawk pH(t) and Dove pD(t) predators. Let x(t) and y(t) be the
proportions of predators with Hawks and Doves tactics

x(t) =
pH(t)

p(t)
, y(t) =

pD(t)

p(t)
= 1− x(t),

respectively.

Now we need to create a model in fast time scale by using replicators equations

dx

dτ
= x(∆H −∆),

dy

dτ
= y(∆D −∆),

where ∆H is the gain of an individual always using the Hawk strategy, ∆D is
the gain of an individual always using the Dove strategy and ∆ is the average
gain of an individual playing the two tactics. Using the fact that x + y = 1 in
any time t and after some algebra we get single equation:

dx

dτ
=

x

2
(1− x)(G− Cx). (2)

The stationary points are 0, 1 a G/C = x∗. When G < C we denote x∗ = G
C
.

This stationary point is asymptotically stable, population of the predators is
polymorphic with proportion G/C Hawks and 1−G/C Doves. When G > C we
denote x∗ = 1, and this stationary point is asymptotically stable, population of
the predators is monomorphic (there are only Hawks).

For model in slow time scale we need the equation for population of the prey.
Because of Allee effect in prey population, intraspecific competition and constant
harvesting by predator we get

dn

dt
= rn

(n

θ
− 1

)(

1− n

K

)

− anp ,

where θ is the threshold of survivance, r is the growth rate of prey population,
K is the carrying capacity and a is a predation force parameter.
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For equations of predator populations we use assumptions from [1] and we get

dpH
dt

= −bpH +

(

α

(

G− C

2

)

pH
p

+ αG
pD
p

)

pH ,

dpD
dt

= −bpD + α
G

2

pD
p
pD ,

where b is the mortality rate of the predator (without prey predator becomes
extinct), α is a conversion coefficient of gain and cost into biomass of predators.
All coefficients are positive.

We assume that the model in fast time scale is established in the stationary
point x∗ and by using the theory of aggregated model [1] we get:

dn

dt
= rn

(n

θ
− 1

)(

1− n

K

)

− anp ,

dp

dt
= −bp+

αG

2
p− αC

2
(x∗)2p .

If the gain depends on the prey density as G(n) = an, we obtain two different
aggregated models:

Model I, n < C
a
,

dn

dt
= rn

(n

θ
− 1

)(

1− n

K

)

− anp ,

dp

dt
= −bp+

αa

2
np− αa2

2C
n2p .

Model II, n > C
a
,

dn

dt
= rn

(n

θ
− 1

)(

1− n

K

)

− anp ,

dp

dt
= −bp+

αa

2
np− αC

2
p .

Now denote:

P (n) = r
(n

θ
− 1

)(

1− n

K

)

,

Q(n) = −b+
αa

2
n− αa2

2C
n2 for n <

C

a
,

= −b+
αa

2
n− αC

2
for n >

C

a
.

We get:
dn

dt
= n

[

P (n)− an
]

,

dp

dt
= Q(n)p .

(3)
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2. Analysis of the model

Nullclines of the system:

• nullclines for both models: n = 0, p = 0, p = 1

a
P (x).

• nullclines for the first model: n∗

1,2 = C
2a

(

1∓√
1−

8b

αC

)

.

• nullcline for the second model: n∗

3 = C
a
+ 2b

αa
.

For n∗

1, n
∗

2, n
∗

3 it is always true:

0 < n∗

1 ≤ C

2a
≤ n∗

2 <
C

a
< n∗

3 . (4)

Figure 1

Function Q(n).

nn∗

1 θ C
2a

n∗

2
C
a

n∗

3 K

p

Figure 2

Phase portrait of the combined model.

It is clear that, there are six stationary points:

(0, 0), (θ, 0), (K, 0), (n∗

1, p
∗

1), (n
∗

2, p
∗

2) and (n∗

3, p
∗

3).

The last three points exist only when

n∗

1, n
∗

2, n
∗

3 ∈ (θ,K).

For finding out the type and stability of all stationary points it is necessary to
examine Jacobian matrix for all of them. The general Jacobian matrixJ(n∗, p∗) =

(

P (n∗)− ap∗ + n∗P ′(n∗) −an∗

p∗Q′(n∗) Q(n∗)

)

1.(0, 0): always stable node or focus. Because of that, in every situation
there are trajectories that end at beginning. That means both the prey
and the predator become extinct.

16



A PREDATOR-PREY MODEL WITH ALLEE EFFECT

2. (θ, 0): saddle for θ ∈ (0, n∗

1) ∪ (n∗

2, n
∗

3), unstable node or focus, other-
wise.

3. (K, 0): saddle for K ∈ (n∗

1, n
∗

2)∪ (n∗

3,∞), stable node or focus, other-
wise.

4. (n∗

1, p
∗

1): for n∗

1 < K+θ
2

unstable, for n∗

1 > K+θ
2

stable node or focus.

5. (n∗

2, p
∗

2): always saddle.

6. (n∗

3, p
∗

3): for n∗

3 < K+θ
2

unstable, for n∗

3 > K+θ
2

stable node or focus.

At the first sight there could be five different situations:

1. only (0,0) is locally stable stationary point,

2. (0,0) and (K, 0) are locally stable stationary points,

3. (0,0) and (n∗

1, p
∗

1) are locally stable stationary points,

4. (0,0), (K, 0) and (n∗

1, p
∗

1) are locally stable stationary points,

5. (0,0) and (n∗

3, p
∗

3) are locally stable stationary points.

The first two situations are not interesting—neither population survive, there
is nothing to examine; the prey could not satisfy predator, predator becomes
extinct and prey is stabilized on its carrying capacity. The third and the fifth
situations have stable stationary point of coexistence of both populations, the
fourth has either coexistence point or extinction of predator and prey stabilized
on its carrying capacity.

From the analysis one could see that stationary points

(n∗

1, p
∗

1) and (n∗

3, p
∗

3)

could be stable or unstable focuses which implies there could be two Hopf bifur-
cations.

To examine stability of the limit cycle it is necessary to translate the system to
the normal form of the Hopf bifurcation. First, we shift the system to the origin,
second, we make linear transformation to the normal form and consequently we
find the first Lyapunov coefficient whose sign determines the stability of the limit
cycle.

Generally, our system (3) has the stationary point (n∗, p∗). Let us transform the
variables:

n = ξ1 + n∗,

p = ξ2 + p∗.

We get the new system

ξ′ = f (ξ) (5)

that could be rewritten as

ξ′ = A0 · ξ + F (ξ), ξ = (ξ1, ξ2)
T,
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where A0 is Jacobian matrix of the system (5) in the origin, denote detA0 = ω2.

Now we change variables with matrix T of real eigenvectors of A0 :

ξ = T · µ,

µ′ = T−1A0Tµ + T−1F (Tµ),P(µ) = T−1F (Tµ),

µ′ = J · µ+ P(µ).J is in the real Jordan form, in detail

(

µ1

µ2

)

′

=

(

0 −ω
ω 0

)(

µ1

µ2

)

+

(

P (µ1, µ2)
R(µ1, µ2)

)

.

The stability of the limit cycle is determined by the first Lyapunov coefficient

l1(0) =
1

8ω
L1 +

1

8ω2L2

with

L1 = P111 + P122 +R112 +R222 ,

L2 = P12(P11 + P22)−R12(R11 +R22)− P11R11 + P22R22 ,

where the lower indices mean partial derivatives of P respective to components
evaluated at µ = 0.

We have the eigenvectors of A0 :
(

1
− iω

an∗

i

)

,

(

1
iω
an∗

i

)

,

and matrix T
(

1 0
0 ω

an∗

i

)

, i = 1, 3.

For (n∗

1, p
∗

1) we have the functions P (µ1, µ2), R(µ1, µ2):

P (µ1, µ2) = −rµ1
3

θK
+

r(K + θ − 3n∗

1)

θK
µ2
1 −

ω

n∗

1

µ1µ2 +
r

Kθ
(K + θ − 2n∗

1)n
∗

1µ1 ,

R(µ1, µ2) =
αa

2C

[

(C − 2an∗

1)µ1µ2 − a

(

an∗

1p
∗

1

ω
+ µ2

)

µ2
1

]

.
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After some algebra we get the first Lyapunov coefficient

l1(0) = −rαa2n∗

1p
∗

1

4CKθω3
(C − an∗

1),

and because the stationary point (n∗

1, p
∗

1) is from the first model, where

n <
C

a
, then l1(0) < 0

and the limit cycle which appears in this Hopf bifurcation is stable and Hopf
bifurcation is supercritical.

For (n∗

3, p
∗

3), we have the functions P (µ1, µ2), R(µ1, µ2):

P (µ1, µ2) = − r

Kθ
µ3
1 −

rn∗

3

Kθ
µ2
1 −

ω

n∗

3

µ1µ2 ,

R(µ1, µ2) =
αa

2
µ1µ2 .

It is easy to see that the first Lyapunov coefficient is

l1(0) = − r

2Kθω
< 0.

The limit cycle which appears in this Hopf bifurcation is stable and Hopf bifur-
cation is supercritical.

Hopf bifurcation corresponding to the stationary point (n∗

1, p
∗

1) comes up for

n∗

1 =
K + θ

2

and according to (4) it must hold

K + θ <
C

a
.

That means the second model has no influence in contrast with Hopf bifurcation
corresponding to the stationary point (n∗

3, p
∗

3), where because of the influence
of the first model it appears the global bifurcation with appearance of the new
unstable limit cycle (see Figure 3).
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b

n

θ

K

n∗

1

n∗

2

n∗

3

Unfolding of limit cycles

Hopf bifurcation

Figure 3. Stable cycle branch is presented by filled circles, unstable by
unfilled circles. Unstable cycle branch splits on (θ, 0) and (K, 0).

When

n∗

1 =
C

2a
,

we get saddle-node bifurcation and in combination with Hopf bifurcation we
have Bogdanov-Takens bifurcation. By using analogous normalizing process like
in computing of the first Lyapunov coefficient with assuming the condition for
n∗

1 we transform the system into the normal form of the Bogdanov-Tankens
bifurcation.

We get the eigenvectors of A0

(

1
0

)

,

(

0
− 1

an∗

1

)

,

matrix T
(

1 0
0 − 1

an∗

1

)

,
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and functions P (µ1, µ2), R(µ1, µ2):

P (µ1, µ2) = −rµ1
3

θK
+

r(K + θ − 3n∗

1)

θK
µ2
1 +

µ1µ2

n∗

1

+
r

Kθ
(K + θ − 2n∗

1)n
∗

1µ1 ,

R(µ1, µ2) = −αa2n∗

1

2C

[

p∗1(C − 2an∗

1)− (C − 2an∗

1)
µ2

an∗

1

− a

(

p∗1 −
µ2

an∗

1

)

µ1

]

µ1.

The genericity condition for Bogdanov-Tankens bifurcation according to [2] is

s = sgn
(

b20(a20 + b11)
)

6= 0,

where

P (µ1, µ2) = a20µ
2
1 + P1(µ1, µ2),

R(µ1, µ2) = b20µ
2
1 + b11µ1µ2 +R1(µ1, µ2).

Since

s = sgn

(

αa3

2C
n∗

1p
∗

1

(

−rn∗

1

Kθ
+

αa

2C
(C − 2an∗

1)
)

)

,

s is nonzero variable when θ 6= K, which is satisfied since θ < K in a common
situation.

Another Bogdanov-Takens bifurcation is possible when

lim
b→0

n∗

2 = lim
b→0

n∗

3 =
C

a
,

it is caused by combinations of two models. This implies possibility of splitting
of the unstable limit cycle on the saddle point (n∗

2, p
∗

2) see Figure 4.

Near the Bogdanov-Takens bifurcation there is a unique smooth curve cor-
responding to a saddle homoclinic bifurcation, where the limit cycle splits on
the separatrix loop of the saddle. In our case, see the bifurcation diagram Fig-
ure 3, the supercritical Hopf bifurcation curve of the stable limit cycle has a limit
point, where the stable cycle turns to be unstable one. It is a typical fold bifur-
cation of the limit cycles. In a small parameter area there coexist two nearby
cycles— stable and unstable one. The unstable one then splits on the separatrix
homoclinic loop of one of the saddles (see Figure 3 and 4).
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b

n
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K

n∗

1

n∗

2

n∗

3

Unfolding of limit cycles

Hopf bifurcation

Figure 4. Stable cycle branch is presented by filled circles, unstable with
unfilled circles. Unstable cycle branch splits on (n∗

2
, p∗

2
).

Let us look closer to this in some phase portraits (Figure 5). As it can be seen
in Figure 5(a) for a small value of parameter b there is a huge unstable area, where
both populations become extinct. As the parameter b increases there is unfolding
of the stable cycle that arises from the supercritical Hopf bifurcation. This causes
appearance of a small stable area “from nothing”. When the parameter b crosses
the critical value of the local supercritical Hopf bifurcation at the maximum of
the parabola nullcline, the stable limit cycle vanishes and the branch of the
unstable cycle around the stable focus continues until it splits at the separatrix
loop of one of the saddle points. The green area is the basin of attraction of the
stable limit cycle or the stable focus, respectively. It is a large area that maintains
the populations. On the other hand, decreasing of the value of parameter b
(mortality rate of the predator) causes disappearance of the stable green area
and there is a global bifurcation—a bluesky catastrophe, extinction of both
populations “from nothing”.
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(a) Complete unstable area (b) Appearance of the small
stable area by unfolding

of the limit cycles.

(c) Stable limit cycle van-

ished, the unstable limit cy-
cle around the stable focus.

(d)Saddle-node bifurcation
of the stationary point
(n∗

1
, p∗

1
) and (n∗

2
, p∗

2
).

(e) Spreading of the stable area. (f)Unstable limit cycle split
at the separatrix loop.

Figure 5. Phase portraits.
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3. Conclusion

In this paper, we have introduced the predator-prey model with Allee effect in
prey and in which individual predators can use Hawk and Dove tactics in fight-
ing over caught prey, that caused division into two submodels. We have shown,
by bifurcation analysis and respective phase portraits, existence of saddle-node
bifurcation, two supercritical Hopf bifurcations and two Bogdanov-Takens bifur-
cations in this aggregated model. Moreover, we have shown existence of global
bifurcation of unfolding of two limit cycles, which is in neither submodel alone.
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