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A GENERALIZED BERNSTEIN APPROXIMATION

THEOREM

Miloslav Duchoň

ABSTRACT. The present paper is concerned with some generalizations of Bern-
stein’s approximation theorem. One of the most elegant and elementary proofs
of the classic result, for a function f(x) defined on the closed interval [0, 1], uses
the Bernstein’s polynomials of f,

Bn(x) = Bf
n(x) =

n
∑

k=0

f

(

k

n

)

(n

k

)

xk(1− x)n−k

We shall concern the m-dimensional generalization of the Bernstein’s polynomials
and the Bernstein’s approximation theorem by taking an (m−1)-dimensional sim-

plex in cube [0, 1]m. This is motivated by the fact that in the field of mathematical
biology naturally arouse dynamic systems determined by quadratic mappings of
“standard” (m − 1)-dimensional simplex

{

xi ≥ 0, i = 1, . . . ,m,
∑m

i=1
xi = 1

}

to self. The last condition guarantees saving of the fundamental simplex. Then
there are surveyed some other the m-dimensional generalizations of the Bern-
stein’s polynomials and the Bernstein’s approximation theorem.

1. Introduction

For a function f(x) defined on the closed interval [0, 1] the expression

Bn(x) = Bf
n(x) =

n
∑

k=0

f

(

k

n

)(

n

k

)

xk(1− x)n−k (1)

is called the Bernstein polynomial of order n of the function f(x). Bn(x) is
a polynomial in x of degree ≤ n. The polynomials Bn(x) were introduced by
S. B e r n s t e i n (see [1]) to give an especially simple proof of Weierstrass’ ap-
proximation theorem. Namely, if f(x) is a function continuous on [0, 1], then as
it can be seen

lim
n→∞

Bn(x) = f(x) (2)

uniformly in [0, 1].
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A celebrated theorem of Weierstrass says that any continuous real-valued
function f defined on the closed interval [0, 1] ⊂ R is the limit of a uniformly
convergent sequence of polynomials. One of the most elegant and elementary
proofs of this classic result is that which uses the Bernstein polynomials of f,

(Bnf, x) =
n
∑

k=0

(

k

n

)

f

(

n

k

)

xk(1− x)n−k
(

x ∈ [0, 1]
)

,

one for each integer n ≥ 1. Bernstein’s theorem states that Bn(f) → f uniformly
on [0, 1] and, since each Bn(f) is a polynomial of degree at most n, we have as
a consequence Weierstrass’ theorem. (See, for example, [5]).

The operator Bn defined on the space C
(

[0, 1];R
)

with values in the vector
subspace of all polynomials of degree at most n has the property that Bn(f) ≥ 0
whenever f ≥ 0. Thus Bernstein’s theorem also establishes the fact that each
positive continuous real-valued function on [0, 1] is the limit, of a uniformly
convergent sequence of positive polynomials.

The present paper is concerned with some generalizations of Bernstein’s the-
orem.

For the following note that the expressions

pk = pnk(x) =

(

n

k

)

xk(1− x)n−k (3)

contained in (1) are the binomial or Newton probabilities well known in the
theory of probability. If 0 ≤ x ≤ 1 is the probability of an event E, then pnk(x)
is the probability that E will occur exactly k times in n independent trials. Many
of the properties of the pnk, and of their sums which we shall need are nothing
but theorems of the theory of probability.

As an example, consider Bernoulli’s theorem of large numbers. Let ǫ > 0
and δ > 0 be fixed and suppose that among the n independent trials, k is the
number of those for which the event E occurs. Then for n sufficiently large, the
probability Pδ that k

n
differs from x by less than δ is greater than 1− ǫ. By the

theorem of addition of probabilities, this may be written in the form

Pδ =
∑

| k
n
−x|<δ

(

n

k

)

xk(1− x)n−k ≥ 1− ǫ, (4)

for all n sufficiently large. (The last sum is taken for all values k = 0, 1, . . . , n
which satisfy the condition

∣

∣

∣

∣

k

n
− x

∣

∣

∣

∣

< δ;

notation of this type is used in the sequel without explanation.) We can see that
(2) easily follows from this inequality.
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2. The theorem of Weierstrass

Bernstein polynomials of the function f(x) are linear with respect to the
function f(x), i.e.,

Bf
n(x) = a1B

f1
n (x) + a2B

f2
n (x) (5)

if f(x) = a1f1(x) + a2f2(x).

Since

pnk(x) =

(

n

k

)

xk(1− x)n−k≥ 0

on the interval 0 ≤ x ≤ 1 and
∑n

0 pnk = 1, we have

m ≤ Bf
n(x) ≤ M (0 ≤ x ≤ 1), (6)

whenever m ≤ f(x) ≤ M on this interval.

With the help of the polynomials Bn(x) we may prove the famous theorem
of Weierstrass, which asserts that for each function f(x), continuous on a closed
interval [a, b], and for each ǫ > 0 there is a polynomial P (x) approximating f(x)
uniformly with an error less than ǫ,

|f(x)− P (x)| < ǫ. (7)

By a linear substitution, the interval [a, b] may be transformed into [0, 1]. The
theorem of Weierstrass is therefore a corollary of the following theorem:Theorem 1 ([1, B e r n s t e i n]). For a function f(x) bounded on [0, 1], the

relation
lim

n→∞
Bn(x) = f(x) (8)

holds at each point of continuity x of f and the relation holds uniformly on [0, 1]
if f(x) is continuous on this interval.

P r o o f. We shall compute the value of

T =

n
∑

k=0

(k − nx)2pk =

n
∑

k=0

{

k(k − 1)− (2nx− 1)k + n2x2
}

pk. (9)

Obviously,
∑n

k=0
pk = 1, moreover, we have

n
∑

k=0

kpk = nx

n−1
∑

k=0

(

n− 1

m

)

xm(1− x)n−1−m= nx.

n
∑

k=0

k(k − 1)pk = n(n− 1)x2

n−2
∑

k=0

(

n− 2

m

)

xm(1− x)n−2−m= n(n− 1)x2

and therefore,

T = n2x2 − (2nx− 1)nx+ n(n− 1)x2 = nx(1− x). (10)
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Since x(1− x) ≤ 1
4
on [0, 1], we obtain the inequality

∑

| k
n
−x|≥δ

pk ≤
1

δ2

∑

| k
n
−x|≥δ

(

k

n
− x

)2

pk ≤
1

n2δ2
T =

x(1− x)

nδ2
≤

1

4nδ2
(11)

Now if the function f is bounded, say |f(u)| ≤ M in 0 ≤ u ≤ 1 and x a point of
continuity, for a given ǫ > 0, we can find a δ > 0 such that |x − x′| < δ implies
|f(x)− f(x′)| < ǫ. We have

|f(x)−Bn(x)| =

∣

∣

∣

∣

∣

n
∑

k=0

{

f(x)− f
k

n

}

pk

∣

∣

∣

∣

∣

≤
∑

| k
n
−x|<δ

∣

∣

∣

∣

f(x)− f
k

n

∣

∣

∣

∣

pk

+
∑

| k
n
−x|≥δ

(12)

The first sum is ≤ ǫ
∑

pk = ǫ, the second one is, by (11), ≤ 2M (4nδ2)−1.
Therefore,

|f(x)−Bn(x)| ≤ ǫ+M
(

2nδ2
)−1

(13)

and if n is sufficiently large, |f(x) − Bn(x)| < 2ǫ. Finally, if f(x) is continuous
in the whole interval [0, 1], then (13) holds with a δ independent of x, so that
Bn(x) → f(x) uniformly. This completes the proof. �

3. m-dimensional generalization of the Bernstein theorem

Now we shall discuss m-dimensional generalization of the Bernstein theorem.
First we give m-dimensional generalization of the Bernstein polynomials.

We recall the multinomial theorem.Theorem 2. Multinomial theorem. The following equality is valid

(x1 + · · ·+ xm)n

=
∑

ai≥0,
a1+···+am=n

(

n

a1, . . . , am

)

xa1

1 · · ·xam

m ,

=
∑

ai≥0,
a1+···+am=n

n!

a1! · · · am!
xa1

1 · · ·xam

m ,

(see [3]).
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An importantm-dimensional generalization is obtained by taking an (m−1)-
-dimensional simplex ∆p = {xi ≥ 0, i = 1, . . . ,m, x1 + · · · + xm = 1}. If
f(x1, . . . , xm) is defined on ∆p, we may write with regard to the multinomial
theorem

Bf
n(x1, . . . , xm) =

∑

li≥0,

l1+···+lm=n

f

(

l1

n
, . . . ,

lm

n

)

n!

l1! . . . lm!
xl1
1 . . . xlm

m , (14)

pl1,...,lm;n(x1, . . . , xm) =

(

n

l1, . . . , lm

)

xl1
1 . . . xlm

m ,

(

n

l1, . . . , lm

)

=
n!

l1! . . . lm!
.

Here again we have the convergence Bf
n → f at a point of continuity of f.Theorem 3. Let f(x1, . . . , xm) be a continuous function on ∆p. Then

lim
n→∞

Bf
n(x1, . . . , xm) = f(x1, . . . , xm)

uniformly on ∆p.

P r o o f. The proof is quite similar to that of Theorem 1, and is based on the
following properties of the pl1,...,lm :

(a) the sum of the p’s which occur in (14) is equal to 1,

(b) if ǫ > 0, δ > 0 are given, the sum of those pl1,...,lm in (14) for which

| li
n
−xi| ≥ δ for at least one index i is smaller than ǫ for each sufficiently large n.

To prove (b), we observe that by (11) the sum of p’s with | l1
n
− x1| ≥ δ is

equal to
∑

|
li

n
−xi|≥δ,

l1+···+lm=n

pl1,...,lm;n

=
∑

l1

(

n

l1

)

xl1
1

∑

l2,...,lm

(

n− l1

l2, . . . , lm

)

xl2
2 . . . xlm

m ,

where the summations are extended over
∣

∣

l1
n
−x1

∣

∣ ≥ δ and l2+ · · ·+ lm ≤ n− l1,
respectively, and this is

∑

l1

(

n

l1

)

xl1(1− x1)
n−l1 ≤ (4nδ2)−1. �

Another m-dimensional generalization is obtained by taking a m-dimensional
simplex ∆ = {xi ≥ 0, i = 1, . . . ,m, x1 + · · ·+ xm ≤ 1}. See [5].

103



MILOSLAV DUCHOŇTheorem 4. If f(x1, . . . , xm) is defined on ∆, we write

Bf
n(x1, . . . , xm) =

∑

li≥0,
l1+···+lm≤n

f

(

l1

n
, . . . ,

lm

n

)

pl1,...,lm;n(x1, . . . , xm), (15)

pl1,...,lm;n(x1, . . . , xm) =

(

n

l1, . . . , lm

)

xl1
1 . . . xlm

m (1− x1 − · · · − xm)n−l1−···−lm ,

(

n

l1, . . . , lm

)

=
n!

l1! . . . lm!(n− l1 − · · · − lm)!
.

Here again we have the convergence Bf
n → f at a point of continuity of f.

P r o o f. The proof is quite similar to that of Theorem 1, and is based on the
following properties of the pl1,...,lm :

(a) the sum of the p’s which occur in (15) is equal to 1,

(b) if ǫ > 0, δ > 0 are given, the sum of those pl1,...,lm in (15) for which
∣

∣

li
n
−xi

∣

∣ ≥ δ for at least one index i is smaller than ǫ for each sufficiently large n.

To prove (b), we observe that by (11) the sum of p’s with | l1
n
−x1| ≥ δ is equal to

∑

|
ll

n
−xi|≥δ,

l1+···+lm≤n

pl1,...,lm;n

=
∑

l1

(

n

l1

)

xl1
1

∑

l2,...,lm

(

n− l1

l2, . . . , lm

)

xl2
2 . . . xlm

m (1− x1 − · · · − xm)n−l1−···−lm ,

where the summations are extended over
∣

∣

l1
n
−x1

∣

∣ ≥ δ and l2+ · · ·+ lm ≤ n− l1,
respectively, and this is

∑

l1

(

n

l1

)

xl1(1− x1)
n−l1 ≤ (4nδ2)−1.

�

We shall now derive a more m-dimensional generalization of the Bernstein
theorem. First we give m-dimensional generalization of the Bernstein polyno-
mials. (See [2], [4]).Theorem 5. Let f(x1, x2, . . . , xm) be defined and bounded in the m-dimensional

cube 0 ≤ xi ≤ 1, i = 1, . . . ,m. Then the Bernstein polynomial defined by

Bf
n1,...,nm

(x1, . . . , xm)

=

n1
∑

l1=0

. . .

nm
∑

lm=0

(

n1

l1

)

. . .

(

nm

lm

)

f

(

l1

n1

, . . . ,
lm

nm

)

× xl1
1 (1− x1)

n1−l1. . . xlm
m (1− xm)nm−lm
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converges towards f(x1, . . . , xm) at any point of continuity of this function, as

all ni → ∞.

4. Bohman-Borovkin theorem

We shall use a modified version of Bohman-Korovkin’s Theorem (proved by
Pǎltineanu) to prove a generalized Bernstein theorem. (See P ǎ l t i n e a n u [6].)
Let X be a compact Hausdorff space containing at least two points.Proposition 1 (B o hm a n- K o r o v k i n). Let there be given 2m functions

f1, . . . , fm, a1, . . . , am ∈ C(X,R), with the properties:

P (x, y) =

m
∑

i=1

ai(y)fi(x) ≥ 0, for all (x, y) ∈ X2

and

P (x, y) = 0 ⇔ x = y.

If Hn is a sequence of positive linear operators on C(X;R), with the property:

Hn(fi) → fi as n → ∞ for all i = 1, 2, . . . ,m;

then Hn(f) → f as n → ∞ for all f ∈ C(X;R).

(See P ǎ l t i n e a n u [6].) We shall formulate an interesting applications of
Proposition 1, namely Korovkin theorem.Theorem 6 (K o r o v k i n). Let Hn be a sequence of positive linear operators

on C
(

[a, b]
)

and f1, f2, f3 be the functions defined as

f1(x) = 1, f2(x) = x, f3(x) = x2, for all x ∈ [a, b].

If Hn(fi) → fi, i = 1, 2, 3, then

Hn(f) → f, for all f ∈ C
(

[a, b],R
)

.

P r o o f. (See P ǎ l t i n e a n u [6].) Let a1(y) = y2, a2(y) = −2y, a3(y) = 1 and
let

P (x, y) =

3
∑

i=1

ai(y)fi(x) = (y − x)2.

We can see that the conditions of Proposition 1 are satisfied. �Theorem 7 (S. B e r n s t e i n). Let Bn be a sequence of positive linear operators

on C
(

[0, 1]
)

, defined by

Bn(f)(x) =

n
∑

k=0

f(
k

n
)

(

n

k

)

xk(1− x)n−k, for all x ∈ [0, 1])
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Then Bn(f) → f for all f ∈ C
(

[0, 1],R
)

.

P r o o f. (See P ǎ l t i n e a n u [6].) It is clear that Bn is a sequence of positive
linear operators. Let f1(x) = 1, for all x ∈ [0, 1]. Then

Bn(f1) → f1.

If we denote

pnk(x) =

(

n

k

)

xk(1− x)n−k

then we have
n
∑

k=1

kpnk(x) = nx.

Further we have
n
∑

k=0

k2pnk(x) = n2x2 − nx(x− 1).

Let

f2(x) = x, f3(x) = x2, for all x ∈ [0, 1].

It follows

Bn(f2)(x) = x

hence

Bn(f2) → f2.

Further we obtain

B3(f3) → f3.

Since there are satisfied the conditions of Borovkin theorem, we have

Bn(f) → f, for all f ∈ C
(

[0, 1],R
)

.

�Theorem 8 (Generalized m-dimensional Bernstein theorem). Let X ⊂ Rm be

a compact and let

pnk(x) =

(

n

k

)

xk(1− x)n−k

and

Bn(f)(x1, . . . , xm) =

n
∑

k1=0

. . .

n
∑

km=0

pnk1
(x1) . . . pnkm

(xm)f

(

k1

n
, . . . ,

km

n

)

Then for any f ∈ C(X;R), Bn(f) → f as n → ∞, uniformly on X.
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P r o o f. (See P ǎ l t i n e a n u [6].) To prove this we may put X = [0, 1]m. In
fact, there exists an m-dimensional cube Y ⊃ X. By Tietze theorem every f ∈
C(X,R) can be extended to a function f̃ ∈ C(Y,R) with ‖f̃‖ = ‖f‖. If Bn(f̃)→ f̃

then Bn(f) → f. Therefore it is enough to prove theorem for the cube Y, since
everym-dimensional cube Y is linearly homeomorphic with the cube X = [0, 1]m.
Consider the following 2m+ 1 functions:

f1(x1, . . . , xm) = 1, gi(x1, . . . , xi, . . . , xm) = xi,

hi(x1, . . . , xi, . . . , xm) = x2
i , i = 1, . . . ,m.

If we use the identities
n
∑

k=0

kpnk(x) = nx,

n
∑

k=0

k2pnk(x) = n2x2 − nx(x− 1),

we obtain

Bn(f1) → f1, Bn(gi) → gi, Bn(hi) → hi, i = 1, . . . ,m.

From the other side if we denote

p(x, y) =

m
∑

i=1

(yi − xi)
2,

we can see that the conditions of Proposition 1 are fulfilled. Hence

Bn(f) → f, for all f ∈ C(X,R). �

An earlier version of Bohman-Borovkin‘s theorem was proved by P r o l l a
[7, Theorem 4 and Corollary 7]. However, the version of P ǎ l t i n e a n u allows
to prove the multidimensional Bernstein‘s theorem.

5. Multinomial theorem

For convenience of the reader we add one of the possibilities of the proofs
of the multinomial theorem on the base of (See [3]). If we multiply out the
expression

(x1 + · · ·+ xm)n

and collect coefficients we get a sum in which each term has the form
(

n

a1, . . . , am

)

xa1

1 xa2

2 . . . xam

m with some coefficient

(

n

a1, . . . , am

)

,

where ai are nonnegative integers with

a1 + a2 + · · ·+ am = n.

We shall prove the following proposition. (See [3, p. 18].)
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MILOSLAV DUCHOŇProposition 2.
(

n

a1, . . . , am

)

=
n!

a1!a2! · · · am!
, where 0! = 1.

P r o o f. The case m = 2 is the binomial theorem.

We could now to prove the case m = 3 but we shall take any m > 2. We shall
do it by induction on m. For m > 2, we have

(x1 + · · ·+ xm)n=
∑

(x1 + · · ·+ xm−1)
n−amxam

m

(

n

am

)

Now

(x1 + · · ·+ xm−1)
n−am =

∑

(

n− am

a1 · · · am−1

)

xa1

1 · · ·x
am−1

m−1

so the coefficient of

xa1

1 · · ·xam

m−1x
am

m

is
(

n

a1 · · · am

)

=

(

n

am

)(

n− am

a1 · · · am−1

)

Now use induction and definition of
(

n
am

)

. �

We have thus provedTheorem 9. Multinomial theorem. The following equality is valid

(x1 + · · ·+ xm)n

=
∑

ai≥0,
a1+···+am=n

(

n

a1, . . . , am

)

xa1

1 · · ·xam

m ,

=
∑

ai≥0,
a1+···+am=n

n!

a1! · · · am!
xa1

1 · · ·xam

m ,

In particular, if x1 + · · ·+ xm = 1, then

(x1 + · · ·+ xm)n = 1

=
∑

ai≥0,
a1+···+am=n

(

n

a1, . . . , am

)

xa1

1 · · ·xam

m ,

=
∑

ai≥0,
a1+···+am=n

n!

a1! · · · am!
xa1

1 · · ·xam

m ,
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