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GENERALIZED OSCILLATIONS FOR GENERALIZED

CONTINUITIES

Ján Borśık

ABSTRACT. Let (X, g) be a generalized topological space, (Y, d) a metric one
and f : X → Y a function. We can define a generalized oscillation of f at x ∈ X

as k
g

f
(x) = inf

{

diam f(A) : A ∈ g, x ∈ A
}

. We discuss some properties of the

generalized oscillation.

In the literature, the concept of a topological space is generalized by replac-
ing open sets by other kinds of subsets. In many cases, generalized open sets
have the property that the arbitrary unions of them belong to the same class
of sets. This property is postulated in the concept of generalized topology by
Á. C s á s z á r in [5]. Further, he introduces the notion of generalized continuous
function between generalized topological spaces [7]. In [4], the sets of points of
generalized continuities are investigated using generalized oscillations. In this
paper, we will investigate some properties of generalized oscillations.

We recall some notions. Let X be a nonempty set and P(X) the power set
of X. We call a class g ⊂ P(X) a generalized topology [5] (briefly GT), if ∅ ∈ g

and the arbitrary union of elements of g belongs to g. A GT g is strong if X ∈ g.
A set X with GT g is called a generalized topological space (briefly, GTS) and
is denoted by (X, g). For x ∈ X we denote g(x) = {A ∈ g : x ∈ A}.

For a GTS (X, g), the elements of g are called g-open and their complements
are g-closed. ForA ⊂ X, we denote by ig(A) the union of all g-open sets contained
in A and by cg(A) the intersection of all g-closed sets containing A. A set A
is said to be g-semi-open (g-pre-open, g-α-open, g-β-open), if A ⊂ cg

(

ig(A)
)

(A ⊂ ig(cg(A)), A ⊂ ig(cg(ig(A))), A ⊂ cg(ig(cg(A)))), respectively [6]. We
denote the class of all g-semi-open (g-pre-open, g-α-open, g-β-open) sets by
σ(g) (π(g), α(g), β(g)). If (X, g) is a topological space, we obtain the families of
semi-open sets SO(X), pre-open sets PO(X), α-open sets α(X) and β-open sets
β(X). SO(X), PO(X), α(X) and β(X) are GT (in fact, α(X) is a topology).
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By [7], if (X, g) and (Y, h) are GTS’s, then a mapping f : X → Y is called
(g, h)-continuous, if f−1(V ) ∈ g for each V ∈ h. If (Y, h) is a topological space,
for g = SO(X) we have the family of quasicontinuous functions, for g = PO(X)
we have pre-continuous functions, for g = α(X) α-continuous functions and for
g = β(X) we obtain β-continuous functions. A function f : X → Y is (g, h)-con-
tinuous at x ∈ X if for each V ∈ h

(

f(x)
)

there is U ∈ g(x) such that f(U ) ⊂ V.
By [7], a function f is (g, h)-continuous if it is such at each point. Denote by
(g, h)(f) the family of all (g, h)-continuity points of f.

If (Y, d) is a metric space we can characterize the set (g, h)(f). From now, we
will assume that (Y, d) is a metric space. We will use the notion g-continuity for
(g, d)-continuity and g(f) for continuity points (g, d)(f).Definition 1 ([4]). Let (X, g) be a GTS, let (Y, d) be a metric space and let
f : X → Y be a function. The function kgf : X → [0,∞] defined by

kgf (x) = inf
{

diam f(A) : A ∈ g(x)
}

is called the g-oscillation of f (remark that inf ∅ = ∞), where diam(Z) =
sup

{

d(u, v) : u, v ∈ Z
}

is the diameter of Z.Definition 2 ([4]). A function f : X → [−∞,∞] is said to be upper g-con-
tinuous [lower g-continuous] at x if for each a > f(x) [a < f(x)] there is a set
A ∈ g(x) such that f(y) < a [f(y) > a] for each y ∈ A. A function is upper
[lower] g-continuous if it is such at each point. Denote by ug(f) [lg(f)] the set
of all upper [lower] g-continuity points of f.Definition 3 ([4]). Let f : X → [−∞,∞] be a function. Define Mg

f ,m
g

f , k̃
g

f :

X → [−∞,∞] as

Mg

f (x) = inf
{

sup{f(y) : y ∈ A} : A ∈ g(x)
}

for x ∈
⋃

g and Mg

f (x) = ∞

for x ∈ X \
⋃

g,

mg

f (x) = sup
{

inf{f(y) : y ∈ A} : A ∈ g(x)
}

for x ∈
⋃

g and mg

f(x) = −∞

for x ∈ X \
⋃

g,

k̃gf (x) = Mg

f (x)−mg

f (x) (we put ∞−∞ = 0).

In [4] it is shown, that for f : X → [−∞,∞], Mg

f and k̃gf are upper g-con-

tinuous, mg

f is lower g-continuous, x ∈ ug(f) if and only if f(x) = Mg

f (x),

x ∈ lg(f) if and only if f(x) = mg

f(x) and x ∈ ug(f) ∩ lg(f) if and only if

k̃gf (x) = 0. Moreover, k̃gf ≤ kgf . For a function f : X → Y, kgf is upper g-con-

tinuous and f is g-continuous at x if and only if kgf (x) = 0; so, the set g(f) of
g-continuity points of f is the countable intersection of sets belonging to g. We
will give some further properties of kgf .Proposition 1. If f : X → Y is g-continuous at x then kgf and is g-continuous

at x, too.
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P r o o f. Let c > 0. Since f is g-continuous at x we have kgf (x) = 0. Since kgf is

upper g-continuous there is A ∈ g(x) such that kgf (y) < c for each y ∈ A. So,

0 ≤ kgf (y) < c for all y ∈ A and kgf is g-continuous. �Definition 4. Let X be a topological space with the topology T and let g be
a strong GT on X. We will say that g satisfies P1 if each nonempty member in g

has the nonempty interior and g satisfies P2 if U ∩ A ∈ g for all U ∈ T and
A ∈ g.Proposition 2. Let g be a strong GT on X.

(i) If g satisfies P2 then T ⊂ g.

(ii) If g ⊂ SO(X) then g satisfies P1.

(iii) If g satisfies P1 and P2 then T ⊂ g ⊂ SO(X).

(iv) There is g such that T ⊂ g ⊂ SO(X) and g does not satisfy P2.

P r o o f. (i) and (ii) are obvious.
(iii): We have T ⊂ g by (i). Assume that there is A ∈ g such that A /∈ SO(X).
Then A\Cl IntA 6= ∅. Since X \Cl IntA ∈ T , by P2 we have A∩(X \Cl IntA) =
A \ Cl IntA ∈ g. By P1 we have Int(A \ Cl IntA) 6= ∅. On the other hand,
Int(A \ Cl IntA) = IntA \ Cl IntA = ∅.
(iv): Let X = [0, 1] with the usual toplogy T , C be the Cantor set and A ∈ g

if A is open or X \ C ⊂ A. Then g is a strong GT and T ⊂ g ⊂ SO(X). If
X \ C =

⋃

∞

i=1
(ai, bi) then A =

⋃

∞

i=1
[ai, bi] ∈ g, however A ∩ [0, 1/2) /∈ g. �Definition 5. Let f, F : X → R be functions. A function F is g-primitive for f

if the g-oscillation of F is equal to f.

The question of the existence of g-primitive for the usual oscillation was in-
vestigated by J. E w e r t and S. P. P o n om a r e v. They have shown that
in each metric space, each upper semicontinuous real function vanishing at iso-
lated points has g-primitive [9]. We give a partial answer for the existence of
g-primitive; especially, this holds for g = SO(X).Theorem 1. Let (X, T ) be a Baire first countable T1 space without isolated

points. Let a strong GT g on X satisfy P1 and P2. Let g : X → R be a function.

Then g = kgf for some function f : X → R if and only if g is nonnegative and

upper g-continuous.

P r o o f. Necessity. By [4] g is nonnegative and upper g-continuous.

Sufficiency. By Proposition 2 we have g ⊂ SO(X), so g is upper quasicontinuous
and by [3] it is cliquish and hence X \ T (g) is of first category. Since X is
Baire, T (g) is dense in X, and since X is T1, T (g) has no isolated point. Hence,
according to [1], T (g) = A ∪ B, where A and B are disjoint and dense in T (g).
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Evidently, they are dense in X, too. Define a function f : X → R as f(x) = 0 for
x ∈ A and f(x) = g(x) otherwise.

We will show that kgg = f. Let x ∈ X and ε > 0. PutD = g−1((−∞, g(x)+ε)).
Since g is upper g-continuous and x ∈ D we have D ∈ g(x). For each y ∈ D
we have 0 ≤ f(y) ≤ g(y) < g(x) + ε and hence diam f(D) < g(x) + ε and
kgf (x) ≤ g(x) + ε.

Now, let x ∈ A. Then x ∈ T (g) and there is an open neighbourhood U
of x such that g(y) > g(x) − ε for each y ∈ U. Let E ∈ g(x). Then by P2 we
have U ∩ E ∈ g and since x ∈ E ∩ U, by P1 we have Int(U ∩ E) 6= ∅. There are
z1 ∈ Int(U∩E)∩A and z2 ∈ Int(U∩E)∩B. We have f(z1) = 0 and f(z2) = g(z2),
therefore diam f(E) ≥ diam f

(

Int(U ∩ E)
)

≥ f(z2)− f(z1) = g(z2) > g(x)− ε.

This yields kgf (x) ≥ g(x)− ε.

If x ∈ X \A then f(x) = g(x). For arbitrary E ∈ g(x) we have Int(E) 6= ∅ and
for z ∈ Int(E) ∩ A we have diam f(E) ≥ f(x)− f(z) = g(x) and kgf (x) ≥ g(x).

Therefore for each x ∈ X we have g(x) − ε ≤ kgf (x) ≤ g(x) + ε and hence

kgf (x) = g(x). �

Theorem is not true for an arbitrary strong GT g (e.g., if g is the family of
all pre-open or β-open sets, see [2, Theorem 7]).Proposition 3. Let g be a strong GT on a topological space X satisfying P2.

Let f : X → R be an upper g-continuous function bounded from below. Then

lim infu→x k
g

f (u) = 0 for each accumulation point of X.

P r o o f. Let x be an accumulation point of X, let U be an open neighbourhood
of x and ε > 0. Then c = inf f(U ) ∈ R. Let y ∈ U be such that f(y) < c+ε. Then
there is A ∈ g(y) such that f(z) < c+ ε for each z ∈ A. Further, y ∈ A ∩ U ∈ g

and hence A ∩ U ∈ g(y). For each z ∈ A ∩ U we have c ≤ f(u) < c + ε. Hence
diam f(A ∩ U ) ≤ ε and kgf (y) ≤ ε. So, lim infu→x k

g

f (u) = 0. �

The conditions cannot be omitted. Let X = Q = {q1, q2, . . . } with the usual
topology T and let g = T . Let f : X → R, f(qn) = −n. Then f is upper g-con-
tinuous, however lim infu→x k

g

f (u) = −∞ for each x ∈ X. Further, let X = [0, 1]

with the usual topology T and g = {A ⊂ X : A = ∅ or 0 ∈ A} and f(x) = x.
Then f is bounded upper g-continuous, however lim infu→x k

g

f (u) = x for each
x ∈ X.

By [4], for f : X → R, f = Mg

f if and only if f is upper g-continuous and

f = mg

f if and only if f is lower g-continuous. Similar results we can obtain for

kgf and k̃gf .Proposition 4. Let X be a GTS and f : X → R. Then k̃gf = f if and only if f

is upper g-continuous and mg

f (x) = 0 for each x ∈ X.
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P r o o f. Let k̃gf = f. Then f is upper g-continuous. Hence f = Mg

f and for each

x ∈ X we have mg

f(x) = Mg

f (x) − k̃gf (x) = f(x) − f(x) = 0. Conversely, let f

be upper g-continuous and mg

f (x) = 0 for each x ∈ X. Then f(x) = Mg

f (x) =

Mg

f (x)−mg

f (x) = k̃gf (x). �Proposition 5. Let X be a topological space, let g be a strong GT on X satis-

fying P1 and P2 and let f : X → R be a function. Then kgf = f if and only if f

is nonnegative upper g-continuous, lim infu→x f(u) = 0 for each accumulation

point x of X and f(x) = 0 for each isolated point x of X.

P r o o f. Let kgf = f. Then f is nonnegative and by [4], it is upper g-continuous.

If x is isolated point of X then by Proposition 2 {x} ∈ g and so f is g-continuous
at x and kgf (x) = f(x) = 0. If x is an accumulation point of X then by Proposi-

tion 3 we have lim infu→x k
g

f (u) = 0 = lim infu→x f(u).

Conversely, let f be nonnegative upper g-continuous, f(x) = 0 for isolated
points of X and lim infu→x f(u) = 0 for accumulation points of X.

If x is an isolated point of X then {x} ∈ g and hence f is g continuous at x,
so f(x) = 0 = kgf (x). Now, let x be an accumulation point of X. Let ε > 0. Then

there is A ∈ g(x) such that 0 ≤ f(u) < f(x) + ε for each u ∈ A. This yields
diam f(A) ≤ f(x) + ε and kgf (x) ≤ f(x) + ε.

If f(x) = 0 then kgf (x) = f(x) = 0. Now, let f(x) > 0. Let B ∈ g(x). Then

by P1 we have Int(B) 6= ∅ and there is z ∈ Int(B) with f(z) < ε (otherwise,
z is an accumulation point and lim infu→z f(u) ≥ ε, a contradiction). We have
|f(x)− f(z)| ≥ f(x)− f(z) > f(x)− ε and hence diam f(B) ≥ f(x)− ε for each
B ∈ g(x), so kgf (x) ≥ f(x)− ε. Therefore kgf (x) = f(x). �Corollary 1. Let g satisfy P1 and P2. If f : X → R is locally bounded then

kg
k
g

f

= kgf .

P r o o f. Let x ∈ X. Then there is an open neighbourhood U of x such that
diam f(U ) < ∞. If A ∈ g(x) then A∩U ∈ g(x) and diam(f(A∩U ) < ∞, so kgf :

X → R. The function kgf is nonnegative upper g-continuous, by Proposition 3

lim infu→x k
g

f (u) = 0 for each accumulation point ofX and kgf (x) = 0 for isolated

points, so by Proposition 5 we obtain kg
k
g

f

= kgf . �

This is not true for an arbitrary g. If g be the family of all pre-open or β-open
sets, then by [2, Theorem 9] there is a function f : X → R such that kg

k
g

f

6= kgf .

In [10], the set of all continuity points is characterized (using generalized
oscillation) for functions with values in weakly developable spaces. I do not know
that its generalization for GT characterized g-continuity points. Nevertheless, for
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developable spaces we can define a “good” g-oscillation (i.e., the set of g-conti-
nuity points is the countable intersection of sets from g); of course, if the range
space is metrizable, this g-oscillation does not reduce to our g-oscillation kgf .

Let Y be developable space with a development (Gn)n. Without loss of gener-
ality we can suppose that G1 = {Y } and Gn+1 is a refinement of Gn. For a subset
A of X we put ωf (A) = inf

{

1/n : there is V ∈ Gn such that f(A) ⊂ V
}

and

define a function ωg

f : X → [0, 1] as ωg

f (x) = inf
{

ωf (A) : A ∈ g(x)
}

.Proposition 6. A function f : X → Y is g-continuous at x if and only if

ωg

f (x) = 0.

P r o o f. Let f be g-continuous at x and ε > 0. Let 1/n < ε and let V ∈ Gn be
such that f(x) ∈ V. Then there is A ∈ g(x) such that f(A) ⊂ V. This yields
ωf (A) ≤ 1/n < ε and hence ωg

f (x) ≤ ωf (A) < ε. So, ωg

f (x) = 0.

Conversely, let ωg

f (x) = 0. Let H be a neighbourhood of f(x). Then there is

n ∈ N such that st
(

f(x),Gn

)

=
⋃
{

G ∈ Gn : f(x) ∈ G
}

⊂ H. Since ωg

f (x) < 1/n

there is A ∈ g(x) such that ωf (A) < 1/n. Hence there is k ∈ N such that
f(A) ⊂ V for some V ∈ Gk. From the definition of ωf we have k ≥ n and hence
there is W ∈ Gn with V ⊂ W. Therefore f(x) ∈ V ⊂ W ⊂ st

(

f(x),Gn

)

⊂ H
and f(A) ⊂ H. Therefore f is g-continuous at x. �Proposition 7. The function ωg

f is upper g-continuous.

P r o o f. Let ωg

f (x) < a. Then there is A ∈ g(x) with ωf (A) < a. For each y ∈ A

we have ωg

f (y) ≤ ωf (A) < a, thus ωg

f is upper g-continuous at x. �
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[7] CSÁSZÁR, Á.: Generalized topology, generalized continuity, Acta Math. Hungar. 96

(2002), 351–357.

[8] EWERT, J. : Superpositions of oscillations and quasioscillations, Acta Math. Hungar.
101 (2003), 13–19.

[9] EWERT, J.—PONOMAREV, S. P.: On the existence of ω-primitives on arbitrary metric

spaces, Math. Slovaca 53 (2003), 51–57.
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