ON THE KNESER-HUKUHARA PROPERTY
FOR AN INTEGRO-DIFFERENTIAL EQUATION
IN BANACH SPACES

Aldona Dutkiewicz

ABSTRACT. In this paper we investigate some topological properties of solutions sets of some integro-differential equations in Banach spaces. Our assumptions and proofs are expressed in terms of the measure of weak noncompactness.

1. Introduction.

Let \(I = [0, a] \) be a compact interval in \(\mathbb{R} \), \(B = \{ x \in E : \| x \| \leq b \} \) and let \(E \) be a sequentially weakly complete Banach space. Throughout this paper we shall assume that \(f : I \times B \mapsto E \) and \(g : I^2 \times B \mapsto E \) are functions continuous in the weak—weak sense, that is for every \(t \in I, x \in B \) and arbitrary weak neighbourhood \(U \) of the point \(f(t, x) \) there exists an \(\varepsilon > 0 \) and a weak neighbourhood \(V \) of \(x \) so that for every \(y \in V \cap B, s \in I, |s - t| < \varepsilon, f(s, y) \in U \) is valid.

Consider the Cauchy problem

\[
\begin{align*}
 x^{(m)}(t) &= f(t, x(t)) + \int_{0}^{t} g(t, s, x(s)) \, ds, \\
 x(0) &= 0, \quad x'(0) = \eta_1, \ldots, x^{(m-1)}(0) = \eta_{m-1},
\end{align*}
\]

where \(m \geq 1 \) and \(\eta_1, \ldots, \eta_{m-1} \in E \) and \(x^{(m)} \) means the \(m \)th order derivative in the weak sense and integral denotes the weak Riemann integral. Let us recall that the weak Riemann integral of a weak continuous function \(y(t) \) \((t \in I) \) with values in \(E \) is defined as the weak limit of Riemann sums (cf. [7]).

© 2011 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathematics Subject Classification: 47G20, 45J05.
Keywords: integro-differential equation, topological properties of solution sets, measures of weak noncompactness.
In this paper we prove that the set of all weak solutions of this problem, defined on a compact subinterval $J = [0, d]$ of I, for some $d > 0$, is nonempty, compact and connected in the space $C_w(J, E)$ of weakly continuous functions $J \mapsto E$ with the topology of weak uniform convergence.

The method of the proof of our main result is suggested by the paper [9] concerning differential equations. Nevertheless the idea to consider the ε-approximate solutions set of Volterra integral equation

$$x(t) = f(t) + \int_0^t g(t, s, x(s)) \, ds$$

goes back to Hukuhara [6], who proved that this set is connected in $C(J, \mathbb{R}^n)$.

Our approach is to impose a weak compactness type conditions expressed in terms of the measure of weak noncompactness introduced by De Blasi [5].

Let A be a nonvoid bounded subset of E. The measure of weak noncompactness $\beta(A)$ is defined by

$$\beta(A) = \inf \{ \varepsilon > 0 : \text{there exists a weakly compact set } K \text{ such that } A \subset K + \varepsilon B \},$$

where B is the norm unit ball.

We make use of the following properties of the measure of weak noncompactness β (for bounded nonvoid subsets A and B of E):

1° $A \subset B \Rightarrow \beta(A) \leq \beta(B)$;
2° $\beta(\overline{A}^w) = \beta(A)$ where \overline{A}^w denotes the weak closure of A;
3° $\beta(A) = 0 \iff \overline{A}^w$ is weakly compact;
4° $\beta(A \cup B) = \max(\beta(A), \beta(B))$;
5° $\beta(\text{conv} A) = \beta(A)$;
6° $\beta(A + B) \leq \beta(A) + \beta(B)$;
7° $\beta(\lambda A) = |\lambda| \beta(A)$, ($\lambda \in \mathbb{R}$);
8° $\beta(\bigcup_{|\lambda| \leq h} \lambda A) = h \beta(A)$.

2. Basic lemmas

Let V be a subset of $C_w(J, E)$. Put

$$V(t) = \{ u(t) : u \in V \} \quad \text{and} \quad V(T) = \{ u(t) : u \in V, t \in T \}.$$

In what follows we shall use the following Ambrosetti-type

Lemma 1. If the set V is strongly equicontinuous and uniformly bounded, then
ON THE KNESER-HUKUHARA PROPERTY

(i) the function \(t \mapsto \beta(V(t)) \) is continuous on \(J \);
(ii) for each compact subset \(T \) of \(J \)

\[
\beta(V(T)) = \sup \{ \beta(V(t)) : t \in T \},
\]

and Krasnoselskii-type.

Lemma 2 ([9]). For any \(\varphi \in E^* \), \(\varepsilon \geq 0 \) and for any weakly continuous function \(z: J \mapsto B \) there exists a weak neighbourhood \(U \) of 0 in \(E \) such that \(\| \varphi(f(t, z(t)) - f(t, y(t))) \| \leq \varepsilon \) for \(t \in J \) and for every weakly continuous function \(y: J \mapsto B \) such that \(y(s) - z(s) \in U \) for all \(s \in J \).

In our considerations we apply the following

Lemma 3 ([8]). Let \(m \geq 1 \) be a natural number and let \(w: [0, 2b] \mapsto \mathbb{R}_+ \) be a continuous nondecreasing function such that \(w(0) = 0 \), \(w(r) > 0 \) for \(r > 0 \) and

\[
\int_{0^+} \frac{dr}{\sqrt{r^{m-1}w(r)}} = \infty.
\]

If \(u: [0, c) \mapsto [0, 2b] \) is a \(C^m \) function satisfying the inequalities

\[
\begin{align*}
\quad u^{(j)}(t) & \geq 0, & j = 0, 1, \ldots, m, \\
\quad u^{(j)}(0) & = 0, & j = 0, 1, \ldots, m - 1, \\
\quad u^{(m)}(t) & \leq w(u(t)), & t \in [0, c),
\end{align*}
\]

then \(u = 0 \).

3. The main result

Put

\[
\begin{align*}
M_1 & = \sup \{ \| f(t, x) \| : t \in I, x \in B \}, \\
M_2 & = \sup \{ \| g(t, s, x) \| : t, s \in I, x \in B \}.
\end{align*}
\]

Choose a positive number \(d \) such that \(d \leq a \) and

\[
\sum_{j=1}^{m-1} \| \eta_j \| \frac{d^j}{j!} + M_1 \frac{d^m}{m!} + M_2 \frac{d^{m+1}}{m!} < b. \tag{2}
\]

Let \(J = [0, d] \). By \(C_w(J, E) \) we denote the space of weakly continuous functions \(J \mapsto E \) endowed with the topology of weak uniform convergence and by \(E^* \) the space of continuous linear functionals on \(E \).

Our main result is given by the following Kneser-Hukuhara-type
ALDONA DUTKIEWICZ

Theorem 1. Let \(w : \mathbb{R}_+ \to \mathbb{R}_+ \) be a continuous nondecreasing function such that \(w(0) = 0 \) and
\[
\int_{0^+} \frac{dr}{\sqrt{\frac{m}{r} - 1}} w(r) = \infty. \tag{3}
\]
If
\[
\beta(f(J \times X)) \leq w(\beta(X)) \quad \text{for } X \subset B, \tag{4}
\]
and the set \(g(I^2 \times B) \) is relatively weakly compact in \(E \), then the set \(S \) of all weak solutions of (1) defined on \(J \) is nonempty, compact and connected in \(C_w(J, E) \).

Proof. 1° Let \(\tilde{B} \) denote the set of all weakly continuous functions \(J \mapsto \tilde{B} \). We shall consider \(\tilde{B} \) as a topological subspace of \(C_w(J, E) \). For \(t \in J \) and \(x \in \tilde{B} \) put
\[
\tilde{g}(t, x) = \int_0^t g(t, s, x(s)) \, ds.
\]
Fix \(\tau \in J \) and \(x \in \tilde{B} \). As the set \(J \times x(J) \) is weakly compact, from the weak continuity of \(g \) it follows that for each \(\varepsilon > 0 \) and \(\phi \in E^* \) such that \(\| \phi \| \leq 1 \) there exists \(\delta > 0 \) such that
\[
\phi (g(t, s, x(s)) - g(\tau, s, x(s))) < \varepsilon \quad \text{for } t, s \in J \text{ with } |t - \tau| < \delta.
\]
In view of the inequality
\[
\phi (\tilde{g}(t, x) - \tilde{g}(\tau, x)) \leq M_2 |t - \tau| + \int_0^\tau \phi (g(t, s, x(s)) - g(\tau, s, x(s))) \, ds,
\]
this implies the weak continuity of the function \(t \to \tilde{g}(t, x) \). On the other hand, applying Lemma 2, we can prove that for each fixed \(t \in J \) the function \(x \to \tilde{g}(t, x) \) is weakly continuous on \(\tilde{B} \). Moreover
\[
\| \tilde{g}(t, x) \| \leq M_2 t \quad \text{for } t \in J \text{ and } x \in \tilde{B}.
\]

2° The initial value problem (\(\Pi \)) is equivalent to the following integral equation
\[
x(t) = p(t) + \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} \left[f(s, x(s)) + \tilde{g}(s, x(s)) \right] ds \quad (t \in J), \tag{5}
\]
where \(p(t) = \sum_{j=1}^{m-1} \eta_j \frac{t^j}{j!} \).

Define the operator \(F \) by the formula
\[
F(x)(t) = p(t) + \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} \left[f(s, x(s)) + \tilde{g}(s, x(s)) \right] ds \quad (t \in J, x \in \tilde{B}).
\]
For simplicity assume that \(m \geq 2 \).

Let us remark that if
\[
y(t) = \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} f(s, x(s)) \, ds
\]
and
\[
z(t) = \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} \tilde{g}(s, x) \, ds,
\]
then
\[
y'(t) = \frac{1}{(m-2)!} \int_0^t (t-s)^{m-2} f(s, x(s)) \, ds
\]
and
\[
z'(t) = \frac{1}{(m-2)!} \int_0^t (t-s)^{m-2} \tilde{g}(s, x) \, ds,
\]
so that
\[
\|y'(t)\| \leq \frac{1}{(m-2)!} \int_0^t (t-s)^{m-2} M_1 \, ds = M_1 \frac{t^{m-1}}{(m-1)!}
\]
and
\[
\|z'(t)\| \leq \frac{1}{(m-2)!} \int_0^t (t-s)^{m-2} M_2 t \, ds = M_2 \frac{t^m}{(m-1)!}.
\]
Moreover,
\[
\|p'(t)\| \leq \sum_{j=1}^{m-1} \|\eta_j\| \frac{q^{j-1}}{(j-1)!}.
\]
By the mean value theorem we obtain
\[
\|F(x)(t) - F(x)(\tau)\| \leq K \, |t - \tau| \quad (x \in \tilde{B}, \, t, \tau \in J),
\]
where
\[
K = \sum_{j=1}^{m-1} \|\eta_j\| \frac{q^{j-1}}{(j-1)!} + M_1 \frac{t^{m-1}}{(m-1)!} + M_2 \frac{d^m}{(m-1)!}.
\]
Since
\[
\|y(t)\| \leq \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} M_1 \, ds = M_1 \frac{t^m}{m!}
\]
and
\[
\|z(t)\| \leq \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} M_2 t \, ds = M_2 \frac{t^{m+1}}{m!},
\]
moreover.

55
\[\| F(x)(t) \| \leq L \quad (x \in \tilde{B}, \ t \in J), \]

(7)

where \(L = \sum_{j=1}^{m-1} \| \eta_j \| \frac{d^j}{j!} + M_1 \frac{d^m}{m!} + M_2 \frac{d^{m+1}}{m!} \).

From (2), (6) and (7) it is clear that \(F(\tilde{B}) \subset \tilde{B} \) and the set \(F(\tilde{B}) \) is strongly equicontinuous. By Lemma 2 we can prove that \(F \) is a continuous.

Put \(W = \bigcup_{0 \leq \lambda \leq d} \lambda \text{conv} g(I^2 \times B) \).

Since for convex subsets of \(E \) the closure in the norm topology coincides with the weak closure [4, Th. II. 1], it is clear that

\[
\int_0^t (t-s)^{m-1} \tilde{g}(s, x) \, ds \in t \text{conv} \{ (t-s)^{m-1} \tilde{g}(s, x) : s \in J, \ x \in \tilde{B} \}
\]

from the above and corresponding properties of \(\beta \) it follows that

\[
\beta \left(\left\{ \frac{1}{(m-1)!} \int_0^t (t-s)^{m-1} \tilde{g}(s, x) \, ds : x \in \tilde{B} \right\} \right)
\leq \beta \left(\frac{1}{(m-1)!} t \text{conv} \{ (t-s)^{m-1} W : s \in J \} \right)
\leq \beta \left(\frac{1}{(m-1)!} t \{ (t-s)^{m-1} W : s \in J \} \right)
= \max_{s \in J} \left(\frac{1}{(m-1)!} t(t-s)^{m-1} \right) \beta(W)
= \frac{1}{(m-1)!} t^m \beta(W) = 0. \tag{8}
\]

3° For given \(\varepsilon > 0 \) denote by \(S_\varepsilon \) the set of all \(z \in \tilde{B} \) such that

\[\| z(t) - F(z)(t) \| < \varepsilon \quad \text{for all } t \in J. \]

The following lemma is proved in [9].

Lemma 4. For each \(\varepsilon, \ 0 < \varepsilon < b - L \), the set \(S_\varepsilon \) is nonempty and connected in \(C_w(J, E) \).

For any positive integer \(n \) we define

\[
F_n(x)(t) = \begin{cases}
p(t) & \text{if } 0 \leq t \leq \frac{d}{n}, \\
p(t) + \frac{1}{(m-1)!} \int_0^{t-s} (t-s)^{m-1} \left[f(s, x(s)) + \tilde{g}(s, x) \right] ds & \text{if } \frac{d}{n} \leq t \leq d
\end{cases}
\]

56
ON THE KNESER-HUKUHARA PROPERTY

for \(x \in \tilde{B}, t \in J \). Analogously as for \(F \), by inequalities (6) and (7), we can prove that \(F_n \) maps continuously \(\tilde{B} \) into itself and

\[
\|F_n(x)(t) - F(x)(t)\| \leq K\frac{d}{n} \quad (x \in \tilde{B}, t \in J).
\] (9)

Moreover, there exists a unique \(z_n \in \tilde{B} \) such that \(z_n = F_n(z_n) \). It is clear from (9) that \(z_n \in S_\varepsilon \) for sufficiently large \(n \).

Next we shall show that the set \(S \) is nonempty. From the above it follows that there exists a sequence \((u_n)\) such that \(u_n \in \tilde{B} \) and

\[
\lim_{n \to \infty} \sup_{t \in J} \|u_n(t) - F(u_n)(t)\| = 0.
\] (10)

Let \(V = \{u_n : n \in \mathbb{N}\} \). From (6) and (10) we deduce that the set \(V \) is strongly equicontinuous and

\[
\beta(V(t)) = \beta(F(V)(t)) \quad \text{for} \quad t \in J.
\] (11)

Hence, by Lemma 1, the function \(t \mapsto v(t) = \beta(V(t)) \) is continuous on \(J \).

Fix \(t \in J \) and \(\varepsilon > 0 \). Choose \(\delta > 0 \) in such a way that

\[
|\tau - q| < \delta, \quad |q - s| < \delta, \quad q, s, \tau \in J.
\]

if \(|\tau - s| < \delta, |q - s| < \delta, q, s, \tau \in J \). Divide the interval \([0, t]\) into \(n \) parts \(0 = t_0 < t_1 < \cdots < t_n = t \) in such way that \(\Delta t_i = t_i - t_{i-1} < \delta \) for \(i = 1, \ldots, n \).

Let \(T_i = [t_{i-1}, t_i] \). By Lemma 1 for each \(i \) there exists \(s_i \in T_i \) such that

\[
\beta(V(T_i)) = v(s_i) \quad (i = 1, \ldots, n).
\]

By (4) we obtain

\[
\beta\left(\left\{(t - s)^{m-1}f(s, x(s)): x \in V, s \in T_i\right\}\right)
\]

\[
\leq (t - t_{i-1})^{m-1}\beta\left(f(T_i \times V(T_i))\right)
\]

\[
\leq (t - t_{i-1})^{m-1}w\left(\beta(V(T_i))\right)
\]

\[
= (t - t_{i-1})^{m-1}w\left(v(s_i)\right).
\]

Since

\[
F(V)(t) \subset p(t) + \frac{1}{(m - 1)!} \sum_{i=1}^{n} \Delta t_i \text{conv}\left\{(t - s)^{m-1}f(s, x(s)): x \in V, s \in T_i\right\}
\]

\[
+ \frac{1}{(m - 1)!} \left\{\int_{0}^{t}(t - s)^{m-1}\tilde{g}(s, x) \, ds : x \in V\right\},
\]

57
from (8) and corresponding properties of β we have

$$\beta(F(V)(t)) \leq \frac{1}{(m-1)!} \beta \left(\sum_{i=1}^{n} \Delta t_i \text{conv} \{ (t-s)^{m-1} f(s, x(s)) : x \in V, s \in T_i \} \right)$$

$$+ \frac{1}{(m-1)!} \beta \left(\left\{ \int_{0}^{t} (t-s)^{m-1} g(s, x) \, ds : x \in V \right\} \right)$$

$$= \frac{1}{(m-1)!} \sum_{i=1}^{n} \Delta t_i \beta \left((t-s)^{m-1} f(s, x(s)) : x \in V, s \in T_i \right)$$

$$\leq \frac{1}{(m-1)!} \sum_{i=1}^{n} \Delta t_i (t-t_{i-1})^{m-1} w(v(s_i)).$$

Furthermore, from (12) we infer that

$$\left(\frac{1}{(m-1)!} \sum_{i=1}^{n} (t-t_{i-1})^{m-1} w(v(s_i)) \right) \Delta t_i$$

$$\leq \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds + \frac{\varepsilon t}{(m-1)!}.$$

Therefore

$$\beta(F(V)(t)) \leq \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds + \frac{\varepsilon t}{(m-1)!}.$$

Because ε is arbitrary

$$\beta(F(V)(t)) \leq \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds.$$

Thus, by (11),

$$v(t) \leq \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds \quad \text{for} \quad t \in J.$$

Putting $u(t) = \frac{1}{(m-1)!} \int_{0}^{t} (t-s)^{m-1} w(v(s)) \, ds$ we see that $u \in C^m$, $v(t) \leq u(t)$, $u^{(j)}(t) \geq 0$ for $j = 0, 1, \ldots, m$, $u^{(j)}(0) = 0$ for $j = 0, 1, \ldots, m-1$ and

$$u^{(m)}(t) = w(v(t)) \leq w(u(t)) \quad \text{for} \quad t \in J.$$

As $u(0) = 0$, from Lemma 3 we deduce that $u(t) = 0$ for $t \in J$. Consequently, $\beta(V(t)) = v(t) = 0$ for $t \in J$, i.e., $V(t)$ is relatively weakly compact for $t \in J$. Hence Ascoli’s theorem implies that V is relatively compact in $C_w(J, E)$. Therefore the sequence (u_n) has a limit point x. From (10) and the continuity of F it follows that $x = F(x)$, i.e., $x \in S$.

58
Now we shall prove that the set S is compact and then that it is connected. Since F is continuous, S is closed in $C_w(J, E)$. As $S = F(S)$, we have $\beta(S(t)) = \beta(F(S)(t))$ for $t \in J$. Therefore, repeating the argument from 3o, we can show that S is compact in $C_w(J, E)$. Suppose that S is not connected in $C_w(J, E)$. As S is compact, there are nonempty compact sets S_1, S_2 such that $S = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$, and consequently there are two disjoint open sets U_1, U_2 such that $S_1 \subset U_1$, $S_2 \subset U_2$. Let $U = U_1 \cup U_2$. We choose n_0 such that $\frac{1}{n_0} < b - L$. Suppose that for each $n \geq n_0$ there exists $u_n \in S_1 \setminus U$. Put $V = \{u_n : n \in \mathbb{N}\}$. Because $\lim_{n \to \infty} \sup_{t \in J} \|u_n(t) - F(u_n)(t)\| = 0$, using once more similar arguments as in 3o, we can prove that there exists $u_0 \in V$ such that $u_0 = F(u_0)$, i.e., $u_0 \in S$. Furthermore, $V \subset C_w(J, E) \setminus U$, as U is open, so that $u_0 \in S \setminus U$, a contradiction. Therefore there exists $k \in \mathbb{N}$ such that $S_k \subset U$. Since $U_1 \cap S_k \neq \emptyset \neq U_2 \cap S_k$, this shows that S_k is not connected, which contradicts Lemma 4. Hence S is connected.

REFERENCES

