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ABSTRACT. The aim of this work is to study asymptotic properties of the
third-order quasi-linear delay differential equation

[

a(t)
(

x
′′(t)

)

α
]

′

+ q(t)xα
(

τ(t)
)

= 0, (E)

where α > 0,
∫

∞

t0

1
a
1/α(t)

dt < ∞ and τ(t) ≤ t. We establish a new condition

which guarantees that every solution of (E) is either oscillatory or converges to
zero. These results improve some known results in the literature. An example is
given to illustrate the main results.

1. Introduction

We are concerned with the oscillation and asymptotic behavior of the third-
-order differential equation

[

a(t)
(

x′′(t)
)α
]

′

+ q(t)xα
(

τ(t)
)

= 0, (E)

where α > 0 is the quotient of odd positive integers, q(t), τ(t) ∈ C
(

[t0,∞)
)

and

a(t)∈C1
(

[t0,∞)
)

, a′(t)≥0, a(t)>0,

∞
∫

t0

1

a1/α(t)
dt < ∞, q(t)≥0, q(t)

is not identically zero on any ray of the form [t∗,∞) for any t∗ ≥ t0, τ(t) ≤ t,
limt→∞ τ(t) = ∞.

By a solution of Eq. (E) we mean a function x(t) ∈ C2
(

[Tx,∞)
)

, Tx ≥ t0,

which has the property a(t)
(

x′′(t)
)α

∈ C1
(

[Tx,∞)
)

and satisfies (E) on [Tx,∞).

We consider only those solutions x(t) of (E) which satisfy sup
{

|x(t)| : t ≥ T
}

> 0
for all T ≥ Tx. We assume that (E) possesses such a solution. A solution of (E)
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is called oscillatory if it has arbitrarily large zeros on [Tx,∞) and otherwise,
it is said to be nonoscillatory. Equation (E) itself is said to be almost oscillatory
if all its solutions are oscillatory or convergent to zero asymptotically.

Recently, great attention has been devoted to the oscillation of differen-
tial equations; see, e.g., the papers [1]–[17]. Especially, differential equations
of the form (E) and its special cases have been the subject of intensive research.
H a r t m a n and W i n t n e r [4], H a n a n [5] and E r b e [6] studied a particular
case of (E), namely, the third-order differential equation

x′′′(t) + q(t)x(t) = 0.

B a c u l ı́ k o v á et al. [11] considered the oscillation of third-order differential
equation

[

b(t)
(

[

a(t)x′(t)
]

′

)α
]

′

+ q(t)xα(t) = 0.

B a c u l ı́ k o v á and D ž u r i n a [12], [13], [14], G r a c e et al. [15], S a k e r and
D ž u r i n a [17] examined the oscillation behavior of (E) under the cases when

∞
∫

t0

1

a1/α(t)
dt = ∞ and

∞
∫

t0

1

a1/α(t)
dt < ∞.

However, those results cannot be applied when
∞
∫

t0

1

a1/α(t)
dt < ∞ and τ(t) = t.

We utilize a new method to complement this gap.

Remark 1. All functional inequalities considered in this paper are assumed to
hold eventually, that is, they are satisfied for all t large enough.

Remark 2. Without loss of generality we can deal only with the positive solu-
tions of (E).

2. Main results

In this section, we obtain a new oscillatory criterion for (E).Lemma 1 ( [14, Lemma 3]). Assume that u(t) > 0, u′(t) ≥ 0, u′′(t) ≤ 0
on (t0,∞). Then for each l ∈ (0, 1) there exists a Tl ≥ t0 such that

u(τ(t))

u(t)
≥ l

τ(t)

t
, t ≥ Tl.Lemma 2 ([14, Lemma 4]). Assume that z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) ≤ 0

on (Tl,∞). Then z(t)

z′(t)
≥

t− Tl

2
, t ≥ Tl.
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OSCILLATION THEOREMSTheorem 1. Assume that

∞
∫

t0

∞
∫

v





1

a(u)

∞
∫

u

q(s) ds





1/α

du dv = ∞ (2.1)

and

lim sup
t→∞

t
∫

t2

[

lαsq(s)

(

τ(s)− Tl

2

τ(s)

s

)α

−
1

(α+ 1)α+1

a(s)

sα

]

ds = ∞ (2.2)

for some l ∈ (0, 1) and for sufficiently large Tl ≥ t0, t2 ≥ Tl. Furthermore,

assume that

lim sup
t→∞

t
∫

t3

[

kαq(s)τα(s)δα(s)−

(

α

α+ 1

)α+1
1

δ(s)a1/α(s)

]

ds = ∞ (2.3)

holds for some k ∈ (0, 1) and for sufficiently large t3 ≥ t0, where

δ(t) :=

∞
∫

t

1

a1/α(s)
ds.

Then (E) is almost oscillatory.

P r o o f. Assume that x is a positive solution of (E). Then there exist three
possible cases:

(1) x(t) > 0, x′(t) < 0, x′′(t) > 0, x′′′(t) ≤ 0,

(2) x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) ≤ 0,

(3) x(t) > 0, x′(t) > 0, x′′(t) < 0,
(

a(t)(x′′(t))α
)

′

≤ 0

for t ≥ t1, t1 large enough.

If case (1) holds, similar to the proof of [14, Lemma 2], we can obtain that
limt→∞ x(t) = 0 due to condition (2.1).

Suppose that case (2) holds. We define the function w by

w(t) = t
a(t)(x′′(t))α

(x′(t))α
, t ≥ t1. (2.4)

Then w(t) > 0. From (2.4), we obtain

w′(t) =
a(t)(x′′(t))α

(x′(t))α
+

t(a(t)(x′′(t))α)′

(x′(t))α
−

αta(t)(x′′(t))α+1

(x′(t))α+1

= −tq(t)

(

x(τ(t))

x′(t)

)α

+
w(t)

t
− α

w(α+1)/α(t)

(ta(t))1/α
. (2.5)
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From [14, Lemma 3, Lemma 4], we see that

x′(τ(t))

x′(t)
≥

lτ(t)

t
and

x(t)

x′(t)
≥

(t− Tl)

2
for t ≥ Tl ≥ t1, respectively.

Hence by (2.5), there exists a t2 ≥ Tl such that

w′(t) ≤ −lαtq(t)

(

τ(t)− Tl

2

τ(t)

t

)α

+
w(t)

t
− α

w(α+1)/α(t)

(ta(t))1/α
, t ≥ t2. (2.6)

Using the inequality

Bv −Av(α+1)/α ≤
αα

(α+ 1)α+1

Bα+1

Aα
, A > 0,

with

v = w(t), A := α/
(

ta(t)
)1/α

and B := 1/t,

we have

w′(t) ≤ −lαtq(t)

(

τ(t)− Tl

2

τ(t)

t

)α

+
1

(α+ 1)α+1

a(t)

tα
.

Integrating the last inequality from t2 to t, we obtain

t
∫

t2

[

lαsq(s)

(

τ(s)− Tl

2

τ(s)

s

)α

−
1

(α+ 1)α+1

a(s)

sα

]

ds ≤ w(t2),

which contradicts (2.2).

Assume that case (3) holds. We define the function u by

u(t) = −
a(t)(−x′′(t))α

(x′(t))α
, t ≥ t1. (2.7)

Then u(t) < 0. Noting that a(t)
(

−x′′(t)
)α

is nondecreasing, we get

a1/α(s)x′′(s) ≤ a1/α(t)x′′(t), s ≥ t ≥ t1.

Dividing the above inequality by a1/α(s), and integrating it from t to l, we obtain

x′(l) ≤ x′(t) + a1/α(t)x′′(t)

l
∫

t

ds

a1/α(s)
.

Letting l → ∞, we have

0 ≤ x′(t) + a1/α(t)x′′(t)δ(t).

That is

−δ(t)
a1/α(t)x′′(t)

x′(t)
≤ 1.

Hence by (2.7), we get

− δα(t)u(t) ≤ 1. (2.8)
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Differentiating (2.7), we obtain

u′(t) =
(−a(t)(−x′′(t))α)

′

(x′(t))α+ αa(t)(−x′′(t))α(x′(t))α−1x′′(t)

(x′(t))2α
.

Thus

u′(t) =
(−a(t)(−x′′(t))α)

′

(x′(t))α
− α

(−u(t))(α+1)/α

a1/α(t)
. (2.9)

Since

x(t) > 0, x′(t) > 0, x′′(t) < 0,

we have

x(t) ≥ ktx′(t) for each k ∈ (0, 1) and t ≥ Tk ≥ t1.

It follows from (E) and (2.9) that there exists a t3 ≥ Tk such that

u′(t) ≤ −q(t)
(

kτ(t)
)α

− α
(−u(t))(α+1)/α

a1/α(t)
, t ≥ t3. (2.10)

Multiplying (2.10) by δα(t), and integrating it from t3 to t, we have

u(t)δα(t)− u(t3)δ
α(t3) + α

t
∫

t3

δα−1(s)u(s)

a1/α(s)
ds

+ α

t
∫

t3

δα(s)

a1/α(s)

(

−u(s)
)(α+1)/α

ds

+

t
∫

t3

q(s)
(

kτ(s)
)α
δα(s) ds ≤ 0.

Using the inequality

Av(α+1)/α −Bv ≥ −
αα

(α+ 1)α+1

Bα+1

Aα
, A > 0,

with

v := −u(s), A := αδα(s)/a1/α(s) and B := αδα−1(s)/a1/α(s),

we obtain
t
∫

t3

[

kαq(s)τα(s)δα(s)−

(

α

α+ 1

)α+1
1

δ(s)a1/α(s)

]

ds ≤ u(t3)δ
α(t3) + 1.

Letting t → ∞, we obtain a contradiction to (2.3). This completes the proof. �
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Example 1. We consider the third-order differential equation
[

t
3

2

(

x′′(t)
)

]

′

+
λ

t
3

2

x(t) = 0, λ > 0, t ≥ 1. (2.11)

Let
α = 1, a(t) = t

3

2, q(t) =
λ

t
3

2

, τ(t) = t.

It is easy to verify that conditions (2.1) and (2.2) hold. Moreover, we have

lim sup
t→∞

t
∫

t3

[

kαq(s)
(

τ(s)
)α
δα(s)−

(

α

α+ 1

)α+1
1

δ(s)a1/α(s)

]

ds

=

[

2kλ−
1

8

]

t
∫

t3

1

s
ds = ∞, λ >

1

16k
for some k ∈ (0, 1).

Hence by Theorem 1, equation (2.11) is almost oscillatory when λ > 1
16k for

some k ∈ (0, 1). However, the results given in [13], [15] cannot be applied to
equation (2.11), since

∞
∫

t0

(

1

a(u)

u
∫

t0

q(s)τ(s)

∞
∫

τ(s)

1

a1/α(v)
dv ds

)1/α

du < ∞.

3. Conclusions

In this paper, we establish a new oscillation theorem for (E). Our result
improves and complements results given in the literature. The method can be
applied to the following equation

[

a(t)
(

x′′(t)
)α
]

′

+ q(t)xβ
(

τ(t)
)

= 0.

Further, the method can be extended to the corresponding dynamic equations
on time scales, the details are left to the reader.
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[13] BACULÍKOVÁ, B.—DŽURINA, J.: Oscillation of third-order functional differential

equations, Electron. J. Qual. Theory Differ. Equ. 43 (2010), 1–10.
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