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EXISTENCE OF ASYMPTOTICALLY PERIODIC

SOLUTIONS OF SCALAR VOLTERRA DIFFERENCE

EQUATIONS

Josef Dibĺık — Miroslava Růžičková — Ewa Schmeidel

ABSTRACT. There is used a version of Schauder’s fixed point theorem to prove
the existence of asymptotically periodic solutions of a scalar Volterra difference
equation. Along with the existence of asymptotically periodic solutions, sufficient
conditions for the nonexistence of such solutions are derived. Results are illus-
trated on examples.

1. Introduction

We consider a Volterra difference equation

x(n+ 1) = a(n) + b(n)x(n) +

n∑
i=0

K(n, i)x(i), (1)

where

n ∈ N := {0, 1, 2, . . .} , a, b, x : N → R, K : N× N → R

and R denotes the set of all real numbers. By a solution of equation (1) we mean
a sequence x : N → R whose terms satisfy (1) for every n ∈ N. Throughout this
paper we will assume that sequences a and K are not identically equal to zero.

We will also adopt the customary notations

k∑
i=k+s

O(i) = 0,

k∏
i=k+s

O(i) = 1,
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where k is an integer, s is a positive integer and “O” denotes the function
considered independently of whether it is defined for the arguments indicated or
not.

���������� 1� Let ω be a positive integer. The sequence y : N → R is called ω-
-periodic if y(n+ω) = y(n) for all n ∈ N. The sequence y is called asymptotically
ω-periodic if there exist two sequences u, v : N → R such that u is ω-periodic,
limn→∞ v(n) = 0 and y(n) = u(n) + v(n) for all n ∈ N.

The background for discrete Volterra equations can be found in the well
known monograph [1] by A g a r w a l, as well as in E l a y d i [3] and K o c i ć
and L a d a s [7].

Uniform asymptotic stability in linear Volterra difference equations was stud-
ied by E l a y d i and M u r a k am i in [4]. Periodic and asymptotically periodic
solutions of linear difference equations were investigated, e.g., by A g a r w a l
and P o p e n d a in [2], and by P o p e n d a and S c hm e i d e l in [9, 10].

In [5] and [6], F u r u m o c h i considered the behavior of solutions of the
following classes of Volterra difference equations

x(n+ 1) = a(n)−
n∑

i=0

D
(
n, i, x(i)

)
and

x(n+ 1) = p(n)−
n∑

i=−∞
P
(
n, i, x(i)

)
,

and their inter-relations. Boundedness, attractivity, and convergence of solutions
were investigated.

2. Asymptotically periodic solutions

In this section, sufficient conditions for the existence of an asymptotically
ω-periodic solution of equation (1) are given. The following version of Schau-
der’s fixed point theorem, which can be found in [8], will be used to prove the
main result of this paper.

	�

� 1� Let Ω be a Banach space and S its nonempty, closed and convex
subset, and let T be a continuous mapping such that T (S) is contained in S, and

the closure T (S) is compact. Then T has a fixed point in S.
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Let ω be a positive integer and b : N → R \ {0} be ω-periodic. Then we define
an ω-periodic function β : N → R as

β(n) =

⎧⎪⎪⎨
⎪⎪⎩

n−1∏
j=0

1

b(j)
if n ≥ 1,

β(ω) if n = 0.

(2)

Further we define

m := min
{|β(1)| , |β(2)| , . . . , |β(ω)|}

and

M := max
{|β(1)| , |β(2)| , . . . , |β(ω)|}.

�
����
 1 (Main result)� Let ω be a positive integer and b : N → R \ {0} be
ω-periodic. Assume that

ω−1∏
i=0

b(i) = 1, (3)

∞∑
i=0

|a(i)| < ∞ (4)

and
∞∑
j=0

j∑
i=0

|K(j, i)| < m

M
. (5)

Then, for any nonzero constant c, there exists an asymptotically ω-periodic so-
lution x of (1) such that

x(n) = u(n) + v(n), n ∈ N (6)

with

u(n) := c

n∗∏
k=0

b(k) and lim
n→∞ v(n) = 0 (7)

where n∗ is the remainder of dividing n− 1 by ω.

P r o o f. We note that n∗ = n−1−ω
[
n−1
ω

]
where the function [ · ] is the greatest

integer function.

From the ω-periodicity of sequence b, the definition of β by (2), and the
property (3) we have

β(n) ∈ {β(1), β(2), . . . , β(ω)}
for any n ∈ N. Thus,

m ≤ |β(n)| ≤ M (8)
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for any n ∈ N. Let c > 0. We set

α(0) :=

M
∞∑
i=0

|a(i)|+ cM
m

∞∑
j=0

j∑
i=0

|K(j, i)|

1− M
m

∞∑
j=0

j∑
i=0

|K(j, i)|

and

α(n) :=M

∞∑
i=n

|a(i)|+
(
c+ α(0)

)
M

m

∞∑
j=n

j∑
i=0

|K(j, i)| ,

for n ≥ 1. It is easy to see that

lim
n→∞α(n) = 0. (9)

We show, moreover, that

α(n) ≤ α(0) (10)

for any n ∈ N. Let us first remark that

α(0) = M

∞∑
i=0

|a(i)|+
(
c+ α(0)

)
M

m

∞∑
j=0

j∑
i=0

|K(j, i)| .

Then, due to the convergence of series (4), (5), the inequality

α(0) = M

∞∑
i=0

|a(i)|+
(
c+ α(0)

)
M

m

∞∑
j=0

j∑
i=0

|K(j, i)|

≥ M

∞∑
i=n

|a(i)|+
(
c+ α(0)

)
M

m

∞∑
j=n

j∑
i=0

|K(j, i)| = α(n)

obviously holds for every n ∈ N and (10) is proved.

Let B be the Banach space of all real bounded sequences z : N → R equipped
with the usual supremum norm. We define a subset S ⊂ B as

S :=
{
z(n) ∈ B : c− α(0) ≤ z(n) ≤ c+ α(0), n ∈ N

}
.

It is not difficult to prove that S is a nonempty, bounded, convex, and closed
subset of B.

Let us define a mapping T : S → B as follows

(Tz)(n) = c−
∞∑
i=n

a(i)β(i+ 1)−
∞∑
j=n

j∑
i=0

β(j + 1)

β(i)
K(j, i)z(i) (11)
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for any n ∈ N. We will prove that the mapping T has a fixed point in B. We
first show that T (S) ⊂ S. Indeed, if z ∈ S, then

|z(n)− c| ≤ α(0) for n ∈ N,

and, by (8) and (11), we have

|(Tz)(n)− c| ≤M

∞∑
i=n

|a(i)|+
(
c+ α(0)

)
M

m

∞∑
j=n

j∑
i=0

|K(j, i)|

= α(n) ≤ α(0). (12)

Next we prove that T is continuous. Let z(p) be a sequence in S such that
z(p) → z as p → ∞. Because S is closed, z ∈ S. Now, by (5), (8) and (11), we
get

|(Tz(p))(n)− (Tz)(n)| =
∣∣∣∣∣∣
∞∑
j=n

j∑
i=0

β(j + 1)

β(i)
K(j, i)

(
z(p)(n)− z(n)

)∣∣∣∣∣∣
≤ M

m
· m
M

· sup
i≥0

|z(p)(i)− z(i)|, n ∈ N.

Therefore∣∣∣(Tz(p))(n)− (Tz)(n)
∣∣∣ ≤ sup

i≥0

∣∣∣z(p)(i)− z(i)
∣∣∣, n ∈ N

and

lim
p→∞

∣∣∣Tz(p) − Tz
∣∣∣ = 0.

This means that T is continuous.

To prove that T (S) is compact, we take ε > 0. Then, from (9), we conclude
that there exists nε ∈ N such that α(n) < ε, for n ≥ nε. We cover the segment[
c−α(0), c+α(0)

]
with a finite number kε of intervals each having a length of ε.

Let the points ckε
be the centres of the ε-length intervals. We conclude that, for

an arbitrarily small ε > 0, we can collect a finite set of intervals with centres at

ckε
and with radii ε/2 which covers T (S). Hence T (S) is compact.

By Schauder’s fixed point theorem (see Lemma 1), there exists a z ∈ S such
that

z(n) = (Tz)(n) for n ∈ N.
Thus

z(n) = c−
∞∑
i=n

a(i)β(i+ 1)

−
∞∑
j=n

j∑
i=0

β(j + 1)

β(i)
K(j, i)z(i) for any n ∈ N. (13)
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Due to (9) and (12), for fixed point z ∈ S of T , we have

lim
n→∞ |z(n)− c| = lim

n→∞ |(Tz)(n)− c| ≤ lim
n→∞α(n) = 0

or, equivalently,

lim
n→∞

z(n) = c. (14)

Finally, we will show that there exists a connection of the fixed point z ∈ S with
the existence of asymptotically ω-periodic solution of (1). Considering (13) for
z(n+ 1) and z(n), we get

Δz(n) = a(n)β(n+ 1) +

n∑
i=0

β(n+ 1)

β(i)
K(n, i)z(i), n ∈ N.

Hence, by (2) (taking into account that β(0) = β(ω) = 1 in view of (3)), we
have

z(n+ 1)− z(n) = a(n)β(n+ 1) +
β(n+ 1)

β(0)
K(n, 0)z(0)

+
n∑

i=1

β(n+ 1)

β(i)
K(n, i)z(i)

= a(n)

n∏
k=0

1

b(k)
+

(
n∏

k=0

1

b(k)

)
K(n, 0)z(0) (15)

+

n∑
i=1

(
n∏

k=i

1

b(k)

)
K(n, i)z(i), n ∈ N.

Putting

z(n) =

(
n−1∏
k=0

1

b(k)

)
x(n), n ∈ N (16)

in (15), we get equation (1) since

x(n+ 1)
n∏

k=0

1
b(k)

− x(n)
n−1∏
k=0

1
b(k)

= a(n)

n∏
k=0

1

b(k)
+

(
n∏

k=0

1

b(k)

)
K(n, 0)

( −1∏
k=0

1

b(k)

)
x(0)

+

n∑
i=1

(
n∏

k=i

1

b(k)

)
K(n, i)

(
i−1∏
k=0

1

b(k)

)
x(i), n ∈ N

yields

x(n+ 1) = a(n) + b(n)x(n) +K(n, 0)x(0) +

n∑
i=1

K(n, i)x(i), n ∈ N.
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Consequently, x defined by (16) is a solution of (1). From (14) and (16), we
obtain (

n−1∏
k=0

1

b(k)

)
x(n) = z(n) = c+ o(1)

for n → ∞ (where o(1) is the Landau order symbol). Hence

x(n) = c

n−1∏
k=0

b(k) +

(
n−1∏
k=0

b(k)

)
o(1), n → ∞.

From (3) we get
n−1∏
k=0

b(k) =

n∗∏
k=0

b(k).

The proof is complete since the sequence
{∏n∗

k=0 b(k)
}
is ω-periodic and due to

properties of Landau order symbols we have(
n∗∏
k=0

b(k)

)
o(1) = o(1), n → ∞.

If c < 0, the proof, which we omit, can be carried out in a manner similar to the
one used above if x is changed to −x. �
Remark 1� Tracing the proof of Theorem 1 we see that it remains valid even
in the case of c = 0. Then there exists an asymptotically “ω”-periodic solution
x of (1) as well. The formula (6) reduces to

x(n) = v(n) = o(1), n ∈ N.

From the point of view of Definition 1, we can consider this case as follows. We
set (as a singular case) u ≡ 0 with an arbitrary (possibly other than “ω”) period
and with v = o(1) for n → ∞.

In the following example, a sequence b is 1-periodic. Then it is 2-periodic,
too. By virtue of Theorem 1, there exists a 2-periodic solution of the equation
in question.

Example 1. Put

a(n) = (−1)n+1 · 1

3 · 2n+3
+

53

48 · 22n +
1

23n+4
,

b(n) ≡ −1 and K(n, i) =
2i

4n+2

in (1). We consider the sequence b as a 2-periodic sequence and put ω = 2.
Obviously, m = M = 1 and

∞∑
j=0

j∑
i=0

K(j, i) =

∞∑
j=0

j∑
i=0

2i

4j+2
=

∞∑
j=0

2j+1 − 1

4j+2
=

1

6
< 1.
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Then all the assumptions of Theorem 1 are satisfied and (by (6), (7)) there exists
an asymptotically 2-periodic solution

x(n) = u(n) + v(n), n ∈ N

of the equation (1) where

u(n) = c

n∗∏
k=0

b(k) = c

n∗∏
k=0

(−1) = c(−1)n, lim
n→∞

v(n) = 0.

Indeed, a sequence

x(n) = c(−1)n +
1

4n

with c = 1 is such a solution.

3. Nonexistence of asymptotically periodic solutions

Finally, we present sufficient conditions for the nonexistence of asymptotically
periodic solution of (1) satisfying some auxiliary conditions.

Let x(n) = u(n) + v(n) be an asymptotically periodic solution of (1) such
that the sequence u is ω-periodic and limn→∞ v(n) = 0.

�
����
 2� If sequences a : N → R and b : N → R are bounded and there exists
a positive integer ω such that

K(n, i) = K(n+ ω, i+ ω) (17)

for all n, i ∈ N, then the equation (1) does not have any asymptotically ω-periodic
solution x(n) = u(n) + v(n) such that

ω−1∑
i=0

K(ω − 1, i)u(i) 	= 0 (18)

and
∞∑
i=0

|v(i)| < ∞. (19)

P r o o f. Suppose, on the contrary, that assumptions of Theorem 2 are satisfied
and there exists an asymptotically ω-periodic solution x of equation (1) which
satisfies conditions (18) and (19). Without loss of generality we may assume that

ω−1∑
i=0

K(ω − 1, i)u(i) > 0. (20)
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From (17) we have

K(n, i) = K

(
n− ω

[
n

ω

]
, i− ω

[
i

ω

])
= K

(
(n+ 1)∗, (i+ 1)∗

)
.

Because x(n) = u(n) + v(n), from (17) and the ω-periodicity of the sequence u,
we have

n∑
i=0

K(n, i)x(i) =

n∑
i=0

K
(
(n+ 1)∗, (i+ 1)∗

)
u
(
(i+ 1)∗

)

+

n∑
i=0

K
(
(n+ 1)∗, (i+ 1)∗

)
v(i)

=

[
n

ω

]
·
ω−1∑
i=0

K(ω − 1, i)u(i)

+

(n+1)∗∑
i=0

K
(
(n+ 1)∗, i

)
u(i)

+

n∑
i=0

K
(
(n+ 1)∗, (i+ 1)∗

)
v(i).

By (20)

lim sup
n→∞

[
n

ω

]
·
ω−1∑
i=0

K(ω − 1, i)u(i) = ∞.

We remark that the sum
(n+1)∗∑
i=0

K
(
(n+ 1)∗, i

)
u(i)

is bounded (for n → ∞) and there exists a positive constant K∗∗ such that∣∣K((n+ 1)∗, (i+ 1)∗
)∣∣ ≤ K∗∗

for all n, i ∈ N. Then∣∣K((n+ 1)∗, (i+ 1)∗
)∣∣ |v(i)| ≤ K∗∗ |v(i)|

and, by (19), the series
∞∑
i=0

K
(
(n+ 1)∗, (i+ 1)∗

)
v(i)

is absolutely convergent. Thus

lim sup
n→∞

n∑
i=0

K(n, i)x(i) = ∞.
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Rewriting (1), we get

x(n+ 1)− a(n)− b(n)x(n) =

n∑
i=0

K(n, i)x(i),

where the left-hand side of the above equation is bounded while the right-hand
side is unbounded. This contradiction completes the proof. �

Remark 2� We will emphasize the necessity of (18) in Theorem 2. If

ω−1∑
i=0

K(ω − 1, i)u(i) = 0

then (1) can have an asymptotically ω-periodic solution.

Let, e.g., K(j, i) =
(
1 + (−1)i

)
/2. Then, taking sequences a and b in (1) in

a proper manner, the equation (1) will have an asymptotically 4-periodic solution
x(n) = u(n) + v(n) with 4-periodic function u(n) := (0, 1, 0, 2, . . . ). In this case

ω−1∑
i=0

K(ω − 1, i)u(i) =

ω−1∑
i=0

1 + (−1)i

2
u(i) = 1 · 0 + 0 · 1 + 1 · 0 + 0 · 2 = 0

and (18) does not hold. Then

lim sup
n→∞

[
n

ω

]
·
ω−1∑
i=0

K(ω − 1, i)u(i) = 0

and we do not get the final contradiction in the proof of Theorem 2.
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Miroslava R̊užičková
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