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ON THE RATIONAL RECURSIVE SEQUENCE

xn+1 =
axn−1

b+cxnxn−1

Anna Andruch-Sobi�lo — Ma�lgorzata Migda

ABSTRACT. In this paper we consider the difference equation

xn+1 =
axn−1

b + cxnxn−1
, n = 0, 1, . . . (E)

with positive parameters and nonnegative initial conditions. We use the explicit
formula for the solutions of equation (E) in investigating their behavior.

1. Introduction

In this paper we consider the following rational difference equation

xn+1 =
axn−1

b+ cxnxn−1
, n = 0, 1, . . . (E)

where a, b, c are positive real numbers and the initial conditions x−1, x0 are
nonnegative real numbers such that x−1 or x0 or both are positive real numbers.
Equation (E) in the case of negative b was considered in [1].

The purpose of this paper is to use the explicit formula for solutions of equa-
tion (E) in investigating their behavior. We will show that when a < b, the zero
equilibrium is a global attractor for all positive solutions of equation (E) and
that all positive solutions of equation (E) are bounded.

There has been a lot of work concerning the asymptotic behavior of solutions
of rational difference equations. Second order rational difference equations were
investigated, for example in [1–11]. This paper is motivated by the short notes [2]
and [9], where the authors studied the rational difference equation

xn+1 =
xn−1

1 + xnxn−1
, n = 0, 1, . . .
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2. Main results

Let p = b
a , q = c

a . Then equation (E) can be rewritten as

xn+1 =
xn−1

p+ qxnxn−1
, n = 0, 1, . . . (E1)

The change of variables xn = 1√
q
yn reduces the above equation to

yn+1 =
yn−1

p+ ynyn−1
, n = 0, 1, . . . (E2)

where p ∈ R+ and the initial conditions y−1, y0 are nonnegative real numbers
such that y−1 or y0 or both are positive real numbers. Hereafter, we focus our
attention on equation (E2) instead of equation (E). Note, that the solution {yn}
with y−1 = 0 or y0 = 0 of equation (E2) is oscillatory. In fact, in this case we
have

{yn} =

{
0, y0, 0,

y0
p
, 0,

y0
p2

, . . .

}
or

{yn} =

{
y−1, 0,

y−1

p
, 0,

y−1

p2
, 0, . . .

}
.

Obviously, if p = 1, these solutions are 2-periodic.

Thus, let us assume that y−1 and y0 are positive. Then it is clear that yn > 0
for all n ≥ −1. In the sequel, we will only consider positive solutions of equa-
tion (E2).

The equilibria of equation (E2) are the solutions of the equation

ȳ =
ȳ

p+ ȳ2
.

Hence, ȳ = 0 is always an equilibrium point of equation (E2). Clearly, when
p ≥ 1 it is a unique equilibrium point. The local asymptotic behavior of the zero
equilibrium of equation (E2) is characterized by the following result.

Theorem A ([11]). The following statements are true.

(i) If p > 1, then ȳ = 0 is locally asymptotically stable.

(ii) If p < 1, then ȳ = 0 is a repeller.

Applying Theorem 2.1 obtained by C i n a r in [3] (with a = b = 1
p ) to equa-

tion (E2) we get the explicit formula for every solution {yn} with positive initial
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conditions y−1, y0. We can write it in the following form

yn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y−1

n+1
2

−1∏

i=0

[
p2i+ y0y−1

2i−1∑

k=0

pk

]
n+1
2

−1∏

i=0

[
p2i+1+y0y−1

2i∑

k=0

pk

] for odd n,

y0

n
2

−1∏

i=0

[
p2i+1+y0y−1

2i∑

k=0

pk

]
n
2

−1∏

i=0

[
p2i+2+y0y−1

2i+1∑

k=0

pk

] for even n.

(1)

We will use the explicit formula for solutions of equation (E2) in investigating
their asymptotic behavior. We will consider the cases, when p ≥ 1 and p ∈ (0, 1).

������� 1� Assume that p ≥ 1. Then every positive solution {yn} of equa-
tion (E2) converges to zero.

P r o o f. Let {yn} be a solution of equation (E2) satisfying the initial conditions
y−1 > 0 and y0 > 0. It is enough to prove that the subsequences {y2n} and
{y2n−1} converge to zero as n → ∞. From (1) we have

y2n = y0

n−1∏
i=0

[
p2i+1 + y0y−1

2i∑
k=0

pk
]

n−1∏
i=0

[
p2i+2 + y0y−1

2i+1∑
k=0

pk
]

= y0 exp

⎡
⎢⎢⎢⎣

n−1∑
i=0

ln

p2i+1 + y0y−1

2i∑
k=0

pk

p2i+2 + y0y−1

2i+1∑
k=0

pk

⎤
⎥⎥⎥⎦

= y0 exp

⎡
⎢⎢⎢⎣

n−1∑
i=0

ln

⎛
⎜⎜⎜⎝1− p2i+2 − p2i+1 + p2i+1y0y−1

p2i+2 + y0y−1

2i+1∑
k=0

pk

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

≤ y0 exp

⎡
⎢⎢⎢⎣−

n−1∑
i=0

p2i+2 − p2i+1 + p2i+1y0y−1

p2i+2 + y0y−1

2i+1∑
k=0

pk

⎤
⎥⎥⎥⎦

= y0 exp

⎡
⎢⎢⎢⎣−

n−1∑
i=0

p2i+1(p− 1 + y0y−1)

p2i+2 + y0y−1

2i+1∑
k=0

pk

⎤
⎥⎥⎥⎦ .
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So, we have

y2n ≤ y0 exp

⎡
⎢⎢⎢⎣−(p− 1 + y0y−1)

n−1∑
i=0

p2i+1

p2i+2 + y0y−1

2i+1∑
k=0

pk

⎤
⎥⎥⎥⎦ . (2)

Since p ≥ 1, p− 1 + y0y−1 > 0 and from the above inequality we obtain

y2n ≤ y0 exp

⎡
⎢⎢⎢⎣−(p− 1 + y0y−1)

n−1∑
i=0

p2i+1

p2i+2 + y0y−1p2i+1
2i+1∑
k=0

1

⎤
⎥⎥⎥⎦

= y0 exp

[
−(p− 1 + y0y−1)

n−1∑
i=0

1

p+ y0y−1(2i+ 2)

]
.

Because
∑n−1

i=0
1

p+y0y−1(2i+2) → ∞ as n → ∞, so y2n → 0 as n → ∞.

Similarly, we obtain

y2n−1 ≤ y−1 exp

[
−(p− 1 + y0y−1)

n−1∑
i=0

1

p+ y0y−1(2i+ 1)

]
→ 0, as n → ∞.

This completes the proof. �

Theorem 1 extends Theorem 1 of S t e v i ć [9].

Theorem 1 and Theorem A imply the following result.

����		
�� 1� Assume p > 1. Then the unique equilibrium ȳ = 0 of equa-
tion (E2) is globally asymptotically stable.

Note, that equation (E2) is a special case of equation (3.3) in [11], but our result
relating the global attractivity of the zero equilibrium is stronger.

For p ∈ (0, 1) we have the following result about the subsequences of the even
terms {y2n}∞n=0 and the odd terms {yn}∞n=−1 of every positive solution {yn} of

equation (E2).

������� 2� Assume that p ∈ (0, 1). Let {yn} be a solution of equation (E2)
with positive initial conditions y−1, y0. Then the following statements are true:

(i) If y0y−1 < 1 − p, then the subsequences {y2n} and {y2n−1} are both in-
creasing and bounded.

(ii) If y0y−1 > 1 − p, then the subsequences {y2n} and {y2n−1} are both de-
creasing and bounded.

(iii) If y0y−1 = 1 − p, then the subsequences {y2n} and {y2n−1} are both con-
stant sequences.
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P r o o f.

(i) Let {yn} be a positive solution of equation (E2). From (1) for the subse-
quence {y2n} we have

y2n = y0

n−1∏
i=0

[
p2i+1 + y0y−1

2i∑
k=0

pk
]

n−1∏
i=0

[
p2i+2 + y0y−1

2i+1∑
k=0

pk
] ,

and so for n ≥ 0

y2n+2

y2n
=

n∏
i=0

[
p2i+1 + y0y−1

2i∑
k=0

pk
]
n−1∏
i=0

[
p2i+2 + y0y−1

2i+1∑
k=0

pk
]

n∏
i=0

[
p2i+2 + y0y−1

2i+1∑
k=0

pk
]
n−1∏
i=0

[
p2i+1 + y0y−1

2i∑
k=0

pk
]

=

p2n+1 + y0y−1

2n∑
k=0

pk

p2n+2 + y0y−1

2n+1∑
k=0

pk
. (3)

Since y0y−1 < 1− p, we have

y0y−1p
2n+1 < p2n+1 − p2n+2.

Hence

y0y−1

(
2n+1∑
k=0

pk −
2n∑
k=0

pk

)
< p2n+1 − p2n+2,

and therefore

p2n+1 + y0y−1

2n∑
k=0

pk > p2n+2 + y0y−1

2n+1∑
k=0

pk.

From the above inequality and (3) it follows that the subsequence {y2n} is
increasing. Similarly we obtain that the subsequence {y2n−1} is increasing.
Now, we will show that the solution {yn} is bounded.
From (2) we have

y2n ≤ y0 exp

⎡
⎢⎢⎢⎣−(p− 1 + y0y−1)

n−1∑
i=0

p2i+1

p2i+2 + y0y−1

2i+1∑
k=0

pk

⎤
⎥⎥⎥⎦

= y0 exp

[
(1− p− y0y−1)(1− p)

n−1∑
i=0

p2i+1

p2i+2(1− p) + y0y−1(1− p2i+2)

]
.
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Since for p ∈ (0, 1) the series

n−1∑
i=0

p2i+1

p2i+2(1− p) + y0y−1(1− p2i+2)

is convergent and we get the boundedness of {y2n}. Similarly we obtain
the boundedness of the subsequence {y2n−1}.

(ii) The proof is similar to the proof of (i) and will be omitted.

(iii) If y0y−1 = 1− p then from (E2) we get

yn+1 =
yn−1

p+ ynyn−1
= yn−1.

Hence

{y2n} = {y0, y0, y0, . . .} and {y2n−1} = {y−1, y−1, y−1, . . .}
and, the solution

{yn} = {y−1, y0, y−1, y0, . . . y−1, y0}
is 2-periodic.

This completes the proof. �

From Theorem 1 and Theorem 2 we get the following corollary.

����		
�� 2� Every positive solution of equation (E) is bounded.

We say the sequences {an}, {bn} are equivalent (Cauchy equivalent) if
limn→∞(an − bn) = 0. If there exists a k-periodic sequence {cn} equivalent
to {an}, we say that {an} is asymptotically k-periodic sequence.

The next corollary follows from Theorem 2 and from the expression of equa-
tion (E2).

����		
�� 3� Assume that p ∈ (0, 1). Then every positive solution of equa-
tion (E2) is asymptotically 2-periodic sequence {r, s, r, s, r, s, . . .}, where rs =
1− p.

Moreover, it is clear from formula (1) that, for a fixed p, numbers r and s
depend only on the initial data y−1, y0.

3. Numerical results

Example 1. Let y−1 = 2, y0 = 5 be the initial conditions of equation (E2) with
p = 2. Then, by Theorem 1, the solution converges to zero.

The Table 1 sets forth the values of yn for selected small n’s. Note that
Theorem 5.2 from [11] in this case can not be applied.
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Table 1. The values of yn for selected small n’s.

n yn n yn

1 0.1666666666 2 1.764705882

3 0.07264957264 4 0.8291991495

5 0.03526265806 6 0.4086255174

7 0.01750521080 8 0.2035846305

9 0.008737036910 10 0.1017018654

29 8.527211545 ∗ 10−6 30 9.928883343 ∗ 10−5

699 1.218311909 ∗ 10−106 700 1.418573558 ∗ 10−105

Example 2. Let y−1 = 500, y0 = 100 be the initial conditions of equation (E2)
with p = 4

5 . Then y0y−1 = 50000, 1 − p = 1
5 . So condition y0y−1 > 1 − p holds

and by Theorem 2, the subsequences {y2n} and {y2n−1} are both decreasing.

The Table 2 sets forth the values of yn for selected small n’s.

Table 2. The values of yn for selected small n’s.

n yn n yn

1 0.009999840002 2 55.55604937

3 0.007376952648 4 45.92037709

5 0.006478100367 6 41.84177433

7 0.006048334655 8 39.73302154

9 0.005813925263 10 38.53815313

29 0.005460160780 30 36.67435849

49 0.005456447604 50 36.65440759

99 0.005456404175 100 36.65417618

Example 3. Let y−1 = 0.001, y0 = 2 be the initial conditions of equation (E2)
with p = 0.9. Then y0y−1 = 0.002, 1− p = 0.1. So condition y0y−1 < 1− p holds
and by Theorem 2, the subsequences {y2n} and {y2n−1} are both increasing.

The Table 3 sets forth the values of yn for selected small n’s.
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Table 3. The values of yn for selected small n’s.

n yn n yn

1 0.00110864745 2 2.216760874

3 0.001228475933 4 2.455637323

5 0.001360413317 6 2.718395588

7 0.001505384658 8 3.006767998

9 0.00166427951 10 3.322380518

25 0.003484539186 26 6.888785559

49 0.006449046007 50 12.37982939

99 0.007251009859 100 13.77325644

299 0.007255975296 300 13.78174482
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