REMARKS ON SMALL SETS ON THE REAL LINE

Mágorzata Filipczak - Elżbieta Wagner-Bojakowska

Abstract

We consider two kinds of small subsets of the real line: the sets of strong measure zero and the microscopic sets. There are investigated the properties of these sets. The example of a microscopic set, which is not a set of strong measure zero, is given.

The notion of strong measure zero set was introduced by E. Borel [Bo]. Properties of these sets were investigated by W. Sierpiński, A. S. Besicovitch, F. Galvin, J. Mycielski, R. M. Solovay, and others.

Definition 1. A set $E \subset \mathbb{R}$ is a strong measure zero set if for each sequence $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive real numbers there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that $E \subset \bigcup_{n=1}^{\infty} I_{n}$ and $m\left(I_{n}\right)<\epsilon_{n}$ for $n \in \mathbb{N}$.

Sometimes, in the definition of strong measure zero set, instead of $E \subset$ $\bigcup_{n=1}^{\infty} I_{n}$, one demands that $E \subset \lim \sup _{n} I_{n}$, where

$$
\limsup _{n} I_{n}=\bigcap_{p=1}^{\infty} \bigcup_{n=p}^{\infty} I_{n} .
$$

The following theorem shows that both conditions are equivalent.
Theorem 1. The following conditions are equivalent:
(i) E is a strong measure zero set;
(ii) for each sequence $\left\{\eta_{n}\right\}_{n \in \mathbb{N}}$ of positive real numbers there exists a sequence $\left\{J_{n}\right\}_{n \in \mathbb{N}}$ of intervals such that $E \subset \limsup _{n} J_{n}$ and $\sum_{k=n}^{\infty} m\left(J_{k}\right)<\eta_{n}$ for $n \in \mathbb{N}$;
(iii) for each sequence $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ of positive real numbers there exists a sequence $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of intervals such that $E \subset \limsup _{n} I_{n}$ and $m\left(I_{n}\right)<\delta_{n}$ for $n \in \mathbb{N}$.

Proof. $(i) \Longrightarrow(i i)$. Let E be a strong measure zero set and let $\left\{\eta_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of positive real numbers. Put

$$
\theta_{m}=\min \left\{\eta_{1}, \ldots, \eta_{m}\right\} \quad \text { for } \quad m \in \mathbb{N} .
$$

2000 Mathematics Subject Classification: 28A05, 28 A 75.
Keywords: microscopic set, set of strong measure zero.

Obviously, the sequence $\left\{\theta_{m}\right\}_{m \in \mathbb{N}}$ is nonincreasing and $\theta_{m} \leq \eta_{m}$ for $m \in \mathbb{N}$.
Let $\left[a_{k n}\right]_{k \in \mathbb{N}, n \in \mathbb{N}}$ be an arbitrary infinite matrix of positive real numbers such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{k n} \leq 1 \tag{1}
\end{equation*}
$$

(for example, $a_{k n}=\frac{1}{2^{k+n}}$ for $k, n \in \mathbb{N}$). Let us consider a function $\psi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined as follows:

$$
\psi(k, n)=2^{k-1}(2 n-1) \quad \text { for } \quad(k, n) \in \mathbb{N} \times \mathbb{N}
$$

It is not difficult to prove that ψ is a bijection. Put

$$
\begin{equation*}
\epsilon_{n}^{(k)}=a_{k n} \theta_{\psi(k, n)} \quad \text { for } \quad k, n \in \mathbb{N} \tag{2}
\end{equation*}
$$

Let k be a fixed positive integer. From (i) it follows that for the sequence $\left\{\epsilon_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ there exists a sequence $\left\{I_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ of intervals such that

$$
\begin{equation*}
E \subset \bigcup_{n=1}^{\infty} I_{n}^{(k)} \quad \text { and } \quad m\left(I_{n}^{(k)}\right)<\epsilon_{n}^{(k)} \tag{3}
\end{equation*}
$$

for $n \in \mathbb{N}$. Let $m \in \mathbb{N}$. Since ψ is a one-to-one correspondence between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N}, there exists exactly one pair $(k, n) \in \mathbb{N} \times \mathbb{N}$ such that $\psi(k, n)=m$. Then put

$$
J_{m}=I_{n}^{(k)} .
$$

Obviously, $E \subset \lim \sup J_{m}$, since each point of E belongs to infinitely many of intervals $I_{n}^{(k)}, n, k \in \mathbb{N}$.

Let $p \in \mathbb{N}$. Put $A_{p}=\{(k, n) \in \mathbb{N} \times \mathbb{N}: \psi(k, n) \geq p\}$. Using (3), (2), and (1) we obtain

$$
\begin{aligned}
\sum_{m=p}^{\infty} m\left(J_{m}\right) & =\sum_{(k, n) \in A_{p}} m\left(I_{n}^{(k)}\right)<\sum_{(k, n) \in A_{p}} \epsilon_{n}^{(k)} \\
& =\sum_{(k, n) \in A_{p}} a_{k n} \theta_{\psi(k, n)} \\
& =\sum_{m=p}^{\infty} a_{\psi^{-1}(m)} \theta_{m} \leq \theta_{p} \sum_{m=p}^{\infty} a_{\psi^{-1}(m)} \leq \theta_{p} \leq \eta_{p}
\end{aligned}
$$

The other implications are obvious.
The notion of microscopic set was introduced by J. Appell in [A1]. The properties of these sets were investigated by J. Appell, E. D'Aniello, and M. Väth in [AAV] and [A2].

REMARKS ON SMALL SETS ON THE REAL LINE

Definition 2. A set $E \subset \mathbb{R}$ is microscopic if for each $\epsilon>0$ there exists a sequence of intervals $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
E \subset \bigcup_{n=1}^{\infty} I_{n} \quad \text { and } \quad m\left(I_{n}\right)<\epsilon^{n} \quad \text { for } \quad n \in \mathbb{N}
$$

Theorem 2. The following conditions are equivalent:
(i) E is a microscopic set;
(ii) for each positive number η there exists a sequence $\left\{J_{n}\right\}_{n \in \mathbb{N}}$ of intervals such that

$$
E \subset \limsup _{n} J_{n} \quad \text { and } \quad \sum_{k=n}^{\infty} m\left(J_{k}\right)<\eta^{n} \quad \text { for } \quad n \in \mathbb{N} ;
$$

(iii) for each positive number δ there exists a sequence $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ of intervals such that

$$
E \subset \limsup _{n} I_{n} \quad \text { and } \quad m\left(I_{n}\right)<\delta^{n} \quad \text { for } n \in \mathbb{N}
$$

Proof. $(i) \Longrightarrow(i i)$. Suppose that E is a microscopic set and $\eta \in(0,1)$. Let $\psi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be the function considered in the proof of Theorem 1. Put

$$
\begin{equation*}
\theta=\frac{\eta}{1+\eta} \tag{4}
\end{equation*}
$$

and

$$
\epsilon_{k}=\theta^{2^{k}} \quad \text { for } \quad k \in \mathbb{N} .
$$

Let k be a fixed positive integer. From (i) it follows that there exists a sequence $\left\{I_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ of intervals such that

$$
\begin{equation*}
E \subset \bigcup_{n=1}^{\infty} I_{n}^{(k)} \quad \text { and } \quad m\left(I_{n}^{(k)}\right)<\left(\epsilon_{k}\right)^{n} \tag{5}
\end{equation*}
$$

Let $m \in \mathbb{N}$. There exists a unique pair $(k, n) \in \mathbb{N} \times \mathbb{N}$ such that $\psi(k, n)=m$. Put

$$
J_{m}=I_{n}^{(k)}
$$

Then $E \subset \lim \sup _{m} J_{m}$. Let $p \in \mathbb{N}$ and $A_{p}=\{(k, n) \in \mathbb{N} \times \mathbb{N}: \psi(k, n) \geq p\}$.

Using (5) and (4) we obtain

$$
\begin{aligned}
\sum_{m=p}^{\infty} m\left(J_{m}\right) & =\sum_{(k, n) \in A_{p}} m\left(I_{n}^{(k)}\right)<\sum_{(k, n) \in A_{p}}\left(\epsilon_{k}\right)^{n} \\
& =\sum_{(k, n) \in A_{p}} \theta^{2^{k} n} \\
& =\sum_{(k, n) \in A_{p}} \theta^{2^{k-1} \cdot 2 n}<\sum_{(k, n) \in A_{p}} \theta^{2^{k-1}(2 n-1)} \\
& =\sum_{(k, n) \in A_{p}} \theta^{\psi(k, n)} \\
& =\sum_{m=p}^{\infty} \theta^{m} \\
& =\frac{\theta^{p}}{1-\theta} \leq\left(\frac{\theta}{1-\theta}\right)^{p}=\eta^{p}
\end{aligned}
$$

since $0<1-\theta<1$, so $(1-\theta)^{p} \leq 1-\theta$.
The other implications are obvious.

Denote by $\mathcal{P}, \mathcal{S}, \mathcal{M}, \mathcal{N}$ the family of countable sets, strong measure zero sets, microscopic sets, and Lebesgue measure zero sets, respectively. It is easy to see (compare [BJ] and [AAV]) that both families \mathcal{S} and \mathcal{M} are the σ-ideals situated between countable sets and sets of Lebesgue measure zero. Obviously, each strong measure zero set is microscopic, so

$$
\mathcal{P} \subset \mathcal{S} \subset \mathcal{M} \subset \mathcal{N}
$$

We have $\mathcal{M} \neq \mathcal{N}$, because the classical Cantor set has Lebesgue measure zero but is not microscopic (see [AAV]). If we assume CH , then $\mathcal{P} \neq \mathcal{S}$, since every Luzin set is a strong measure zero set which is uncountable (see [BJ]). Recall that a Luzin set is an uncountable subset of a real line having countable intersection with every set of the first category. The construction of such a set using the continuum hypothesis was given first by Luzin (1914) and Mahlo (1913), independently. It is easy to see that each Luzin set is a strong measure zero set. Indeed, suppose that A is a Luzin set. Let $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of all rational numbers and let $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of positive real numbers. Then the set

$$
\bigcup_{n=1}^{\infty}\left(r_{n}-\frac{\epsilon_{2 n}}{3}, r_{n}+\frac{\epsilon_{2 n}}{3}\right)
$$

is open and dense, so its complement is a set of the first category. Consequently, the set

$$
B=A \backslash \bigcup_{n=1}^{\infty}\left(r_{n}-\frac{\epsilon_{2 n}}{3}, r_{n}+\frac{\epsilon_{2 n}}{3}\right)
$$

is countable. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of all elements of B. Then

$$
A \subset \bigcup_{n=1}^{\infty}\left(r_{n}-\frac{\epsilon_{2 n}}{3}, r_{n}+\frac{\epsilon_{2 n}}{3}\right) \cup \bigcup_{n=1}^{\infty}\left(x_{n}-\frac{\epsilon_{2 n-1}}{3}, x_{n}+\frac{\epsilon_{2 n-1}}{3}\right)
$$

so A is a strong measure zero set.
Now we will construct an example of some set $A \in \mathcal{M} \backslash \mathcal{S}$.
Example 1. Let $\left\{r_{k}\right\}_{k \in \mathbb{N}}$ be a following sequence of all rational numbers from the interval $(0,1)$:

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \ldots
$$

Let I_{k} be a closed interval centered at a point r_{k} with a length equal to

$$
\frac{1}{(k+1)^{2^{k-1}}} \quad \text { for } \quad k \in \mathbb{N}
$$

Put

$$
A_{n}=I_{\frac{n^{2}-n+2}{2}} \cup \cdots \cup I_{\frac{n^{2}+n}{2}} \quad \text { for } \quad n \in \mathbb{N}
$$

and

$$
A=\limsup _{n} A_{n}
$$

Then

$$
A=\bigcap_{p=1}^{\infty} \bigcup_{n=p}^{\infty} A_{n}=\bigcap_{p=1}^{\infty} \bigcup_{n=p}^{\infty} I_{n} .
$$

First we will prove that A is a microscopic set. Let ϵ be an arbitrary positive number. There exists $k_{0} \in \mathbb{N}$ such that

$$
\frac{1}{\left(k_{0}+1\right)^{2_{0}-1}}<\epsilon .
$$

Obviously,

$$
A \subset \bigcup_{n=k_{0}}^{\infty} I_{n}=\bigcup_{n=1}^{\infty} I_{k_{0}+n-1}
$$

We will show that

$$
m\left(I_{k_{0}+n-1}\right)<\epsilon^{n} \quad \text { for } \quad n \in \mathbb{N} \text {. }
$$

We have

$$
\begin{aligned}
2^{k_{0}+n-2} & =2^{k_{0}-1} \cdot 2^{n-1} \\
& \geq 2^{k_{0}-1} \cdot n \quad \text { for } \quad n \in \mathbb{N}
\end{aligned}
$$

so

$$
m\left(I_{k_{0}+n-1}\right)=\frac{1}{\left(k_{0}+n\right)^{2^{k_{0}+n-2}}} \leq\left(\frac{1}{\left(k_{0}+1\right)^{2^{k_{0}-1}}}\right)^{n}<\epsilon^{n} \quad \text { for } \quad n \in \mathbb{N}
$$

Consequently, A is a microscopic set.
Now we will prove that A is not a strong measure zero set. We will construct a sequence $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ of positive numbers such that for each sequence $\left\{J_{n}\right\}_{n \in \mathbb{N}}$ of intervals with $m\left(J_{n}\right)<\epsilon_{n}$ for $n \in \mathbb{N}$, we have

$$
A \backslash \bigcup_{n=1}^{\infty} J_{n} \neq \emptyset
$$

Put

$$
\delta_{n}=\min \left\{m\left(I_{i}\right): I_{i} \subset A_{n}\right\}
$$

and

$$
A_{n}^{*}=\left\{\frac{1}{n+1}, \frac{2}{n+1}, \ldots, \frac{n}{n+1}\right\} \quad \text { for } \quad n \in \mathbb{N}
$$

Obviously,

$$
n^{2}+n \geq 2 n \quad \text { for } \quad n \in \mathbb{N}
$$

so

$$
\delta_{n}=m\left(I_{\frac{n^{2}+n}{2}}\right)=\frac{1}{\left(\frac{n^{2}+n+2}{2}\right)^{2^{\frac{n^{2}+n-2}{2}}}} \leq \frac{1}{n+1}
$$

and the set A_{n}^{*} is the ϵ-net of the interval $[0,1]$ for $\epsilon=1 /(n+1)$.
We will define by induction two sequences $\left\{\epsilon_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{i_{n}\right\}_{n \in \mathbb{N}}$ in a following way. Put $\epsilon_{1}=\frac{1}{2} \delta_{3}$. There exists a positive integer $i_{1}>1$ such that

$$
\frac{1}{i_{1}+1}<\frac{1}{7} \epsilon_{1}
$$

Put $\epsilon_{2}=\delta_{i_{1}}$. Now suppose that the positive real numbers $\epsilon_{1}, \ldots, \epsilon_{n}$ and positive integers i_{1}, \ldots, i_{n-1} are chosen. There exists $i_{n}>i_{n-1}$ such that

$$
\frac{1}{i_{n}+1}<\frac{1}{7} \epsilon_{n}
$$

Let us put $\epsilon_{n+1}=\delta_{i_{n}}$.

Now, let $\left\{J_{n}\right\}_{n \in \mathbb{N}}$ be an arbitrary sequence of intervals such that $m\left(J_{n}\right)<\epsilon_{n}$ for $n \in \mathbb{N}$. We will find the descending subsequence $\left\{I_{k_{n}}\right\}_{n \in \mathbb{N}}$ of the sequence $\left\{I_{k}\right\}_{k \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$

$$
\left(\bigcup_{j=1}^{n} J_{j}\right) \cap I_{k_{n}}=\emptyset
$$

We have

$$
m\left(J_{1}\right)<\epsilon_{1}=\frac{1}{2} \delta_{3} \leq \frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8} .
$$

Simultaneously, $A_{3}=I_{4} \cup I_{5} \cup I_{6}$ and the distance between I_{4} and I_{6} is greater than $\frac{1}{4}$ because $m\left(I_{6}\right)<m\left(I_{4}\right)<\frac{1}{8}$. So, there exists the component interval of the set A_{3} which is disjoint with J_{1}. Denote it by $I_{k_{1}}$ (if there is more than one such component interval, we take the longest one).

Let us consider the interval $I_{k_{1}}$ and the set $A_{i_{1}}^{*}$. Since $m\left(I_{k_{1}}\right) \geq \delta_{3}$, in the interval $I_{k_{1}}$ we can find at least six points of the set $A_{i_{1}}^{*}$. We have

$$
m\left(J_{2}\right)<\epsilon_{2}=\delta_{i_{1}} \leq \frac{1}{i_{1}+1}
$$

so, card $\left(J_{2} \cap A_{i_{1}}^{*}\right) \leq 1$ and J_{2} has non-empty intersection with at most three component intervals of $A_{i_{1}}$. Consequently, there exists a component interval $I_{k_{2}}$ of the set $A_{i_{1}}$ such that

$$
I_{k_{2}} \subset I_{k_{1}} \quad \text { and } \quad I_{k_{2}} \cap J_{2}=\emptyset
$$

Suppose that the intervals $I_{k_{1}}, I_{k_{2}}, \ldots, I_{k_{n}}$ such that

$$
I_{k_{1}} \supset I_{k_{2}} \supset \cdots \supset I_{k_{n}}
$$

$I_{k_{p}}$ is a component interval of the set $A_{i_{p-1}}$ for $p=1, \ldots, n$ and

$$
\left(\bigcup_{j=1}^{n} J_{j}\right) \cap I_{k_{n}}=\emptyset
$$

are chosen. Let us consider the interval $I_{k_{n}} \subset A_{i_{n-1}}$ and the set $A_{i_{n}}^{*}$. We have

$$
m\left(J_{n+1}\right)<\epsilon_{n+1}=\delta_{i_{n}} \leq \frac{1}{i_{n}+1}
$$

so card $\left(J_{n+1} \cap A_{i_{n}}^{*}\right) \leq 1$. Hence, there exists a component interval $I_{k_{n+1}}$ of the set $A_{i_{n}}$ such that

$$
I_{k_{n+1}} \subset I_{k_{n}} \quad \text { and } \quad I_{k_{n+1}} \cap J_{n+1}=\emptyset
$$

Consequently,

$$
\left(\bigcup_{j=1}^{n+1} J_{j}\right) \cap I_{k_{n+1}}=\emptyset
$$

MAŁGORZATA FILIPCZAK — ELŻBIETA WAGNER-BOJAKOWSKA

Let $x_{0} \in \bigcap_{n=1}^{\infty} I_{k_{n}}$. Then $x_{0} \in \lim \sup _{n} I_{n}=A$. On the other hand, $x_{0} \in I_{k_{n}}$, so $x_{0} \notin \bigcup_{j=1}^{n} J_{j}$ for each $n \in \mathbb{N}$. Consequently, $x_{0} \notin \bigcup_{j=1}^{\infty} J_{j}$, i.e., $x_{0} \in A \backslash \bigcup_{n=1}^{\infty} J_{n}$.

In the previous example we have shown straightly from the definition that A is not a strong measure zero set. Remark that it is sufficient to observe that A is a perfect set because no perfect set has strong measure zero (compare [BJ]).

REFERENCES

[A1] APPELL, J.: Insiemi ed operatori "piccoli" in analisi funzionale, Rend. Istit. Mat. Univ. Trieste 33 (2001), 127-199.
[A2] APPELL, J.: A short story on microscopic sets, Atti Sem. Mat. Fis. Univ. Modena 52 (2004), 229-233.
[AAV] APPELL, J.-D' ANIELLO, E.-VÄTH, M.: Some remarks on small sets, Ricerche Mat. 50 (2001), 255-274.
[Bo] BOREL, E.: Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France 47 (1919), 97-125.
[BJ] BARTOSZYŃSKI, T. -JUDAH, H.: Set Theory: On the Structure of the Real Line, A. K. Peters, Ltd., Wellesley, MA, 1995.
[M] MILLER, A. W.: Special subsets of the real line, in: Handbook of Set-Theoretic Topology, (K. Kunen, J. Vaughan, eds.) North-Holland, Amsterdam, 1984, pp. 201-233.

Received September 26, 2007

Matgorzata Filipczak
University of Łódź
Faculty of Mathematics and Computer Science
Banacha 22
PL-90-238 Łódź
POLAND
E-mail: malfil@math.uni.lodz.pl
Elżbieta Wagner-Bojakowska
The College of Computer Science
Chair of Mathematics
Rzgowska 17A
PL-93-008 Łódź
POLAND
University of Łódź
Faculty of Mathematics and Computer Science
Banacha 22
PL-90-238 Łódź
POLAND
E-mail: wagner@uni.lodz.pl

