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There are several approaches of kinetically solving the dynamics of medium, which consists 
of charged and neutral particles, interacting with each other, without collisions due to very low 
densities, through electromagnetic forces (ions and electrons) or through binary interactions 
between charged and neutral particles. The first method is a direct computation of the interaction 
between each particle and the second one is a description of plasma (only charged particles) kinetics 
with Vlasov equation, which could be solved by many methods, e.g. computing the distribution 
function on a grid in velocity space [15] or  PIC. For this study the PIC method have been chosen 
because of the possibility of tracking individual particles or macroparticles in continuous phase 
space, along with  the Direct Simulation Monte Carlo (DSMC) method which in probabilistic 
manner allow direct binary particle-particle interactions between charged particles and neutrals  
(e.g. charge exchange), which could be described by fluid models also, but with a big approximation. 
In the direct method (Fig. 1), which is ineffective for very large systems, the number of computations 
is approximately proportional to the number of particles squared ( ). That means, for 
example, that with one hundred millions particles ( ) and the computational power of one hundred 
teraflop per second , one time step will last approximately 3 hours [16]. In comparison, 
in the PIC method (Fig. 2) the number of computations is about , which gives 
us for  particles,  cells and  of computational power, and a time of 
one step of about  [16]. Such improved speed in the PIC method motivates its employment 
in computations of flow dynamics of rarefied gases with partially or fully ionized components, where 
collisions may be neglected. This method is used to solve some sort of partial differential equations, 
especially in plasma physics. In PIC the velocity and position for each particle are tracked, while 
at the same time densities and currents are computed on domain grid nodes. Equations of motion for 
particles, as well as field equations in mesh points are solved simultaneously. The method includes 
typically integration of the motion equations, scattering charge density to the field mesh, integration 
of the field equations on the grid nodes and weighting fields quantities from the mesh to the particles 
located in it. More details about PIC can be find in the next paragraph and chapter 2.

Fig. 1. Direct kinetic method (N-body simulation, 
dashed lines symbolize interactions between 
particles).

Fig. 2. Particle-in-Cell method with linear charge 
deposition (dashed lines symbolize interaction between 
particles and the field.
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The computational cycle of the full electromagnetic Particle-in-Cell (EM-PIC) method is as 
follows: (1) according to the particle positions (xn), their charges and velocities (qn, un) are scattered 
to grid nodes (i,j,k) of the cell (weighting) in which they are located, resulting in distribution of 
the charge and electrical current density (ρ, j)i,j,k over the whole grid; (2) the integration of field 
equations on each grid node, which is essentially solving Maxwell’s equations for electric field 
intensity E and magnetic field induction B; (3) Lorentz’s forces Fn for all particles are computed 
from the values of the field electric intensity and magnetic induction (Ei,j,k, Bi,j,k), in each cell; 
(4)  integration of the equations of motion, in this time step, to obtain new velocities (un) of 
particles and pushing them into new positions (xn). Here, the indexes (i,j,k) determine grid nodes 
and index n determines particles. The cycle repeats until preset time of the simulation is achieved 
(see Fig. 3).

The most time-consuming operations in the PIC method are those which operate directly 
on  particles. It means that weighting the charge and current densities, weighting the electric 
and magnetic field intensities and solving the motion of each particle takes most of the computing 
time. Nevertheless, the advantage from solving field equations on the grid is so significant 
that  the  method might be used in modeling all physical phenomena, including particles 
and interactions between them. In the frame of this work the PIC model of interaction between 
two counter-flowing streams of mixtures of charged and neutral particles was developed including 
mechanical and charge exchange collisions. Also electric effects were included into algorithm. 
Further works assumes incorporating magnetic effects and other particle interactions as electron 
impact and photoionization. In the next section, the PIC algorithm for simple electrostatic 
problems is described.

Fig. 3. A simple and straightforward EM-PIC scheme [17].
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2.	ELECTROSTATIC  PIC ALGORITHM

The motivation of developing new fully kinetic code to solving plasma physics oriented to 
SW-LISM interaction is lack of such code which can operate in three dimensions, simulating 
globally processes occurring in the heliosphere, in which we can freely include variety of 
physical phenomena and numerical methods to solve them, optimized to work on the specific 
cluster of computers using Message Passing Interface (MPI) and Compute Unified Device 
Architecture (CUDA) technologies to increase the speed of computations. It was decided by 
authors that modifying existing codes to meet the all requirements will be too much time 
consuming.

The first step of developing a hybrid-kinetic model for heliospheric processes was building 
a model with no time-variant electric fields and with no magnetic fields. At this step numerical 
methods of solving the Poisson equation were intended to be applied in order to test electrostatic 
PIC cycle algorithm in its simplest form (Fig. 4). In this particular case, the following electrostatic 
seven-step PIC scheme was utilized:
I.	 Program initialization: simulation parameters setup, definition of the geometry of the model, 

grid parameters as well as initial and boundary conditions determination and particle 
generating.

II.	 Particles weighting to the grid: charge density computation in each cell and scattering the values 
to the grid nodes.

III.	 Electric field computation: solving Poisson equation for electric potential and computing 
potential gradient for E.

IV.	 Electric field weighting to particles: computing the electric force acting on each particle 
in a cell, from the field values in adjacent nodes in the cell.

V.	 Pushing particles: integration of equations of motion for each particle, updating velocities 
and moving particles to new locations.

VI.	 Additional operations: generating new particles, removal of those particles which left 
the domain and performing charge exchange and mechanical collisions.

VII.	 Outputting the results, moving to the next iteration (going to step II.) or ending the program.
The program runs until stationary state of global density is achieved and this condition should 

be fulfilled before preset number of time steps is gained. 
In step (I.) there are definitions of constants and variables, also physical and numerical. Further 

steps are described in the next subsections. It is worth to mention that two kinds of boundary 
conditions (BC) were applied, i.e. Dirichlet, for those nodes which are required to have a fixed 
electric potential, and Neumann, for those which are assumed to have the same potential 
as  the adjacent nodes normal to the boundary face. The core of the entire electrostatic solver is 
the solution of Poisson equation for electric potential: 

where:  – solution of partial differential equation,  – right hand side of the equation.

(1)
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After getting potential electric field and electric forces are computed to push particles to new 
positions (for details see chapter 2.2-2.8). The full electrostatic PIC (ES-PIC) cycle is shown on Fig. 4. 
In electromagnetic problem the solver is more complicated and allows to compute not only electric 
but also magnetic forces. This is the main difference between electrostatic and electromagnetic code 
(which is not the topic of this work).

2.1. Particles weighting to the grid

The step (II.) consists of a procedure for charge scattering to the grid nodes. The procedure 
described here is for the case of a two-dimensional grid. A particular cell, containing a group of 
particles, is a member of the entire domain field. Every particle in that cell needs to be scattered 
to the grid nodes in terms of its charge. For example, let us perform a linear weighting of only one 
particle of charge , localized inside a two-dimensional cell in point . Now let us index 
each node of this cell: . It is worth noticing, that there could 
be more than one method of assigning particle charge to nodes. The first one, 0th order method, 
is the simplest and the least accurate, and consist in assigning the entire charge to the nearest grid 
node. Second one, consist in assigning partial charge, linearly approximated to all four nodes, and 
this method is applied in the example presented here. There are also methods of 2nd and higher 
orders, but here we focus only on the 1st order one. To assign a part of the charge, we need to compute 
a proper weight and multiply it by the charge. The method of computing weights is the following: 
as we divide the entire area of the cell into four smaller areas (Fig. 5), the charge is localized in one 
vertex of each of them, so one should noticed that each area is a part of the entire cell area. 

Fig. 4. A simple and straightforward ES-PIC scheme.
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For example, let’s try to assign a certain partial charge to the grid node . Let’s take 
the opposite partial area  (the brightest) and divide it by the whole cell area .

where:   – position of particle,  – width and height of the cell.

We’ll get the weight  of a value between 0 and 1. Multiplying the obtained value by the particle 
charge, we’ll get the partial charge , which should be assigned to the  node. 

where:   – particle charge.

The same should be done for the  nodes.

The sum of all four weights should be equal to 1. If the number of particles inside this cell is 
more than one, then this procedure should be performed for each particle, and its resulting weighted 
partial charge should be added to the particular node. 

where:         – n-th particle partial charge at (i, j) node,       – number of particles in cell.

This means that each cell node contains the sum of weighted partial charges from each particle 
in this cell. The same process needs to be done for all the cells in the domain. Charge density is 
computed by division of net charge in a particular node by the cell area (in 2D case) and by the cell 
volume V (in 3D case).

The method described above is perfectly applicable in a three-dimensional domain. The only 
difference is due to the introduction of a 3rd dimension. Then instead of a rectangular cell, there is a cubic 
cell with depth , and each particle has an additional positon coordinate . During computing weights 
partial volumes  must be considered instead of areas, and there are eight nodes per cell.

(5)

(2)

(3)

(4)

(6)
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2.2. Poisson equation

In the step (III.) the equation of the field quantity must be solved. In our case we need to derive 
a relation only with the electric potential i.e. Poisson equation. The motion of charged particles 
in absence of a magnetic field (B = 0) is governed only by the electric field E. This is expressed 
through the following Lorentz’s force reduction [19]:

where:  – electric charge, E – electric field vector, B – magnetic induction vector, v – particle 
velocity vector.

In terms of electric and magnetic potential, the electric field formula reduces as follows [19]:

where: ϕ – electric potential, A – magnetic vector potential.

Assuming a stationary electric field, it can be stated that the motion of charged particles complies 
only with Gauss’ law for electricity.

where:  – total charge density,  – vacuum permittivity.

Differentiating (8) and combining with (9) it can be obtained the Poisson equation [19].

Solving (10) for potential, the electric field can be simply obtained by differentiating solution 
of Poisson equation and taking it with a negative sign. For simple one-dimensional problems, 
equation (10) can be solved analytically, but for more complex three-dimensional geometry 
a numerical method of solution must be introduced. Let’s consider geometry of some cuboid 
(Fig.  6). Firstly, the domain should be discretized in order to transfer it from infinite small 
differences to finite ones, then to numerically indexed. Let’s assume the domain is divided into 

 cells in  directions accordingly (Fig. 6). Then let’s index every node location using 
the  indexes.

where:  – numerical increments corresponding to those physical  in x-, y-, z-direction 
accordingly,  – position of (i, j, k)-th node.

(7)

(8)

(9)

(10)

(11)
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Now, the Poisson equation (10) can be formulated in terms of numerical coordinates using 
central difference scheme:

where:  – potential at (i, j, k) node,  – total charge density at (i, j, k) node.

Equation (12) might be solved numerically. In the following subsections the methods for 
composing and solving nonlinear systems of equations are going to be described.

2.3. Poisson equation as algebraic system of equations

In sections 2.3 – 2.6 the procedure of numerically solving the Poisson equation is shown. 
This section shows how to compose a nonlinear system, which can be solved by chosen method. 
The equation , in a discrete domain, is actually a system of algebraic equations 
in the form of:

where:  – square, band matrix of  size,  – vector of potentials of  size,  – vector of 
right sides of  size,   – total number of domain grid nodes.

In (13), matrix M is composed of coefficients beside indexed potentials, in each equation (12).  
The vector  contains potentials in each node and  is composed of negative charge densities 
divided by permittivity in each internal node and boundary conditions in boundary nodes. To draw 
a picture of the matrix equation composition, let’s consider a one-dimensional example containing in 
its domain only eight nodes ( ). Nodes are indexed by  and the interval  between 
them is constant (Fig. 7).

Fig. 6. Example of domain discretized into 20x20x40 cells and indexing of the particular cell (i,j,k).

(12)

(13)
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For the considered domain the following Poisson equations can be formulated [20]:

And after transformation, we’ll get a system of linear equations in the matrix form :

(15)

To generalize the above composing method for three-dimensions, let’s rearrange (12) to isolate 
the coefficients beside the potentials: 

To compose matrix M, reindexing must be done to transfer from three indexes to only one, 
according to the scheme:

where:  – new node index ( ),  – total number of 
nodes.

(14)

(16)

(17)

Fig. 7. One-dimensional example of the domain, 
where:  – potential at i-th node,  – total charge 
density at i-th node [20].
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Operation (17) yields a new form of the Poisson equation, namely:

To simplify (18), let’s set the names of the coefficients next to the potentials, i.e. a, b, c, d, e, f, g 
and right-side B, then: 

After rewriting (19) into a matrix form, the following example equation is obtained: 

(20)

In the scope of the current algorithm only cubic mesh is considered, but in the future the intention 
is to incorporate Finite Element Method (FEM) to support non-cubic elements. Note that some 
of the right-side coefficients are boundary conditions, not only the first and the last. This depends 
on the number of divisions in x-, y- and z-directions. A complex numerical code programmatically 
set these conditions in the proper places of the  vector. There are two ways of solving (20), 
namely the iterative Gauss-Seidel (GS) method and the Newton-Raphson method for nonlinear 
systems.

2.4. Gauss-Seidel method of solving Poisson equation

The first method to be described is Gauss-Seidel [20]. In it, to  find the solution of (12), let’s 
separate potentials  and rearrange the equation in the following form:

(18)

(19)
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After dividing (21) by the right-hand term in brackets, we get formula for : 

Subsequent values of  are being computed iteratively until convergence is achieved. 
This scheme might be generalized to nonlinear problems. Let’s assume the right-hand side of (10) 
is expressed by Boltzmann relation [21], describing electrons as background and ions in terms of 
charge density, dependent exponentially on potential . 

where:  – elementary charge,  – electrical permittivity,  – ion number density,  – initial 

electron number density,  – initial potential,  – Boltzmann constant,  – electron temperature 
in Kelvins.

To compute the right-hand side (RHS) [21] of (23) the actual charge density  and potential 
values from previous iteration (old values)  must be used.

Now RHS is put to (12): 

And after transformations the iterative formula for potential is:

To calculate the solution in the whole domain,  equations have to be solved until required 
convergence of solution is achieved.

(23)

(24)

(21)

(22)

(25)

(26)
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2.5. Newton-Raphson method of solving a nonlinear Poisson equation

Second method of solving a nonlinear set of equations, namely Newton-Raphson [22] is more 
complex, but yields a significant acceleration of computations. It relies on estimating the solution 
of function , which represents the system of nonlinear equations, and iteratively 
updating it by the negative product of inversed Jacobian J and function F, according to the 
relation: 

First, in this iterative method, the algorithm is [21]: (a) computing this part of vector , which is 
dependent on potential .

The next step (b) is computing function  by subtracting values from vector  
from product of matrix  (see previous subsection) and vector of potentials : 

Then, (c) Jacobi matrix diagonal elements need to be calculated: 

Thus, (d) Jacobi matrix is estimated by following formula: 

The following linear system of equations (e) need to be solved for  using a separate method  
(e.g Preconditioned Conjugate Gradient – PCG. For the algorithm, see next subsection): 

The last step (f) is to update the potentials: 

If  is sufficiently small, then computations stop, otherwise next iterations continue until the 
results converge.

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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2.6. Preconditioned Conjugate Gradient (PCG) method

PCG [23] is only one of many methods of iterative solution estimation of linear equation in 
form of:   for x. The square coefficient matrix M must be symmetric and positive definite, 
and should also be large and sparse. The column vector  must be of length equal to the rank of M. 
Preconditioner is used to accelerate convergence of the conjugate gradient method. The preconditioner 
matrix  has to be symmetric positive-definite and constant. The method is much faster than 
Gauss elimination method of computing . See table 1 for PCG algorithm. 

2.7. Electric field

When the potential 𝜙 is known, the electric field 𝑬 can be evaluated using the following relation:

Rewriting (34) into a numerical form, expressions for E components internal nodes and boundary 
nodes can be obtained using central difference scheme (35) and forward/backward difference scheme 
(36)-(37) respectively [17]:

(34)

(35)

Table 1. PCG algorithm [23].

(36)

(37)
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Knowing E the electrostatic force F can be easily obtained by multiplying E by electric net 
charge q of the particular node. The next subsection describes the operation of updating velocity and 
moving particles to new positions.

2.8. Pushing particles

Pushing particles consist of velocity updating and moving particles to new locations. 
This  operation requires integration of acceleration vector expressed for the electrostatic case, 
in n-th time step using the following formula:

where: q, m – charge and mass of considered particle,  – weighted average of electric field 
at particle location.

The (38) is suitable only for the case without a magnetic field, while the electromagnetic Lorentz’s 
force requires more sophisticated integration method, e.g. Bunemann-Boris algorithm [17]. But let’s 
consider the electrostatic case and transform (38) to obtain new velocity:

After the velocity update, one can integrate the new position by:

Results from this method are suitable for electrostatic PIC method. At the first stage, in simulations 
the time steps are assumed to be small enough to ensure proper convergence of the results, but more 
accurate tests of the stability of applied numerical methods are intended to be performed in the 
future works.

2.9. Direct Simulation Monte Carlo collisions

In order to simulate fluid flows, even if the considered gases are very rarefied, collisions need 
to be introduced into the code. As it is well known, interactions between particles inside a fluid 
govern its behavior. Such properties such as pressure and viscosity are the effects of collisions 
between particles inside flows. Each change of particle direction leads to energy and momentum 
exchange, such as flowing around obstacle or collisions with other particles connected with their 
chaotic thermal motions. 

Besides of elastic hard-sphere, another type of collision which is often encountered in heliophysics 
needs to be considered, namely charge exchange (CEX collision) between ions and neutrals [24]. 
The main feature of CEX is that the electron jumps from a neutral atom to an ion. In the mechanical 

(38)

(39)

(40)
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sense there is negligible momentum and energy exchange, only electrical charge. This means that 
in the case of fast SW protons and slow LISM neutrals, due to charge exchange slow ions and fast 
neutrals could be born, namely energetic neutral atoms (ENA). The following formula shows the 
process of electron exchange between particles.

where:  – fast and slow proton,  – fast and slow neutral hydrogen atom.

CEX collision of fast neutrals and slow ions can also occur, as well as electron impact 
and photoionization, but in heliospheric processes, the first one has the most profound influence 
on the heliospheric structure.

To apply collisions into a numerical algorithm, which simulates rarefied gas flows, for which 
the Knudsen number is less than one ( ), a probabilistic Monte Carlo method can be 
utilized. This method, first proposed by Prof. Graeme Bird is called Direct Simulation Monte Carlo 
(DSMC) and uses macromolecules impingements to solve Boltzmann equation. In the DSMC 
method fluid dynamics is simulated by large number of real molecules or macromolecules, which 
move through computational domain, coupled by particle-particle interactions performed in the 
probabilistic way. The interactions in simulations usually are collisions but in ES-PIC algorithm 
we adapt this method to simulate also CEX collision. The DSMC algorithm is shown in Table 2.

Table 2. DSMC algorithm implemented in the electrostatic PIC program (for more see [25]).

(41)
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The 14th step in DSMC algorithm is responsible for performing collision. It depends on the 
assumed model, if the collision is simple hard sphere elastic, which exchanges momentum and 
energy (see Table 3) or charge exchange (see Table 4). The results of different kinds of collision 
models are exchanged energy and momentum between particular part of the fluid, in the case of 
mechanical collision, or between ionized and neutral species in the case of CEX. In electrostatic PIC 
model, these two kinds of collision models are used. To simulate the interaction between two different 
counter-flowing magnetized plasmas, first with one component simulating only ions and the second 

Table 3. Elastic collision algorithm [25].

Table 4. Charge exchange collision algorithm.
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one as two components simulating mixture of ions and neutrals, mechanical hard sphere collision 
is applied between ionized components, while both interact with neutrals by charge exchange 
collisions. This simplified approach, can give us some characteristic features of two supersonically 
counter-flowing plasmas interaction such as supersonic two shock shape of the flow with separating 
layer between these two mediums. This method is some kind of bypassing the problem of lack of 
the magnetic field. Although we want to consider this interaction to be collisionless, we use the 
collisions to separate these two streams, which are separated in real world in magnetic manner. 
Collisions only pertain to particles belonging to different species. In the same species particles don’t 
collide with each other, so the flow is still in some approximation collisionless. The tables 3. and 4. 
describe elastic hard sphere and charge exchange collision algorithms.

2.10. Example simulation

In this subsection two simulations are presented to check the Poisson solver and DSMC method 
implementations. Simulated models aren’t strictly the models of SW-LISM interaction. The only 
intention of these examples is the confirmation of correctness of the methods implementation: 
collisions occurrence and electrostatic drift of charged particles. Parameters of the simulations are 
selected in such way to make computations as inexpensive as possible. More, not only qualitative 
but also quantitative tests, which apply more to the heliospheric processes in physical manner, 
are expected to be performed in the future, but they aren’t in the scope of this work.

In order to check the qualitative correctness of Poisson solver a simulation of ion flow around 
a sphere was performed. The domain (Fig. 8) was modelled as a 20x20x40 cm cube. At its center 
a source sphere with the radius of 4 cm was set. The whole domain was discretized by 20x20x40 cells. 
One sources was set: a uniform flow of particles from xy-plane into the domain with z-velocity 
7000 m/s. It was assumed that particles are single ionized oxygen with number density of 1011 m-3. 
Deby’e length is 0.0105132 m, the simulation lasted 0.00004 s (200 time steps each of 2*10-7 s) and 
the results are shown in Fig. 9 to Fig. 13. The influence of electric field is evident. Ionized particles 
accelerate in the direction of decreasing potential, what was expected, resulting in attraction and 
absorption by the sphere.

In order to check the qualitative correctness of DSMC method implementation a simulation 
of counter-flowing neutral fluid was performed. The domain (Fig. 14) was modelled as 
a 20x20x20 cm cube. At its center a source sphere with the radius of 4 cm was set. The whole 
domain was discretized by 40x40x40 cells. Two sources were set: 1) uniform flow of particles from 
xy-plane into the domain with z-velocity 1000 m/s, 2) spherically uniform flow of particles from 
the central sphere with a velocity normal to its surface of 1000 m/s. It was assumed that particles 
of both sources are helium with number density of 1017 m-3. DSMC collisions were enabled 
with interaction cross section of 10-14 m2 of macroparticles consisting of 2*1010 particles. Deby’e 
length is 0.000033 m, the simulation lasted 0.05 s (1000 time steps each of 5*10-5 s) and the results 
are shown in Fig. 15 and Fig. 16. It is evident that two counter-flowing streams collide with each 
other creating a structure of increased density, which confirms the DSMC method works enabling 
compressibility of the flow. 
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Fig. 8. Geometry of simulated domain. Fig. 9. Streamlines of velocity magnitude.

Fig. 10. Number density in [m-3] after 0.00004 s 
simulation time.

Fig. 11. Velocity magnitude in [m/s] after 0.00004 s 
simulation time.

Fig. 12. Electric potential in [V] after 0.00004 s 
simulation time.

Fig. 13. Electric field magnitude in [V/m] after 0.00004 s 
simulation time.

Fig. 14. Geometry of simulated domain.
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3.	CONCLUSIONS

The first step to develop a fully kinetic Particle-in-Cell (PIC) model to describe the interaction 
between SW and the LISM was made. A simple electrostatic approach was applied, which reduced 
Maxwell’s set of equations for the problem to only one equation of Gauss law for electricity. 
From the numerical point of view, to find a solution of the electrostatic problem, the Poisson equation 
needs to be solved for electric potential. Both a simple Gauss-Seidel and a much more sophisticated 
Newton-Raphson with Preconditioned Conjugate Gradient schemes were used to find the electric 
field values on the computational grid, which served to compute the forces acting on particles 
moving through the domain. A simple algorithm was used to integrate equations of motion in order 
to determine particle velocities and positions. The Direct Simulation Monte Carlo method was used 
to simulate collisions between particles of two counter-flowing streams of ions, as well as charge 
exchange collisions between ionized fluids and neutral component of  one fluid. Two qualitative 
tests were performed to check correctness of implementation for Poisson solver and for Direct 
Simulation Monte Carlo method. More tests to validate not only applied methods of computation 
but also the physical models, are foreseen in the further works. Results obtained in the scope of this 
work are a promising step towards a fully electromagnetic PIC model of SW-LISM interaction. 
The feasibility of the proposed  approach  as a tool  for the investigation of the heliosphere will be 
discussed in the future paper.
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Fig. 15. Number density in [m-3] after 0.05 s simulation 
time.

Fig. 16. Velocity magnitude in [m/s] after 0.05 s 
simulation time with visualization of streamlines from 
source at the center and little source region of the 
streamlines at xy-plane.
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Algorytm numeryczny particle-in-cell dla problemu 
elektrostatycznego

Streszczenie

Istniejące globalne modele oddziaływania wiatru słonecznego (SW) z lokalną materią 
międzygwiazdową (LISM) opisują heliosferę, która powstaje w wyniku interakcji tych dwóch 
ośrodków. Istnieje silna motywacja do opracowania modelu kinetycznego wykorzystującego 
metodę Particle-in-Cell (PIC) w celu opisu zjawisk, które zachodzą w heliosferze. Jednakże jest to 
długoterminowy cel naukowy. W artykule przedstawiono elektrostatyczny model numeryczny PIC, 
opracowany w Instytucie Lotnictwa w Warszawie, który obejmuje kolizje mechaniczne i rezonansową 
wymianę ładunków pomiędzy cząstkami w sposób probabilistyczny metodą Direct Simulation Monte 
Carlo. Jest to pierwszy krok w opracowywaniu symulacji heliosfery zawierającej efekty kinetyczne 
w plazmach bezzderzeniowych. W tym artykule koncentrujemy się tylko na prezentowaniu prac, 
które zostały wykonane z wykorzystaniem algorytmu numerycznego PIC.
Słowa kluczowe: plazma, heliosfera, Particle-in-Cell, Monte-Carlo.


