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Abstract. Parkinson’s Disease can be treated with the use of microelectrode
recording and stimulation. This paper presents a data stream classifier that
analyses raw data from micro-electrodes and decides whether the measurements
were taken from the subthalamic nucleus (STN) or not. The novelty of the pro-
posed approach is based on the fact that distances based on raw data are used.
Two distances are investigated in this paper, i.e. Normalized Compression Dis-
tance (NCD) and Lempel-Ziv Jaccard Distance (LZJD). No new features needed
to be extracted due to the fact that in the case of high-dimensional data the pro-
cess is extremely time-consuming. The k-nearest neighbour (k-NN) was chosen
as the classifier due to its simplicity, which is essential in data stream classifica-
tion. Results obtained from classifiers based on k-NN: k-NN, k-NN were com-
pared with Probabilistic Approximate Window (k-NN with PAW); k-NN with
Probabilistic Approximate Window and Adaptive Windowing (k-NN with PAW
and ADWIN); and Self Adjusting Memory k-NN (SAM k-NN), which use the
proposed distances, with the performance of the same classifiers but using stan-
dard Euclidean distance. Prequential accuracy was chosen as the performance
measure. The results of the experiments performed with the described approach
are in most cases better, i.e. the performance measures for kNN classifiers that
use NCD and LZJD distances are better by up to 8.5 per cent and 14 per cent,
respectively. Moreover, the proposed approach performs better when compared
with other stream classification algorithms, i.e. Hoeffding Tree, Naive Bayes,
and Leveraging Bagging. In the discussed case, an improvement of classification
rate of up to 17.9 per cent when using Lempel-Ziv Jaccard Distance instead of
the Euclidean was noted.

Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative
disorder, affecting 2–3% of the human population aged over 65. The latest
primer on the disease presents several efforts concerning treatment:
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– Dopaminergic pharmacological treatment
– Non-dopaminergic pharmacological treatment
– Deep Brain Stimulation (DBS)
– Exercise-based treatment (Poewe et al., 2017)
Parkinson’s Disease can be treated with the use of microelectrode

recording and stimulation. The technique is called deep brain stimula-
tion (DBS). The target of the surgery is located in a structure called
subthalamic nucleus (STN), deep within the brain. DBS is based on the
finding that high-frequency (100–200 Hz) electrical stimulation of specific
brain targets can mimic the effect of a lesion without the need for destroy-
ing the brain tissue, and involves the implantation of an electrode in the
brain tissue. The STN can be roughly divided into three functional ter-
ritories: sensorimotor, associative, and limbic. It is crucial that only the
sensorimotor part of the STN should be stimulated. STN is poorly distin-
guishable from the adjacent brain tissue on computed tomography (CT)
and magnetic resonance imaging (MRI) scans. Those scans, however, do
show other brain features. Using their referencing coordinates, the expected
location of the STN can be approximated. Having only an approximate
location of the STN, a set (3∼ 5) of parallel microelectrodes is inserted
into the patient’s brain during DBS surgery. Those are thin supporting
electrodes, not to be implanted into the patient’s brain permanently. The
electrodes are directed towards the expected location of the target nucleus.
At each desired depth, the electrodes can record electrophysiological activ-
ity of the surrounding brain tissue. The recordings are typically made at
depths ranging from 10 mm above to 5 mm below the estimated STN lo-
cation. When the trajectory to the STN and its depth are obtained in this
manner, all microelectrodes are withdrawn to its level. Then, those that
reach it sufficiently are one by one briefly switched from recording to stim-
ulation mode. While stimulation is active, the patient’s condition is moni-
tored and the effectiveness of treatment assessed by a neurologist. By means
of such a procedure, optimal electrode and depth are determined. Finally,
all microelectrodes are withdrawn and, using the trajectory of the opti-
mal microelectrode, a permanent stimulating electrode is implanted. It is
to remain within the patient’s brain (Ciecierski, 2013). This paper proposes
a new approach based on data stream classification and distances derived
from data compression and hashing to distinguish whether electrodes hit
the STN region or not.
The paper is organized as follows: first, the problem of research is de-

scribed and the state of the art in the area of the use of machine learn-
ing methods in DBS is presented. Secondly, Normalized Compression and

46



Application of Normalized Compression Distance and Lempel-Ziv Jaccard...

Lempel-Ziv Jaccard distances are described. Then, requirements for the clas-
sifier are formulated, with a description of the data used in the experiments,
and details on how they were performed are given. Finally, the results are
discussed, including conclusions and targets for future research.

Machine Learning Approach Used in DBS

DBS technique has been known for 30 years, and over the past few years
a number of interdisciplinary works concerning the use of machine learning
methods have appeared, extending its functionality.
Kuhner et al. (2017) used Random Forests with probability distri-

butions to detect abnormal motor behaviour of PD patients perform-
ing several different motor tasks in two clinical conditions (DBS switch:
off, on). Trevathan et al. (2017) modelled dopamine release evoked by
electrical stimulation using Artificial Neural Networks and Volterra ker-
nels. Mamun et al. (2015) performed feature extraction and subset se-
lection from local field potential signals and used Bayesian and Sup-
port Vector Machines (SVM) classifiers to decode movements. Rajpuro-
hit et al. (2015) used a wrapper approach (by using a classifier) to se-
lect the features needed for further STN detection. Taghva (2011) used
Hidden Semi-Markov Models for the detection of STN sub-regions. Val-
sky et al. (2017) used Support Vector Machines and Hidden Markov mod-
els to detect STN borders during DBS and thus reduce inadequate clin-
ical outcomes of the surgery. Wong et al. (2009) performed feature ex-
traction and fuzzy clustering from recordings acquired during DBS surgery
to form a neural activity map to localize STN. Teplitzky et al. (2016) pro-
posed a technique that uses feature selection and classification algorithms
to work with DBS arrays. Hebb et al. (2014), Santaniello et al. (2018),
Hell et al. (2018), Mohammed et al. (2018), Su et al. (2018) provided re-
views and models for using closed-loop systems in DBS to make it adaptive.
O’Halloran et al. (2016) and Shamir et al. (2018) connect STN detection
with neuroimaging. Shamir et al. (2015) proposed a clinical support decision
system to provide effective stimulation and adequate drug dosages, based on
three machine learning methods, which included Support Vector Machines,
Näıve Bayes, and Random Forest.
Most of the reviewed techniques are based on feature selection. The

procedure takes time to complete, especially when high-dimensional and
dynamic data is dealt with. A good example of this kind of data are micro-
electrode measurements used in DBS. In the following sections, distances
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independent of the type of features, but dependent on their binary repre-
sentation, are dealt with.

Normalized Compression Distance

Normalized Compression Distance (NCD) is an approximation of the
uncomputable Kolmogorov complexity function. The main formula for com-
puting this measure is:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}

where C(.) is the number of bytes obtained after performing compression of
a binary string, while xy – is the concatenation of binary strings.
According to Cilibrasi and Vitanyi (2005), if the compressor is normal,

then the NCD is a normalized admissible distance satisfying the metric
(in)equalities.
Requirements for normal compressor:

1. Idempotency: C(xx) = C(x), and C(λ) = 0, where λ is the empty
string

2. Monotonicity: C(xy) ≥ C(x)

3. Symmetry: C(xy) = C(yx)
4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz)

It is also worth noting that lossless data compression is used for NCD com-
puting. This guarantees that all compressed information can be restored in
the future if archiving it is planned. An overview of the practical application
of this distance can be found in (Cilibrasi, 2007; Cohen & Vitanyi, 2015).
Its direct application to stream classification has not been found.

Lempel-Ziv Jaccard Distance

The main approach used in computing the measure in question, pro-
posed by Raff and Nicholas (2017), is based on LZ77 algorithm, especially
on its part generating a set of all the substrings of given binary strings.
Having two sets of substrings, the Jaccard similarity index is computed.

J(A,B) =
|A ∩B|

|A ∪B|
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Then, it is subtracted from 1 to obtain Lempel-Ziv Jaccard Distance (LZJD).
This theoretical approach, according to its authors, was not as fast as de-
sired, so they proposed an approximation based on hashing. It exploits
the fact that the Jaccard similarity index can be computed approximately
from a smaller digest produced from the original sets using a hashing
function.
The formula for computing the approximation is as follows:

J(A,B) ≈ J





k
⋃

j=1

hj
min(A),

k
⋃

j=1

hj
min(B)





where hn
min(S) indicates the n’th smallest hash values from set S.

The proposed measure was successfully used in malware classification.
Literature review shows that it has not been used in data stream classifica-
tion.

Experiment Design

All the experiments were performed in a Massive Online Analy-
sis (MOA) environment. This application is written in Java and is one of the
most popular solutions for data stream analysis. More detailed information
concerning the use of MOA can be found in (Bifet et al., 2018).
The reason for choosing the k-nearest neighbour (k-NN) classifier is

its simplicity and the minimal number of parameters. Moreover, it ac-
cepts not only numerical data. It is known that the algorithm relies on
the distance measure that is used for finding the nearest neighbours and
can be computed from numerical features, e.g. Euclidean or Mahalanobis
distance. In addition, there are also distances that do not rely on numeri-
cal features. As examples, Normalized Compression Distance and Lempel-
Ziv Jaccard Distance can be given, which constitute the subject of this
paper.
The performance of the approach proposed by the authors was com-

pared with the performances of all k-NN classifier implementations used for
data streams classification. Brief descriptions of the algorithms are provided
below.
The k-NN classifier is the known algorithm, but in this case it is imple-

mented to deal with streaming data. It contains the following parameters,
which can be modified:
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– Number of neighbours: k (default 10)
– Maximum number of instances to store: w (default 1000)
– Nearest neighbour search method: n (default LinearNN)
K-NN with Probabilistic Approximate Window (K-NN with PAW) is

a modification of k-NN described in (Bifet et al., 2013). Probabilistic Ap-
proximate Window provides a compromise between relevance of information
in the most recent instances and preservation of information carried by older
instances. The parameters that can be modified are the same as in the stan-
dard k-NN.
K-NN with Probabilistic Approximate Window and Adaptive Window-

ing (K-NN with PAW and ADWIN) is another modification of k-NN de-
scribed in (Bifet et al., 2013). To enable adaptation to concept drift, the
ADWIN change detector is added. In this case, the modifiable parameters
are the same as in the case of k-NN.
Self-Adjusting Memory k-NN (SAM k-NN) is the newest modification

of the k-NN classifier proposed in (Losing et al., 2018). It includes two
memory types to deal with different types of concept drift, called short-
term memory (STM) and long-term memory (LTM). Several parameters of
the algorithm can be modified:
– Number of neighbours: k (default 5)
– Maximum number of instances to store: w (default 5000)
– Minimum number of instances in the STM: m (default 50)
– Allowed LTM size relative to the total limit: p (default 0.4)
– Recalculation of the error rate of the STM for size adaptation: r (default
is false, because of the computational cost)
The datasets used in the experiments was provided by Dr Eng.

K. A. Ciecierski. He used it in his PhD thesis research. For the purpose
of the experiments, records of three patients were used. The data was not
preprocessed. Each record contained 240,000 measurements. Some records
were not taken into account, due to the smaller number of measurements.
The parameter that was changed during the experiments was the number of
neighbours. Odd values between 1 and 9 were picked, while other variables
required for the algorithms were set to their default values.
Moreover, the performance of the proposed approach was compared

with other stream classifiers presented by Bifet et al. (2013), such as Hoeffd-
ing Tree, Naive Bayes, and Leveraging Bagging. The algorithms’ parameters
were set to their default values.
Prequential Accuracy was used as a classifier performance measure. It is

defined in the following way: suppose we have a data stream. Each arriving
instance can be used to test the model before it is used for training, and
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from this, the accuracy can be incrementally updated. As a result, the model
is always being tested on instances that it has not seen before. Prequential
Accuracy is computed at every moment t as soon as prediction ŷt is made.

Acc(t) =
1

t

t
∑

i=1

L(yi, ŷi)

where L(yi, ŷi) = 1 if yi = ŷi and 0 if otherwise.

Results and Discussion

The results of the experiments performed with measurements in the first
patient are shown in Table 1. Performance measures for the k-NN classifiers
with NCD and LZJD are better by up to 8.5 per cent and 12.7 per cent,
respectively. It can also be noticed that in order to obtain good results, the
number of neighbours can be limited to only one.

Table 1. K-nearest neighbour classification using Euclidean distance,
Normalized Compression Distance and Lempel-Ziv Jaccard
Distance for the measurements taken from the first patient

k-NN ED k-NN NCD

k-NN k-NN+ k-NN+ SAM k-NN k-NN+ k-NN+ SAM
NN PAW PAW+ k-NN PAW PAW+ k-NN

ADWIN ADWIN

1 70.707 71.717 71.717 67.677 75.758

3 71.717 71.717 71.717 65.657 68.687

5 71.717 73.737 73.737 68.687 77.778 73.737 59.596

7 68.687 72.727 72.727 65.657 54.545

9 57.575 72.727 72.727 53.535 56.566

k-NN LZJD

k-NN k-NN+ k-NN+ SAM
NN PAW PAW+ k-NN

ADWIN

1 77.778

3 68.687

5 80.808 63.636

7 54.545

9 59.596
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Table 2. K-nearest neighbour classification using Euclidean distance,
Normalized Compression Distance, and Lempel-Ziv Jaccard
Distance for the measurements taken from the second patient

k-NN ED k-NN NCD

k-NN k-NN+ k-NN+ SAM k-NN k-NN+ k-NN+ SAM
NN PAW PAW+ k-NN PAW PAW+ k-NN

ADWIN ADWIN

1 71.605 72.840 72.840 66.667 75.309

3 71.605 71.605 71.605 69.136 70.370

5 71.605 70.370 70.370 66.667 75.309 76.543 58.025

7 71.605 67.901 67.901 61.728 56.790

9 70.370 67.901 67.901 59.259 55.556

k-NN LZJD

k-NN k-NN+ k-NN+ SAM
NN PAW PAW+ k-NN

ADWIN

1 76.543

3 70.370

5 79.012 81.481 65.432

7 60.494

9 58.025

The classification results for the data from the second patient are
shown in Table 2. Performance measures for the k-NN classifiers with NCD
and LZJD distances are better by up to 7 per cent and 14 per cent, respec-
tively. Limitation of the number of neighbours to only one also tends to give
good results.
The classification results for the data from the third patient are shown

in Table 3. In this case, it can be noticed that the approach that uses LZJD
performs the best. The performance is better by 5 per cent in comparison
with the case where standard Euclidean distance is used. In most cases,
the k-NN classifier variants that use NCD perform similarly to the k-NN
classifier variants with Euclidean distance. Similarly to previous cases, the
number of neighbours can be limited to only one.
The results of classification performance of the other stream classifiers

are provided in Table 4. When compared with the k-NN mentioned earlier,
the variants with NCD and LZJD, it can be seen that the performance over-
comes the performance of the Hoeffding Tree, Naive Bayes, and Leveraging
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Table 3. K-nearest neighbour classification using Euclidean distance,
Normalized Compression Distance, and Lempel-Ziv Jaccard
Distance for the measurements taken from the third patient

k-NN ED k-NN NCD

k-NN k-NN+ k-NN+ SAM k-NN k-NN+ k-NN+ SAM
NN PAW PAW+ k-NN PAW PAW+ k-NN

ADWIN ADWIN

1 88.172 87.097

3 88.172 79.570

5 89.247 89.247 88.172 89.247 81.720

7 88.172 84.946

9 86.022 81.720

k-NN LZJD

k-NN k-NN+ k-NN+ SAM
NN PAW PAW+ k-NN

ADWIN

1 91.398

3 91.398

5 91.398 93.548 84.946

7 86.022

9 86.022

Table 4. Classification results obtained for three patients with the use of other
popular stream classifiers

Number of Naive Hoeffding Leveraging k-NN k-NN
a patient Bayes Tree Bagging NCD LZJD

1 71.717 71.717 70.707 77.778 80.808

2 71.605 71.605 69.136 76.543 81.481

3 89.247 89.247 89.247 89.247 93.548

Bagging in the case of all three patients, or tends to be the same. The im-
provement of the performance rate for the first patient is an up to 10 per cent
increase in the case of k-NN with NCD and up to 14.3 per cent for LZJD.
In the case of the second patient, an improvement of up to 10.7 and 17.9 per
cent can be seen, respectively. Finally, when classifying the data from the
third patient, improvement of up to 4.8 per cent is achieved when using
LZJD distance.
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To sum up, classification rates achieved with the proposed measures are
in most cases better than with the standard (Euclidean) distance. It is also
worth noticing that in most cases the authors’ approach gives better re-
sults than other data stream classification algorithms. As mentioned before,
computations were made on non-filtered/preprocessed numerical data.

Conclusions

The experimental results showed the usability of the proposed distance
measures in classifying high-dimensional medical measurement streaming
data. The experiments were performed on raw, noisy (in most cases) data.
In future research, signal denoising is planned to be performed by cutting
off unnecessary frequencies and filter the signal with high-pass and low-pass
filters. The structure of the data will remain unchanged, i.e. all the 240,000
measurements will be available. No new derivative features will be extracted
from the data. Then, experiments such as those described in this paper will
be performed and their results will be compared. Another approach to ob-
tain better results is to perform Prequential Cross-validation. Future ex-
periments will test this assumption. One of the issues that occurred during
the experiments is longer computation time, especially in the case of the Nor-
malized Compression Distance. Obviously, several causes can be found. First
of all, code written in Java works slower than its implementation in C lan-
guage (many compression algorithms are implemented when using it). Sec-
ondly, when the k-nearest neighbour classification is performed, distances
are each time computed from the beginning. For this reason, some caching
of known distances could result in the algorithm’s faster work. Finally, par-
allelization was not used. Hence, splitting the compression task for simul-
taneous threads could potentially result in a speedup. Advantage can also
be taken of the fact that when using the proposed distances, the number of
nearest neighbours can be limited to only one, which would provide a good
classification rate.
Nonetheless, the results look promising and after some improvement to

the implementation, it may become a useful tool that will help to perform
deep brain stimulation more precisely.
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