
STUDIES IN LOGIC, GRAMMAR

AND RHETORIC 51 (64) 2017

DOI: 10.1515/slgr-2017-0031

Perspective of Dimensional Analysis
in Medical Science

Wojciech Kowalewski1, Magdalena Roszak2, Barbara Kołodziejczak2,
Anna Ren-Kurc3

1 Faculty of Geographical and Geological Science, Adam Mickiewicz University in Poznan,
Poland

2 Department of Computer Science and Statistics, Poznan University of Medical Sciences,
Poland

3 Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznan,
Poland

Abstract. This paper presents several applications of the dimensional analy-
sis method to problems investigated in medical sciences. The method is used
to analyze various complex processes without using formal laws governing the
same. It is particularly suitable for a general analysis of fluid transfer (liquids
and gases) in the human body. This paper mainly serves as an overview of
selected applications, mostly those emerging in the recent years, and includes
a discussion of the mathematical fundamentals of dimensional analysis together
followed by its critical analysis. Containing detailed calculations of two exam-
ples, the paper also serves as training material in the area of the computational
method of the dimensional analysis algorithm.

Introduction

The first ideas forecasting the method of dimensional analysis came
from Fourier, who proposed the term dimensional homogeneity of physical
equations in 1822 (Gibbings, 2011; Tan, 2011). The first person to apply
these ideas was Lord Rayleigh in a series of his papers published in the 70s
and 80s of the 19th century; his research particularly concerned the processes
of fluid flow. Research on fluid viscosity based on dimensional analysis (not
quite formalized then) was also conducted by Prandl in the first decade of
the 20th century. The method owns its typical form to Buckingham (Buck-
ingham, 1914), who proved that reduction of problem complexity was pos-
sible in the form of dimensionless parameters. The first objective of the
presented paper is to overview selected applications of dimensional analysis
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to medical problems. Another objective is to deliver a detailed presentation
of a computational procedure for the algorithm, which does not go beyond
multiplication operations, hence being universally available. Nevertheless,
whoever may perform the calculations, the initial condition required to ap-
ply the method is the assistance of an expert in the field. The expert’s
role is to define the parameters determining the process being studied as
completely as possible. The completeness of the set of parameters is crucial
since it affects the quality of the final result. The basic feature of the method
makes it possible to gain essential knowledge about the reliance of the pro-
cess on the specified parameters, at the same time omitting the necessity
to use complex physical equations. This fact is of importance in the case of
flow (e.g. blood transfer in the body), especially for persons whose knowl-
edge in the field of physics and numerical methods is limited. In addition,
the method can be used to reduce (sometimes significantly) the problem to
a lower number of new parameters. In this respect, the method is similar
to statistical dimensionality reduction techniques such as PCA (Principal
Component Analysis) and SPA (Successive Projections Algorithm). Finally,
when the method is supplemented with a reasonable number of measure-
ments, it is possible to obtain an explicit form of the function – an accurate
or almost accurate course of the process.
The following section begins with a discussion of the mathematical

fundamentals of the dimensional analysis algorithm and demonstrates the
principle using a very simple example of flow through a circular-section
tube. Then, it is shown how the algorithm may be employed to analyze
systolic/diastolic pressure and stroke volume in the cardiovascular system,
with results sourced from papers Stergiopulos et al. (1996) and Wester-
hof et al. (2010). A subsequent section presents a detailed operation of the
algorithm on an example of a bioheat transfer differential equation. Finally,
a brief discussion of the limitations of dimensional analysis, including certain
complementary information, is presented.

Fundamentals of Dimensional Analysis

Whenever a dimension is mentioned, it usually refers to the geometri-
cal concept of dimension, i.e. a single numerical value (scalar) with the in-
formation about the minimum number of mutually independent parameters
necessary for localization, usually in one-, but also two- or three-dimensional
space. This approach (the minimum number, independence) is also effective
whenever an attempt is made to describe the essence of a phenomenon, not
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necessarily of a geometrical nature. On the other hand, dimensional analysis
uses dimensions to express the physical meaning of a value, i.e. a dimension
resulting directly from the unit associated with the quantity. For instance,
a length in a given space may be expressed in meters (m), centimeters (cm),
miles (mil), or inches (in). All these units are common for the concept of dis-
tance between points selected in the analyzed space. For the purpose of this
interpretation, no distinction between the actual units is made, only the as-
pect of distance (the physical quantity) designated with the letter L (length)
being used. To determine unit j of quantityW, notation in square brackets,
i.e. [W]= j is used. (Lower case will sometimes be used to show the ap-
plied system of units.) With reference to the International System of Units,
the symbol L denotes a measurement given in meters ([L]SI=m, meter).
The SI system provides the so-called base units (dimensions), which can
be used to derive other physical units. Apart from length, the basic con-
cepts include the following: mass (designationM, [M]SI=kg, kilogram),
time (designation T, [T]SI=s, second), temperature (designation θ,
[θ]SI=K, kelvin), electric current (designation I, [I]SI=A, ampere),
luminous intensity (designation C, [C]SI=cd, candela) and amount
of substance (designation N, [N]SI=mol, mole). Such base quantities
can be used to derive all other physical quantities, e.g. force ([F]SI=N),
which is generally the product of mass and acceleration. Thus, the phys-
ical dimension may be expressed as ML/T2 instead of F. If quantity W
is dimensionless (i.e. the quantity cannot be interpreted physically), the
notation is [W]=1.
Dimension W is dimensionally dependent on dimensions W1,W2,

. . . ,Wn if there are numbers 1, , 2, . . . , n such that:

W = Wα1

1 Wα2

2 . . .Wαn
n .

Dimensions W1,W2, . . . ,Wn create a dimensionally independent sys-
tem provided that no dimension Wi (i = 1, 2, . . . , n) is dimensionally de-
pended on other dimensions in the system.
Many investigated natural phenomena depend on a high number of pa-

rameters whose mutual relationships are not always evident or difficult to
observe in general. As a method, dimensional analysis is suitable particularly
for reduction of the number of parameters by their replacement with
a smaller number of other parameters, creating a dimensionally indepen-
dent system; additionally, all dimensions in the system are dimensionless.
This last feature is the reason why the description becomes independent
from the scale of measurement. In order to provide a simple illustrative
example, let us analyze the well-known equation of motion in the gravita-

21



Wojciech Kowalewski et al.

tional field (Yoon, 2014). Suppose a body is projected vertically at a velocity
of V0, from a height of z0. The equation of motion in this case is as follows:

z = z0 + V0t−
gt2

2
. (1)

The dimensions on the left and the right side of the formula must be con-
sistent, which is expressed, for the assumed system of symbols, as:

L = L+
L

T
T −

L

T 2
T 2.

Essentially, there must be – and in this case there are – more items,
i.e. the dimensions of all additive terms of a physical equation must be
dimensionally consistent, according to the so-called principle of dimen-
sional homogeneity.
If both sides of equation (1) are divided by z0 and new (dimensionless)

parameters are introduced:

z∗ =
z

z0
, t∗ =

V0t

z0
, a =

V 2
0

gz0
,

a dimensionless form of equation (1) is obtained:

z∗ = 1 + t∗ −
1

2a
t∗2. (2)

As a result, equation (2) depends on three dimensionless parameters
(z∗, t∗, α), in contrast with equation (1), which depends on five parame-
ters with dimensions (z, z0, V0, t, g). Thus, the number of parameters has
been reduced from n=5 to r=3. As will be shown later, the reduction
level of m=2 results from the fact that equation (1) depends on two base
dimensions: L and T. A theoretical explanation of the fact arises from the
Buckingham theorem. Before that theorem is presented, let us pay at-
tention to the fact that parameter z∗ contains information about two out-
put parameters (z and z0), mixed together by a division of the first one
(the motion variable) by the other one (the motion constant). This implies
that z∗ is a variant of the variable with the corresponding universal con-
stant of z0 = 1. Consequently, equation (2) is independent from the scale
of the initial position z0. By analogy, parameter t∗ contains information
about parameters z, z0 and V0. Parameter t∗ may be regarded as a divi-
sion of time t by quotient z0/V0 which has a time dimension, and the value
defining the time required to reach height z0 at a constant velocity of V0.
With equation (2), time is again to some extent universal, i.e. scaled by the
“initial time”. As a result, equation (2) is also independent from the time
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scale. In addition, parameter α (the new acceleration constant) in equa-
tion (2) is also dimensionless and contains information about the mutual
proportions of constants z0, V0 and g. To conclude, the initial equation has
been restated in a form with a lower number of parameters, in which the
parameters are independent from each other and dimensionless. As such,
the resulting equation is of a form equivalent to the initial equation – the
canonical form in terms of scales of parameters.
Let us now consider a general situation (cf., e.g. Holmes, 2009;

Yarin, 2012). Let physical quantity q depend on n physical parameters
p1, p2, . . . , pn. For formal purposes, let us assume that parameters pi (i =
1, 2, . . . , n) depend only on three base dimensions L, M , T . Then:

[q] = Ll0Mm0T t0 , [pi] = LliMmiT ti , i = 1, 2, . . . , n.

In addition, let us assume that a function f() exists such that q =
f(p1, p2, . . . , pn). Any reduction of dimensions consists in analyzing the
problem to find out if numbers α1, α2, . . . , αn exist such that:

[q] = [pa1

1 pa2

2 . . . pan
n ].

Then, q is referred to as the dimensional product of variables p1,p2,. . . ,pn.
The existence of numbers α1, . . . , αn is equivalent to finding a solution for
a system with three equations (as three dimensions have been assumed):

l1α1 + l2α2 + . . . + lnαn = l0

m1α1 +m2α2 + . . . +mnαn = m0

t1α1 + t2α2 + . . .+ tnαn = t0.

The corresponding matrix equation is:

Aa = b, (3)

where

A =





l1 . . . ln
m1 . . . mn

t1 . . . tn



 , a =







α1

...
αn






, b =





l0
m0

t0



 .

If system (3) has no solution, the system of parameters p1, p2, . . . , pn is di-
mensionally incomplete; otherwise, it is dimensionally complete. Dimen-
sional incompleteness means that the system requires new dimensions for
the dimension of quantity q to be expressed as a combination of dimensions
of the new supplemented system.
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In the discussed case, matrix A (referred to as thematrix of a dimen-
sion) has 3 rows. Generally, the number of rows is the same as the number
of the selected base dimensions, whereas the rank of a matrix (designated
as m) implies that the system can be reduced to r = n − m of indepen-
dent dimensions. These facts constitute the aforementioned Bucking-
ham theorem, i.e.:

Let us assume that formula q = f(p1, p2, . . . , pn) is dimensionally
homogeneous and system p1, p2, . . . , pn, is dimensionally complete.
Then, formula q may be reduced as follows:

q = Q · F (π1, π2, . . . , πk),

where the system of parameters {πi}, i = 1, 2, . . . , k is dimension-
ally independent and all its elements are dimensionless, whereas
Q is the dimensional product of parameters {pj}, j = 1, 2, . . . , n

– the product being dimensionally consistent with q. The value of k
is within the range {0, 1, . . . , n−1}, depending on the system {pj}.
If k = 0, then q = αQ (where α is a constant).

New parameters π1, π2, . . . , πk are generally called π-terms. The pro-
cedure used to determine the ith π-term results from the fact that the term
is dimensionless and the dimensional product of the so-called repeating
variables, selected from the set {p1, p2, . . . , pn}. These are dimensionally
independent representatives of the base dimensions that describe the prob-
lem in question, i.e. dimensions L, M , T (the selection is not usually un-
ambiguous, but they must produce a dimensionally independent system).
The number of repeating variables is the same as the number of base dimen-
sions, in this case designated as r1, r2, . . . , rm, where m = n− k. Let us also
assume that {z1, z2, . . . , zk} = {p1, p2, . . . , pn}\{r1, r2, . . . , rm}, i.e. the re-
maining initial variables, except for the repeating variables. If it is assumed,
for instance, that the set of base dimensions is {L,M, T} (m = 3), the fol-
lowing expression can be found for the unknown a, b and c:

[πi] = L0M0T 0, πi = zir
a
1r

b
2r

c
3, i = 1, . . . , k. (4)

Example Demonstrating the Algorithm

Yoon (2014) analyzed the case of pressure change of the fluid flowing
through a fixed-diameter tube. The model may be applied to the study
of blood pressure changes in selected arterial sections (fixed radius and
circular section), with an additional simplifying assumption that blood is
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a homogeneous mixture on the solution-like scale and the flow velocity in the
selected portion is constant as it would not be quite possible to analyze the
dynamics of white/red blood cells and thrombocytes separately. With these
assumptions, the pressure change ∆p (the equivalent of q in the Buckingham
theorem) depends on four parameters:
– artery diameter, designated as d;
– length of the investigated flow section, designated as x;
– flow velocity, designated as v;
– blood viscosity, designated as b.
Such a study of differential pressure along selected arterial sections is

reasonable only for the sections where differential pressure occurs at a fixed
diameter of the transfer tube, which is to some extent a simplification, con-
sidering the flexibility of artery walls, thick ones in particular. In addition,
blood viscosity in an actual system also undergoes dynamic changes de-
pending on whether the systolic or diastolic stage is analyzed (Holsworth
& Wright, 2012). Thus, one of the stages must be chosen and the value
of viscosity must be averaged for that stage. Blood viscosity is nowadays
commonly recognized as a universal risk indicator of cardiac and vascular
diseases (Sloop & Garber, 1997), which is directly associated with LDL
cholesterol in particular. Despite these potential inconsistencies, it was de-
cided that the chosen example is adequate for the stated purpose due to its
simplicity of demonstration.
Parameters (d, x, v, µ) are equivalents of parameters (p1, p2, p3, p4) in

the Buckingham theorem, whereas n = 4. If the relationship formula is
designated as f in the theorem, we obtain:

∆p = f(D,x, V, µ). (5)

The dimensions of all the variables in equation (5) may be defined by the
three base dimensions L, M , T . Their forms are presented in the Table 1.

Table 1. The dimensions of the variables in equation (5)

Variable Dimension

∆p N/m2⇒ L−1M1T−2

d m⇒ L1M0T 0

x m⇒ L1M0T 0

v m/s⇒ L1M0T−1

µ N s/m2⇒ L−1M1T−1
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Hence, component equations (3) are in the following forms:

A =





1 1 1 −1
0 0 0 1
0 0 −1 −1



 , a =







α1

...
α4






, b =





−1
1
−2



 .

As the determinant of one of the submatrices is not equal to zero:

det





1 1 −1
0 0 1
0 −1 −1



 6= 0, hence rank(A) = 3.

Based on the Buckingham theorem, k = 1, ∆p = xα1dα2vα3µα4F (π1)
and π1 is a dimensionless variable. Let us include d, v, µ in the set of
repeating variables, as representatives of dimensions L, T , M , respectively.
Hence:

π1 = xdavbµc.

In the language of dimensions, the equation is equivalent to:

L0M0T 0 = LLaLbT−bL−cM cT−c = La+b−c+1M cT−b−c.

Thus, c = 0, b = 0, a = −1, hence π1 = xd−1. In addition, since dimen-
sion ∆p is L−1M1T−2, hence

[dα1xα2vα3µα4 ] = Lα1Lα2Lα3T−α3L−α4Mα4T−α4

= Lα1+α2+α3−α4Mα4T−α3−α4

= L−1M1T−2

Hence α4 = 1, α3 = 1, α2 = −1− α1. Let α = α1. Finally:

∆p = xαd−1−αvµF (xd−1) = vµd−1πα
1 F (π1) = vµd−1G(π1). (6)

Form (6) is a general form of quantity ∆p. Any statement with a greater
degree of precision requires experimental data, which illustrates the
universal feature of the dimensional analysis method, its nature is experi-
mental. In this case, experience shows that pressure drop is proportional to
flow length, i.e. variable x in the analyzed case. Thus, if it is assumed that
C = constant, it can be stated that:

∆p = C · v · µ · d−1 · x · d−1 = Cvµxd−2.

This is a relevant fact as far as the nature of such flow is concerned, i.e. pres-
sure change is inversely proportional to flow cross-section.
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The simple example shows that the dimensional analysis method may
provide information about relevant features of the process under investiga-
tion by highlighting the most important parameters and, at least partially,
showing mutual relationships without using classical equations of flow ade-
quate for the process. Obviously, in this specific case, the classical equations
and the related numerical methods could well by applied as it is a standard
approach in haemodynamics (cf., e.g. Zamir, 2016). These equations provide
a much more precise description. However, the following aspects must be
considered: firstly, this level of precision is not always necessary; secondly,
precision usually leads to a considerable lengthening of calculations and the
need to deal with serious numerical methods; thirdly, dimensional analysis
may be applied when precise physical laws for the process are unknown (al-
though such laws for hemodynamics are very detailed and consist of various
equations of fluid dynamics).

Analysis of Blood Flow in the Cardiovascular System

Dimensional dynamics may be effectively used in a much more complex
situations than the example presented above. An application of this kind,
to a case of pressure simulation in the cardiovascular flow system is pre-
sented in book Westerhof et al. (2010) and paper Stergiopulos et al. (1996).
In this case, the heart is a pump and the artery is a transfer line. Under-
standing the quantitative impact of the heart and artery on blood pressure
and flow velocity is essential, for example, in case of hypertension and heart
attack. A complete cardiac cycle involves four stages with a pause before the
next cycle (Traczyk & Trzebski, 2015; Woźniak, 2003). During the pause,
the ventricles (partially) and atria are being filled with blood, which im-
plies a low increase in pressure, but a high increase in ventricular volume.
The ventricular systole stage generates a pressure differential between the
atria and the ventricle, which implies the flow of blood into the ventricles
(stage A in Figure 1), with the ventricles reaching the end-systolic volume
(approx. 180–220 cm3) and end-diastolic pressure – point 2 in Figure 1.
The next stage involves the ventricular systole to increase the pressure of
blood inside (30 mmHg in the right and 120 mmHg in the left ventricle, vol-
ume unchanged – stage B in Figure 1), which causes the ejection of blood
into arteries (stroke volume, 70–120 cm3) and reduces the ventricular vol-
ume (stage C in Figure 1). The pressure at the end of the stage (point 1
in Figure 1) is called end-systolic pressure. During the following stage, blood
pressure in the ventricles decreases and their volume remains unchanged
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Figure 1. Pressure-volume ratio in the left ventricle during the cycle

(stage D in Figure 1). Simultaneously, the base of the atria lowers, which
results in a decrease in the pressure and blood inflow in the atria. Any
further decrease of pressure in the ventricles results in repeatedly partial
filling, i.e. the pause after four systolic stages is repeated.
The pressure-volume ratio in the ventricles is referred to as elastance,

designated as E(t), where t is the time during the cycle. This will serve
as the main quantity characterizing heart activity and a measure of heart
output. Let Emin and Emax refer to the elastance of end-systolic pressure
and end-diastolic pressure (inclinations of the tangents relative to the curve
in Figure 1 at points 4 and 2). Inclination Emax is a good indicator of heart
inotropy, as it is generally changing. A higher value of Emax means greater
inotropy with a simultaneous shift of the E(t) cycle graph to the left along
the volume axis. This implies that it is possible to analyze a hypotheti-
cal curve Emax(V ), which intersects the V axis at point Vd. The physical
meaning of Vd is not completely understood (Blaudszun & Morel, 2011).
In the heart model designed in Stergiopulos et al. (1996), heart activity is
parametrized by six parameters. Apart from the three already mentioned,
i.e. Emax, Emin and Vd, there are venous filling pressure PV , heart cycle T
and time Tp of elastance Emax. It is not necessary to know a precise func-
tion E(t) because the function standardized by Emax delivers a universal
shape of the graph, independent from the medical condition of the heart,
in which case the shape is not a process variable. Another element of the flow
system comes in the form of arteries, which, together with the heart, create
a closed hydraulic circuit. The system is defined by the commonly known
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Windkessel model (cf. Catanho et al., 2012; Westerhof et al., 2010), which
associates blood pressure in the artery with the following: arterial compli-
ance (the tendency to increase length and volume with increasing pressure,
i.e. to resist recoil toward the original dimensions when force is applied –
the reciprocal of elastance, designation C), peripheral vascular resistance
(the ratio of pressure differential along a given section to flow velocity, des-
ignation Rp), and blood inertia force (momentum of the blood flowing out
of the left ventricle toward the aorta). Aortic characteristic impedance (des-
ignated as Zp) will be referred to as the sum of external factors reducing
the ejection of blood into the aorta. To conclude, aortic flow is characterized
by C, Rp and Zp. From the perspective of dimensional analysis, there are
n = 9 variables. For dependent variables, let us choose systolic pressure,
diastolic pressure (designated as Ps, Pd) and stroke volume (designated
as SV ). For base dimensions, non-strictly SI-based quantities are selected
– time (T ), length (L) and force (F ). Hence m = 3, which implies the
r = n − m = 6 structure of dimensionless parameters. A classical dimen-
sional analysis performed in Stergiopulos et al. (1996) results in the following
three functions:

Ps

Pv

= Φ1

(

Zc

Rp

,
RpC

T
,CEmin,

Emax
Emin

,
EminVd

Pv

,
Tp

T

)

,

Pd

Pv

= Φ2

(

Zc

Rp

,
RpC

T
,CEmin,

Emax
Emin

,
EminVd

Pv

,
Tp

T

)

,

SV Emin
Pv

= Φ3

(

Zc

Rp

,
RpC

T
,CEmin,

Emax
Emin

,
EminVd

Pv

,
Tp

T

)

.

Further analysis at that stage required experimental observations, showing
that the influence of Tp/T on Ps/Pv , Pd/Pv and SV ·Emin/Pv is negligible
as is the influence of Zc/Rp on Ps/Pv. In addition, parameter Vd ·Emin/Pv

does not affect Ps/Pv as Zc/Rp does not affect SV/Vd and Emax/Emin does
not affect SV ·Emin/Pv. As a result, the functional relations are simplified:

Ps

Pv

∼= Φ1

(

RpC

T
,CEmin,

Emax
Emin

)

,

Pd

Pv

∼= Φ2

(

RpC

T
,CEmin,

Emax
Emin

)

,

SV Emin
Pv

∼= Φ3

(

RpC

T
,CEmin,

EminVd

Pv

)

.
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Parameters RpC/T and CEmin include the ventricular and aortic variables
and appear in all the functions. This proves that pressure and flow are
affected simultaneously by the activity of the heart and the artery. The
obtained form allowed the authors Stergiopulos et al. (1996) to conduct
experiments concerning the influence of individual parameters on the sys-
tolic/diastolic pressure and the stroke volume (cf. Westerhof et al., 2010 –
Table 29.1). The paper concluded that a 10% increase in compliance would
result in a 1% decrease in systolic pressure and 2% increase in diastolic
pressure. The authors of the presented solution did not provide any ex-
plicit form of function Φ1, Φ2, Φ3. Obviously, it could be obtained through
a sufficiently large number of experiments and the use of selected regression
and/or approximation methods. In addition, the authors drew attention to
the fact that the obtained form leads directly to the Frank-Starling law,
which states that during systole the amount of blood flowing out of the
heart increases in response to an increase in the volume of blood flowing
into the heart.
Other examples of how dimensional analysis is applied to medical prob-

lems can be found in papers published by Rohlf & Tenti, (2001) and Burle-
son et al. (1995).

Example Application of Dimensional Analysis
to Differential Equations

The Pennes Bioheat Equation (Pennes, 1948) describing the passive
aspect of heat transfer in the human body is a second-order partial differ-
ential equation of two variables (r, t). Nevertheless, the equation includes
eight physical constants, so it eventually depends on as many as eleven
parameters (cf., e.g. Fiala, 1998):

k

(

∂2Tt

∂r2
+

ω

r

∂Tt

∂r

)

+ qm + qbwbcb(Tb − Tt) = ρct
∂Tt

∂t
. (7)

The solution of the equation is almost always found as a result of applying
numerical methods to differential equations. The potential use of dimen-
sional analysis as a complete replacement of numerical solution appears
doubtful, but it may prove helpful when analyzing mutual relationships
of parameters. Moreover, the case will be recalculated in more detail as
a more complex presentation of the procedure for the Buckingham Theorem.
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No matrix notation will be used in this case (as it may be unknown to some
readers); an explicit expansion will be given instead.
Generally, the unknown tissue temperature Tt ([Tt]SI = K) is a func-

tion of arterial blood temperature (Tb, [Tb]SI = K), density of tissue and
blood (ρ, ρb, [ρ]SI = [ρb]SI = kg/m3), the specific heat of tissue and blood
(ct, cb, [ct]SI = [cb]SI = J/kg·K), metabolic level (qm, [qm]SI =W/m3), blood
perfusion (wb, [wb]SI = m3/m3s = 1/s), tissue radius (r, [r]SI = m), time
(t, [t]SI = s), and tissue thermal conductivity (k, [k]SI =W/m·K). The base
dimensions in the equation are as follows: length (L), mass (M), time (T )
and temperature (θ); thus,m = 4. Therefore, the application of dimensional
analysis results in seven dimensionless variables. The following parameters
will be chosen as repeating variables: r representing L, ρ representing M ,
t representing Tt and ct representing θ. Then their dimensions are presented
in Table 2.

Table 2. The dimensions of the variables

Variable Dimension

ρ kg/m3⇒ L−3M1T 0θ0

r m⇒ L1M0T 0θ0

T s⇒ L0M0T 1θ0

ct J/kg·K⇒ L2M0T−2θ−1

For generators of subsequent terms πi, let us assume (specify) the following
generator-term pairs: (k, π1), (Tt, π2), (qm, π3), (qb, π4), (wb, π5), (cb, π6),
(Tb, π7). A general multiplier for each term πi is:

raρbtccdt

for certain integers a, b, c and d. Hence the multiplier dimension is:

LaM
b

L3b
T c L2d

θdT 2d
= La+2d−3bM bT c−2dθ−d.

Now, let us calculate individual terms πi (by repeating the same pattern
7 times).
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π1:
ML

QT 3
La+2d−3bM bT c−2dθ−d = La+2d−3b+1M b+1T c−2d−3θ−d−1

= L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b+ 1 = 0
b+ 1 = 0 ⇒ b = −1

c− 2d− 3 = 0
−d− 1 = 0 ⇒ d = −1

Hence the first equation gives a = −2 and the third equation gives c = 1.
Finally:

π1 = k · r−2ρ−1t1c−1
t .

π2: M b+1T c−2d−3θ−d−1 = L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b = 0
b = 0 ⇒ b = 0

c− 2d = 0
1− d = 0 ⇒ d = 1

Hence the third equation gives c = 2 and the first equation gives a = −2.
Finally:

π2 = Tt · r
−2ρ0t2c1t .

π3:
M

T 3L
La+2d−3bM bT c−2dθ−d = La+2d−3b−1M b+1T c−2d−3θ−d

= L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b− 1 = 0
b+ 1 = 0 ⇒ b = −1

c− 2d− 3 = 0
−d = 0 ⇒ d = 0

Hence the first equation gives a = −2 and the third equation gives c = 3.
Finally:

π3 = qm · r−2ρ−1t3c0t .
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π4:
M

L3
La+2d−3bM bT c−2dθ−d = La+2d−3b−3M b+1T c−2dθ−d

= L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b− 3 = 0
b+ 1 = 0 ⇒ b = −1

c− 2d = 0
−d = 0 ⇒ d = 0

Hence the third equation gives c = 0 and the first equation gives a = 0.
Finally:

π4 = qb · r
0ρ−1t0c0t .

π5:
1

T
La+2d−3bM bT c−2dθ−d = La+2d−3bM bT c−2d−1θ−d = L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b = 0

b = 0 ⇒ b = 0
c− 2d− 1 = 0

−d = 0 ⇒ d = 0

Hence the first equation gives a = 0 and the third equation gives c = 1.
Finally:

π5 = wb · r
0ρ0t1c0t .

π6:
L2

T 2θ
La+2d−3bM bT c−2dθ−d = La+2d−3b+2M bT c−2d−2θ−d−1

= L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b+ 2 = 0

b = 0 ⇒ b = 0
c− 2d− 2 = 0

−d− 1 = 0 ⇒ d = −1

Hence the third equation gives c = 0 and the first equation gives a = 0.
Finally:

π6 = cb · r
0ρ0t0c−1

t .
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π7: θ · La+2d−3bM bT c−2dθ−d = La+2d−3bM bT c−2dθ−d = L0M0T 0θ0

The following system of equations is obtained:

a+ 2d− 3b = 0
b = 0 ⇒ b = 0

c− 2d = 0
1− d = 0 ⇒ d = 1

Hence the third equation gives c = 2 and the first equation gives a = −2.
Finally:

π7 = Tb · r
−2ρ0t2c1t .

After reduction, the following forms of the seven terms π are obtained:

π1 =
k

ct · ρ
·
t

r2
,

π2 = ct · Tt ·
t2

r2
,

π3 =
qm
ρ

·
t3

r2
,

π4 =
qb
ρ
,

π5 = wb · t,

π6 =
cb
ct
,

π7 = ct · Tb ·
t2

r2
.

A general solution may be expressed as follows:

π2 = f(π1, π3, π4, π5, π6, π7), (8)

where f() is an unknown function.
In addition, π2 = π7 ·

Tt

Tb
. Hence (8) can be written mathematically as:

Tt = Tb · g(π1, π3, π4, π5, π6, π7), (9)

where g() is an unknown function. Any further reduction would require
an experimental study of how terms π1, π3, π4, π5, π6, π7 affect tempera-
ture Tt, similarly to the example relating to blood flow between the heart
and the artery. To obtain a specific form of function g(), it would be nec-
essary to take many measurements of parameters π1, π3, π4, π5, π6, π7, use
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regression and/or approximation methods and precisely compare the results
with the solutions obtained from equation (7) with the use of numerical
methods. Obviously, if an analytical form that provides correct results was
obtained, it would be very useful. However, the complexity of the problem in
the example in question advises caution while anticipating any success. On
the other hand, for problems described by differential equations, dimensional
analysis may sometimes be successfully used to replace an equation with
a simpler one, one that would be much easier to calculate. The benefit
in this case is solely in the numerical aspect. It is possible to restate the
equation when the number of problem-related parameters does not exceed
a certain level, which allows dimensional analysis to reduce the number to
one or two. A classic example of the procedure is applied to the equation
of diffusion (e.g. oxygen transfer from lungs into blood), as can be found in
particular in (Holmes, 2009).

Further Remarks on the Limitations of Dimensional Analysis

Generally, in very complex processes that depend on many parameters,
where the mutual dependency may be (and usually is) relatively unclear
(i.e. when it is difficult to distinguish dimensionally independent repeat-
ing variables with absolute certainty), reduction by means of dimensional
analysis usually gives no cognitively relevant results. An ineffective reduc-
tion of the number of variables is not the only drawback of dimensional
analysis. Another undoubted disadvantage is the non-discrimination of vec-
tor and scalar quantities (e.g. position in space is described numerically
by three scalars x, y and z, whereas a parameter in dimensional analy-
sis is usually understood as a single quantity), which may in practice also
lead to an unnecessary increase in the number of new parameters (Madrid
& Alhama, 2006). These as well as other drawbacks of dimensional analysis
are the reason why method is often aided by other dimensional reduction
methods, with statistical methods among the most popular ones (Madrid
& Alhama, 2006; Rajan et al., 2009).

Conclusion

Dimensional analysis can serve as an analytical tool in the medical sci-
ences, primarily in the first stage of modeling complex processes. It enables
the user to extract important parameters for the model being built. The de-
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velopment of a full analytical model usually requires additional experiments
(which in the case of medicine are unfortunately often invasive) and interac-
tion with experts in various fields (in the case of medicine these are usually
chemists, physicists, mathematicians and computer scientists)
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