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Abstract. In the paper we propose a new approach to formalization of cog-
nitive logics. By cognitive logics we understand supraclassical, but non-trivial
consequence operations, defined in a propositional language. We extend some
paradigm of tableau methods, in which classical consequence Cn is defined,
to stronger logics — monotonic, as well as non-monotonic ones — by specific
use of non-classical tableau rules. So far, in that context tableaus have been
treated as a way of formalizing other approaches to supraclassical logics, but
we use them autonomically to generate various consequence operations. It re-
quires a description of the hierarchy of non-classical tableau rules that result in
different supraclassical consequence operations, so we give it.
Keywords: cognitive logic, commonsense reasoning, consequence operation, con-
sequence relation, non-classical tableau rules, non-monotonic logics, tableau
methods.

1. Aim and overview

The paper is devoted to an interesting and quite technical approach to
defining supraclassical logics (logics that are stronger than Classical Propo-
sitional Logic2.). The logics are usually understood as formal counterparts
of everyday, commonsense reasoning, especially those among supraclassical
ones that are non-monotonic. That is why we call them cognitive logics.
The intricacies of terminology that come out of that shall be explained

later.
Briefly, in the article we consider the following issues. First, we take

into account reasoning as a subject of logic, with special pressure on com-
monsense reasoning as cognitive reasoning. Next, we present an approach to
logics by consequence operations: supraclassical, monotonic, as well as non-
monotonic. Finally, we describe a transition between the definition of class-
ical consequence operation by tableau method and supraclassical tableau
consequence operations – cognitive logics. The two former issues constitute
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a proper framework for developing formal tools that capture cognitive rea-
soning, while the latter issue is the most original contribution of the article,
since we present a hierarchy of tableau rules that enables defining of more
and more general cognitive logics in the framework of tableau methods.

2. Reasoning as a subject of logic

Reasoning or argument — since we use these terms interchangeably
— can be treated as a set of sentences where one of them, called conclusion,
is distinguished, while the rest are called premises.3 Symbolically, arguments
are usually presented as below:

P1...
Pn
C,

where n ≥ 0.

2.1. Deductive arguments
Argument {P1, . . . ,Pn,C} is valid if and only if (in short: iff) in all

situations in which all premises P1, . . ., Pn have got a designated logical
value, conclusion C has also got a designated logical value.4 Sometimes,
instead of the word valid, we use also the word correct. Respectively, if
an argument is not valid, we call it invalid or incorrect.
In the case of CPL a designated logical value is truth (sometimes written

as 1, while falsity is written as 0), so classically, argument {P1, . . . ,Pn,C}
is valid iff in all situations in which all premises P1, . . . ,Pn are true, also
conclusion C is true. When a given argument is valid in a classical sense,
we usually say that the conclusion logically follows from the premises.
Valid arguments are called deductive. Deductive arguments have got

very important properties that in some sense make them extraordinary.
If given argument {P1, . . . ,Pn,C} is valid, then also valid is an argument
in which to the premises of the former argument was added one or more
new premises, i.e. {P1, . . . ,Pn,Pn+1, . . . ,Pm,C} is also valid. It is a result
of the fact that by adding new premises Pn+1, . . . , Pm we do not increase
the set of situations that could make premises in the initial set {P1, . . . ,Pn}
true, while conclusion C false. In other words, in any situation in which
premises in the new set {P1, . . . ,Pn,Pn+1, . . . ,Pm} are true, premises in
the old set {P1, . . . ,Pn} are also true. Hence, in any situation, if premises
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{P1, . . . ,Pn,Pn+1, . . . ,Pm} are true, then conclusion C is true, since we
assumed that argument {P1, . . . ,Pn,C} is valid. Additional premises usually
even decrease the set of situations that make premises true. The property
we have just discussed is called monotony. Hence any deductive argument
is monotonic.

2.2. Non-deductive arguments as commonsense reasoning
In everyday life very often we do not use deductive arguments. Also,

often we make conclusions in non-monotonic ways. To be honest, out of
formal contexts (mathematical, logical etc) we very rarely dispose of suffi-
ciently rich sets of premises to make on its base any interesting conclusions
in a deductive way. Our arguments most often give the best conclusions
we are able to assert on that ground. However, since the conclusions do
not follow classically from premises, so additional pieces of information that
complete the initial base of knowledge may advise us to reject some of the
conclusions as less sure than it was used to be earlier. To better understand
the dynamics of changing states of knowledge we propose the following ex-
ample.

Example 1

We have some set of information:

(A) One of our friends has got a garden in town X.

(B) According to the friend the garden very often is flooded.

(C) One day we hear that in town X there was some cloudburst.

On the ground of (A), (B) and (C) we naturally (but non-classically, of
course) conclude that:

(D) The friend’s garden is flooded.

After some short time we learn that:

(E) Before the flood took place the gardens in town X had become
surrounded by an embankment.

Well, now on the base of (A), (B), (C), enriched by (E) it seems not reliable
to conclude (D). Even better is to conclude negation of (D).
However, what happens if we additionally learn that (F) in town

X most of the embankments did not resist the pressure of water? Prob-
ably, we again will change our opinion, and assert (D).

In the given example we see a situation where the number of premises
increases and the status of conclusion varies with the dynamics of the knowl-
edge. The reasoning is non-deductive and non-monotonic. In general there
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are a lot of ways for formal representing of such reasoning. Most of them
include and accept also deductive arguments. Hence any of the tools starts
from the classical approach, CPL, extending the mechanism of accepting
conclusions with new principles.
Because arguments of that kind are non-deductive, so making conclu-

sions like in the example can be called a ‘guessing game’; however, the
conclusions are not contingent: we have some reasons that make us accept
rather these conclusions than others. In spite of the ‘non-classicality’ of the
ways we make these conclusions, no matter how many new premises we
get, there are still preserved all conclusions that had been made classically,
in the deductive way.
The main task for formal research on such arguments is just a recon-

struction of formal reasons that encourage us to make uncertain conclusions.
However, we do not mean singular commonsense arguments, but inherent
logical systems that include them as — in some non-classical sense — cor-
rect.
Since we do not want to analyze singular commonsense arguments, but

integral logical systems that respect all classically correct arguments, so to
name these logics we would like to use the term cognitive logics.5 Hence, by
cognitive logics we understand logics that are defined on the same language
as CPL, preserve all classically correct arguments, and simultaneously may
respect some classically invalid arguments.

3. Consequence operations: classical and supraclassical

We will define logics on the classical, propositional language. The al-
phabet consists of propositional letters Sl = {p1, q1, r1, p2, q2, r2, . . .}, log-
ical constants Con = {¬,∧,∨,→,↔}, and brackets: ), (. Usually, instead
of small letters with indexes, we will write bare letters: p, q, r, s, without
subscripts, etc.
The set of formulas For is the smallest set of expressions that contains

Sl and is closed under Con in the following way: if A, B ∈ For, than ¬A ∈ For
and (A ∗B) ∈ For, where ∗ ∈ {∧,∨,→,↔}.
In the paper we approach logics in a way that is widely established in the

literature on supraclassical logics. We use a consequence operation/relation
notion to capture the particular logics we examine, which is typical for the
Polish School of Logic6 — to emphasize: we consequently identify a logic
with consequence operation/relation. The notion was introduced by Alfred
Tarski (Tarski, 1936) with a few restrictions, like for example monotony.
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However, in the context of supraclassical logics, usually a more liberal notion
is applied (Makinson, 2005). So we can start from some very general notion
of consequence operation, partially reminding of basic concepts from (Wój-
cicki, 1988) that we complicate later.

Definition 2 (Consequence operation/relation)

A consequence operation is a function C:P (For) −→ P (For). A conse-
quence relation is a relation R ⊆ P (For)× For.

When we examine more than one consequence operation, we use C with
subscripts. Instead of R we will write ⊢, respectively also with subscripts.

It is obvious that notions of consequence operation and consequence
relation are interdefinable.

Corollary 3

Any consequence operation C is definable in terms of a consequence
relation ⊢ (and vice versa) as follows: A ∈ C(X) iff X ⊢ A, for all
X ∪ {A} ⊆ For.

Now, we present a handful of definitions and conclusions that are useful
for the further considerations. We say that consequence operation C1 is
stronger than consequence operation C2 iff for all X ⊆ For: C2(X) ⊆ C1(X).

Corollary 4

The relation of being stronger than defined on any set of consequence
operations is a partial order, i.e. the relation is reflexive, transitive, and
antisymmetric, so for any consequence relations C1, C2, C3:

• C1 is stronger than C1

• If C1 is stronger than C2 and C2 is stronger than C3, then C1 is stronger
than C3

• If C1 is stronger than C2 and C2 is stronger than C1, then C1 = C2.

Since the relation of being stronger than is a partial order, so we will write
C1 ≥ C2 or C2 ≤ C1, when C1 is stronger than C2.7

We say that consequence operation C is monotonic (in short (M)) iff for
all X,Y ⊆ For: if X ⊆ Y , then C(X) ⊆ C(Y ). Consequence operation C is
non-monotonic iff C is not monotonic. The notion of being monotonic/non-
monotonic usually is crucial for any examination of commonsense reason-
ing.
Clearly, all the given notions can be rewritten in terms of consequence

relation.
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3.1. Classical consequence relation
CPL may be determined in many ways; one of the fundamental ways

is the semantic approach. A valuation of propositional letters is a function:
v:Sl −→ {0, 1}. Each valuation v can be extended to Boolean valuation
of formulas V :For −→ {0, 1}, that preserves Boolean meaning of logical
connectives in Con.
In the standard way we define notions of being satisfied and semantic

consequence operation: formula A classically follows from set of formulas X
(in short: X |= A) iff for all valuations V , if for all B ∈ X, V (B) = 1, then
V (A) = 1. Classical consequence relation |= is defined in set P(For) × For,
so it combines sets of premises with conclusions, this way determining the
set of all valid arguments.
As we already know relation |= can be expressed by consequence oper-

ation Cn:P(For) −→ P(For)8, called classical consequence operation, given
as follows: A ∈ Cn(X) ⇔ X |= A. Surely, Cn is monotonic, so: for all
X,Y ⊆ For, if X ⊆ Y , then Cn(X) ⊆ Cn(Y ). Classical operation Cn is
also reflexive, which means that X ⊆ Cn(X), for all sets of formulas X.
Moreover, it is idempotent, so Cn(Cn(X)) ⊆ Cn(X), for all sets of formu-
las X. The three properties make Cn closure operation, and any operation
that satisfies them is a closure operation.
Now, we add two important definitions more. Let C be a consequence

operation. Operation C is supraclassical iff Cn ≤ C. Operation C is trivial
iff C(X) = For, for all X ⊆ For. Of course, there is only one trivial logic,
namely CTRIV.
The weakest supraclassical logic is Cn, while the strongest supraclas-

sical one is trivial logic CTRIV. Due to the conceptualization we are able
to precisely define what we mean by cognitive logic. A logic/consequence
operation C is cognitive iff Cn ≤ C ≤ CTRIV, but Cn 6= C 6= CTRIV. This
is a formal and precise conceptualization of the definition of cognitive logic
that we introduced informally in the previous section.
There are infinitely many logics between Cn and CTRIV. None of the

logics is trivial, since they are not identical to CTRIV, however each of them
preserves valid arguments — since they are stronger then classical logic Cn

— and add some new argument or arguments that is classically invalid, since
Cn 6= C, for any cognitive logic C. Some of the logics may be monotonic, as
well as the rest are non-monotonic. The latter ones are intensively explored
in literature (Antoniou, 1997), (Makinson, 2005).
There are a few mechanisms that allow making CPL stronger, a real

cognitive logic. We will come back to them in the last section. Now, we are
preparing for application of some mechanism to CPL.
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3.2. Tableau approach to CPL
Tableau method relies on the validity of given argument {P1, . . . , Pn, C}

being checked in the following way. We take the premises with negated con-
clusion {P1, . . . ,Pn,¬C} and we apply some rules — called tableau rules
— to decompose those formulas. During decomposing there can appear al-
ternative possibilities — called branches. If on any branch there appear two
formulas of the form: A, ¬A, the argument is valid, otherwise after we have
used all applicable tableau rules, it is not valid.
Tableau method is so analytic — we decompose formulas to get simpler

ones — and indirect — we try to show that assumption on true premises
and false conclusion is false itself.

3.2.1. Standard approach to tableau rules
Below we have some standard — as graphs — presentation of positive

tableau rules for CPL:

And all negative (for formulas with an external negation) tableau rules are
here:

3.2.2. Formal approach to tableau methods
In works (Jarmużek, 2013), (Jarmużek, 2013b), (Jarmużek & Tkaczyk,

2015), (Jarmużek & Tkaczyk, 2015a) we proposed a formalization of tableau
methods for CPL, as well as for other propositional logics. Here we outline
the main ideas of formalization of tableau rules, since the rules play a cru-
cial role in any tableau proof. One distinguishing feature of our approach
is that our tableau rules have an internal mechanism for blocking appli-
cations to closed and to maximal branches. Another point is that in our
formalization we have a clear hierarchy of ontological levels of set theory
beings: tableau rules and branches are sets of sets, while tableaus are sets
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of branches, so sets of sets of sets. Among others, due to this our approach
is precise.
Because in our approach we do not apply tableau rules to some kind

of inconsistent sets of formulas, we introduce a definition of tableau incon-
sistency. Set X ⊆ For is tableau inconsistent (in short: t-inconsistent) iff
∃A∈For A, ¬A ∈ X. Set X is tableau consistent (in short: t-consistent) iff it
is not t-inconsistent.
By tableau rule in general we understand a set of binary or ternary

sequences of subsets of P (For). The first element of any sequence we call
initial set or input set, while the rest of the elements are called output
sets. The very important thing in the presented approach to rules is that
inputs are always proper subsets of outputs, so we can not use rules trivially.
Furthermore, we will put pressure on that property.
Tableau rules can be written also as fractions, where in the numerator

is an input set, in the denominator output set/sets. Now, we write the al-
ready mentioned rules for CPL, assuming that inputs sets are proper subsets
of appropriate output sets:

R∧ : {〈X ∪ {(A ∧B)},X ∪ {(A ∧B), A, B}〉 : X ∪ {(A ∧B)}
is t-consistent}

R∨ : {〈X ∪ {(A ∨B)},X ∪ {(A ∨B), A}, X ∪ {(A ∨B), B}〉 :
X ∪ {(A ∨B)} is t-consistent}

R→ : {〈X ∪ {(A → B)},X ∪ {X ∪ {(A → B), ¬A},
X ∪ {(A → B), B}〉 : X ∪ {(A → B)} is t-consistent}

R↔ : {〈X ∪ {(A ↔ B)},X ∪ {(A ↔ B), A, B},
X ∪ {(A ↔ B), ¬A, ¬B}〉 : X ∪ {(A → B)} is t-consistent}

R¬¬ : {〈X ∪ {¬¬A},X ∪ {¬¬A, A}〉 : X ∪ {¬¬A} is t-consistent}

R¬∧ : {〈X ∪ {¬(A ∧B)},X ∪ {¬(A ∧B),¬A}, X ∪ {¬(A ∧B),¬B}〉 :
X ∪ {¬(A ∧B)} is t-consistent}

R¬∨ : {〈X ∪ {¬(A ∨B)},X ∪ {¬(A ∨B),¬A,¬B}〉 : X ∪ {¬(A ∨B)}
is t-consistent}

R¬→ : {〈X ∪ {¬(A → B)},X ∪ {¬(A → B), A, ¬B}〉 : X ∪ {¬(A → B)}
is t-consistent}

R¬↔ : {〈X ∪ {¬(A ↔ B)},X ∪ {¬(A ↔ B), ¬A, B},
X ∪ {¬(A ↔ B), A, ¬B}〉 : X ∪ {¬(A ↔ B)} is t-consistent}

The set of all tableau rules for CPL we denote asRCPL. To make the notation
more lucid, we can use fractions, assuming that input sets are t-consistent.
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R∧ :
X ∪ {(A ∧B)}

X ∪ {(A ∧B), A, B}

R∨ :
X ∪ {(A ∨B)}

X ∪ {(A ∨B), A}, X ∪ {(A ∨B), B}

R→ :
X ∪ {(A → B)}

X ∪ {(A → B), ¬A}, X ∪ {(A → B), B}

R↔ :
X ∪ {(A ↔ B)}

X ∪ {(A ↔ B), A, B}, X ∪ {(A ↔ B), ¬A, ¬B}

R¬¬ :
X ∪ {¬¬A}

X ∪ {¬¬A, A}

R¬∧ :
X ∪ {¬(A ∧B)}

X ∪ {¬(A ∧B),¬A}, X ∪ {¬(A ∧B),¬B}

R¬∨ :
X ∪ {¬(A ∨B)}

X ∪ {¬(A ∨B),¬A,¬B}

R¬→ :
X ∪ {¬(A → B)}

X ∪ {¬(A → B), A, ¬B}

R¬↔ :
X ∪ {¬(A ↔ B)}

X ∪ {¬(A ↔ B), ¬A, B}, X ∪ {¬(A ↔ B), A, ¬B}

Having a formal notion of tableau rule, in (Jarmużek, 2013), (Jarmużek,
2013a) by turns we define formally more complex tableau notions: a branch,
an open/closed/complete branch, a tableau, an open/closed tableau, a com-
plete tableau, and tableau consequence operation. All those notions de-
pend on RCPL.
For example, informally we can introduce some intuitions. A branch is

a chain of sets X1 ⊂ . . . ⊂ Xn generated by applications of rules in RCPL.
A branch is maximal iff no rule in RCPL can be applied to its last member.
A branch is closed iff its last set includes a t-inconsistent set. A tableau

is ordered triple 〈X,A,Φ〉, where X ∪ {A} ⊆ For, Φ is a set of branches
starting from set X ∪ {¬A} and satisfying some additional conditions.
Finally, formula A is a tableau consequence of set of formulas X (sym-

bolically, A ∈ CT (X) or X ⊲A) iff there exists a closed tableau 〈X,A,Φ〉,
i.e. a tableau with a set of branches Φ that arose by application of the
rules in RCPL, all are closed and no branch can be added to Φ. The de-
fined tableau consequence operation CT is obviously identical to classical
consequence:

159



Tomasz Jarmużek

Fact 5

CT (X) = Cn(X), for all X ⊆ For.

Hence, by application of rules in RCPL we can check the validity of
all arguments that are valid from the classical point of view. Additionally,
operation CT can be named as tableau classical consequence operation.
An interesting question is what happens when we introduce some addi-

tional, non-classical tableau rules to RCPL?

4. From Tableau Classical Consequence Operation
to cognitive logics

To obtain more accepted conclusions than CPL allows, we could define
a consequence operation in such a way that we would have a stronger opera-
tion. In particular it may not respect monotony (M) and then we come into
the realm of non-monotonic arguments. However, to preserve all classical
arguments, new operations should be supraclassical.
A transition to supraclassicality or rejection of (M) may be done in

a few separate ways. Each of them requires some additional constraints;
however, the starting points are as follows. In book (Makinson, 2005) there
are extensively described three ways we could:
1. add hidden premises that sometimes work in the background
2. add rules of deduction
3. distinguish some valuations in the set of all classical valuations.
The second way is about syntactic reinforcement of a deductive ap-

proach to CPL by non-classical rules of deduction. It is somehow similar to
what we will propose, strengthening the tableau approach by non-classical
tableau rules. The first two ways are syntactical — like our approach — they
strengthen operation Cn by adding new rules of deduction or new premises.
Here we have some example of the first way.

Example 6

Let K be a non-empty set of formulas and let at least some of them be
contingent, but none of them be counter-tautology. For all {A} ∪X ⊆ For
we determine consequence relation: X |=K A iff X ∪K |= A. Relation |=K

is supraclassical and if K is not closed under substitution, |=K is not trivial.
Relation |=K is monotonic. To remove that property we must apply

an additional mechanism. We can, for example, define a new relation:
X ⊢K′ A iff X ∪ K ′ |= A, for any K ′ ⊆ K, that is maximally consis-
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tent with X. The defined consequence relation is supraclassical and non-
monotonic. Moreover: |= ⊂ ⊢K′ ⊂ |=K , for all K that is not a set of tau-
tologies as well as counter-tautologies.9

Our approach to a modification of Cn by amplification of CT is pat-
terned on the three ways described by David Makinson (Makinson, 2005).
We would like to add more tableau rules (like background premises or more
deductive rules are added). This way turns out to be very new, since so far
tableau methods have been not autonomic in this context, but they have
served to formalize other supraclassical systems like Autoepistemic Logic
or Reiter’s Default Theories (Olivetti, 1999). It may seem strange but no
research on adding non-classical tableu rules has been carried.
However, adding new tools (also tableau rules) we must be very careful.

A new operation we get may be easily trivialised. This follows from some
well known facts about CPL.
We know that Cn is a closure operation. Moreover, classical op-

eration Cn is closed under substitution. A substitution is a function
s:For −→ For that for all formulas A,B and connective ∗ ∈ {∧,∨,→,↔}
satisfies conditions:

s(¬A) = ¬s(A)

s(A ∗B) = s(A) ∗ s(B).

Being closed under substitution means that if A ∈ Cn(X), then
s(A) ∈ Cn(s(X)), for any formula A, set of formulas X and substitution s.
As a part of logical folklore we have a theorem:

Theorem 7

There is no supraclassical closure operation C which is closed under
substitution and Cn 6= C 6= CTRIV.

Here, we focus on another way, through tableau consequence operation
by adding some non-classical tableau rules. Nonetheless, for technical rea-
sons we will not consider rules with more than one output. Since we have
rule for disjunction R∨, so by a combination or combinations of it with a new
rule with disjunctive output we can have the same effect as we employed
more complicated tableau rules.
A rule R is structural iff if 〈X1,X2〉 ∈ R, then 〈s(X1), s(X2)〉 ∈ R,

for all X1, X2 ⊆ For and substitution s. However, by adding to RCPL non-
classical and structural as well — closed under substitution — rules we could
trivialize the consequence operation we would get. So, we cannot generally
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add toRCPL a new rule R that fulfills the structurality condition. Especially,
we cannot do it, if X1 6|= A, where A ∈ X2, otherwise — according to
theorem 7 — we would get the trivial logic CTRIV. The new rules must be
so limited to non-structural ones.

4.1. Non-classical tableau rules
We propose some types of non-classical rules that are not structural.

Clearly, we assume that all their input sets are t-consistent. The proposed
rules probably exhaust all possibilities. On the left column we present the
fraction notation of rules, while on the right one the set theory notation.
Let A ∈ For. We assume that formula A is neither a tautology nor

a counter-tautology. Thus we can really have some new, non-classical con-
clusions, but simultaneously not all formulas can be proved. Surely, A does
not belong to input sets, since our rules generally are non-jejune. Formula A
can be introduced to a proof by the following types of rules.

(a) RA :
X

X ∪ {A}
RA = {〈X,X ∪ {A}〉 : X ⊆ For}

A rule of (a)-type always introduces formula A to any open branch.

(b) R′
A :

X

X ∪ {A}
R′

A = {〈X,X ∪ {A}〉},

for some fixed X ⊆ For such that A 6∈ Cn(X). Due to this assumption
formula A is really a new member of the proof that is independent of all
former assumptions. Any rule of (b)-type always introduces formula A to
such an open branch that the set of all formulas on the branch is X. Any
(b)-rule is obviously a singleton.

(c) RY,A :
X ∪ Y

X ∪ Y ∪ {A}
RY,A = {〈X∪Y,X∪Y ∪{A}〉 : X ⊆ For},

for some fixed and nonempty Y ⊆ For. A rule of (c)-type always introduces
formula A to any such open branch that the set of all formulas on the branch
includes set of formulas Y .

(d) R′
Y,A :

X ∪ Y

X ∪ Y ∪ {A}
R′

Y,A = {〈X ∪ Y,X ∪ Y ∪ {A}〉},

for some fixed X,Y ⊆ For such that Y is nonempty and A 6∈ Cn(X ∪ Y ).
Similarly, due to this assumption formula A is really a new member of the
proof that is independent of all former assumptions. Any rule of (d)-type
always introduces formula A to such an open branch that the set of all
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formulas on the branch is X ∪ Y . A rule of (d)-type is like (c)-type, but
also Y is fixed, so it is a singelton.
It is obvious that all rules of type (b), (c), (d) are reducible to some rules

of type (a) as their proper subsets. Especially, any rule (b) is a singleton and
a subset of some (a) rule and (c) rule. Any (d) rule is a singleton also, and is
a subset of some (c) and (a) rule, that consists of such members 〈X,X∪{A}〉
that Y ⊆ X. Finally, (b) and (d) rules are in fact identical — just singletons.
So, for simplicity we will write only about (a), (b) and (c) rules.
We would like to analyze one more type of non-classical tableau rule.

Their special feature is that inputs are always compared with some addi-
tional set Y that consists of formulas that sometimes may block adding A
to a proof.
Let A ∈ For. Here we also assume that formula A is neither a tautology

nor a counter-tautology. Again due to this assumption we can really have
some new, non-classical conclusions. Surely, A does not belong to input
sets, since our rules generally are non-jejune. Formula A can be introduced
to a proof by the following types of rules.

(e1) RA,Z :
X

X ∪ {A}
, where X ∩ Z = ∅

RA,Z = {〈X,X ∪ {A}〉 : X ⊆ For and X ∩ Z = ∅},

for some fixed Z ⊆ For. A rule of (e1)-type always introduces formula A to
any open branch, if the branch does not consist of any formula of Z.

(e2) R′
A,Z :

X

X ∪ {A}
, where X ∩ Z = ∅

R′
A = {〈X,X ∪ {A}〉}, where X ∩ Z = ∅,

for some fixed X,Y ⊆ For, such that A 6∈ Cn(X). Due to this assumption
formula A is really a new member of the proof that is independent of all
former assumptions. Any rule of (e2)-type always introduces formula A to
such an open branch that the set of all formulas on the branch is X and
X has got no formula in Z. Any (e2)-rule is obviously a singleton.

(e3) RY,A,Z :
X ∪ Y

X ∪ Y ∪ {A}
, where (X ∪ Y ) ∩ Z = ∅

RY,A,Z = {〈X ∪ Y,X ∪ Y ∪ {A}〉 : X ⊆ For and (X ∪ Y ) ∩ Z = ∅},

for some fixed Y,Z ⊆ For, where Y is nonempty. A rule of (e3)-type always
introduces formula A to any such open branch that the set of all formulas
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on the branch includes set of formulas Y and the branch has no common
formula with Z.

(e4) R′
Y,A :

X ∪ Y

X ∪ Y ∪ {A}
, where (X ∪ Y ) ∩ Z = ∅

R′
Y,A = {〈X ∪ Y,X ∪ Y ∪ {A}〉}, where (X ∪ Y ) ∩ Z = ∅

for some fixed X,Y,Z ⊆ For, such that Y is nonempty and A 6∈ Cn(X ∪Y ).
Similarly, due to this assumption formula A is really a new member of the
proof that is independent of all former assumptions. A rule of (e4)-type is
like (e3)-type, but also X is fixed. Any (e4)-rule is obviously a singleton.
Analogically like in the former cases (a)–(d), any rule of type (e2),

(e3), (e4) is also reducible to some rules of type (e1) as some proper sub-
set. Especially, any rule (e2) is a singleton and a subset of some (e1) rule
and (e3) rule. Any (e4) rule is a singleton also and is a subset of some
(e3) and (e1) rule that consists of such members 〈X,X ∪ {A}〉 that Y ⊆ X
and X ∩ Z = ∅. Finally, (e2) and (e4) rules are in fact also identical
— just singletons. So, for simplicity we write only about (e1), (e2) and
(e3) rules. Moreover, rules (b) are identical to (e2). So, for simplicity we
write only about (e1), (e3) rules. Afterward rules of (a)-type can be reduced
to (e1) rules, and (c)-type to (e3) rules, when Z = ∅.
In the further part the set of all defined rules (e1), (e3), (a), (b), (c),

will be denoted by RNCPL. Through the reductions, we have a conclusion.

Corollary 8

For any non-classical tableau rule R in RNCPL there exists such a (e1)-
type rule R′ that R ⊆ R′.

Because rules (e1) and (e3) — as a special case of (e1) — are of great im-
portance, we probably would like to know better how they work. We repeat
the schema of (e1).

(e1) RA,Z = {〈X,X ∪ {A} : X ⊆ For and X ∩ Z = ∅},

for certain A ∈ For, Z ⊆ For.

If set Z is non-empty, then it ‘filters’ all sets X ⊆ For so that to those
sets that share formulas with X can not be added formula A. In particular
in Z there may be some contradictory formulas to A (some or all), but then
A can not be added to any X that consists of some of those formulas.
The mechanism is a generalization of which is present in the definition

of non-monotonic consequence operations by non-contradiction condition

164



Defining Cognitive Logics by Non-classical Tableau Rules

of premises with additional assumptions (example 6). Formulas in Z do not
have to be condradictory to formula A, we can just find them undesirable
inX, if we want to add A. That is why the mechanism of ‘filtering’ modulo Z
is more general than mechanism of adding formula A to X, if A is not
contradictory to X. In general, set Z in the case of rules (e1) and (e3)
we call a set of filters.

4.2. Hierarchy of non-classical tableau rules
Let Z be a set of filters in rule (e1) or (e3). If Z is a non-empty set,

we call the rule non-redundant. When rule (e1) (or (e3)) is non-redundant,
then its set of filters really filters premises. Now we can present a hierarchy
of non-classical tableau rules in one place.

Tableau 1

Hierarchy of non-classical tableau rules

Tableau rules of (e1)-type are divided into:

(e1) non-redundant, (e1) redundant,
they are identical to (a)-rules,

their subsets are non-redundant (e3) rules, their subsets are redundant (e3) rules,
they are identical to (c)-type rules,

all rules (b), (d), (e2), (e4) are identical; they are singletons,
proper subsets of all other rules.

4.3. Cognitive consequence operations
Having a set of non-classical rules RNCPL, we can define cognitive log-

ics. Let R′
NCPL be a non-empty subset of RNCPL. Now, we define a new

consequence operation.

Definition 9 (Tableau cognitive consequence operation)

Let A be a formula and X be a set of formulas. A ∈ CTR′
NCPL

(X) iff
there exists a closed tableau 〈A,X,Φ〉, for some set of branches Φ made by
applications of rules in R′

NCPL ∪RCPL.

In definition 9 we assume the use of classical tableau rules as well as
some non-classical ones. However, we require only one closed tableau, other-
wise an order of application could determine closing or non-closing tableaus
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(like in Reiter’s approach an order of rules can determine the existence of
extensions (Antoniou, 1997)).
Surely, since we can still use classical tableau rules, so the defined

operations CTR′
NCPL
are supraclassical, and even Cn < CTR′

NCPL
, for most

sets R′
NCPL they are cognitive logics.
Under what conditions are they cognitive? Let us focus at the moment

on (a) and (c) rules. Surely, formula A that is new in an output must not
be a counter-tautology or a tautology, which we have assumed. Moreover,
A should not follow classically from all inputs of a given rule. In the case
of rules of (a)-type it happens, since their inputs change. The problem may
appear in applications of (c) rules, since the fixed set Y could be contradic-
tory and then we would always add A trivially. So, in the case of (c) rules
fixed Y must not be contradictory. If the constant set of inputs Y is not
contradictory, we call a rule (c) non-contradictory. Thus we have a corollary:

Corollary 10

If R′
NCPL consists of only rules of types:

— type (a),
— type (c) which are non-contradictory,
— type (a) and type (c),

then operation CTR′
NCPL
defined by R′

NCPL ∪RCPL is monotonic and cogni-
tive.

We analyze one example.

Example 11

We take rule R¬p = {〈X,X ∪{¬p}〉 : X ⊆ For} — it is an (a)-type rule
— and add it to classical rules RCPL. By this we obtain set of rules R

¬p

CPL.
We take set of premises {p ∨ q}. We see that q 6∈ Cn({p ∨ q}), because

there exists such valuation V that V (q) = 0 and V (p) = 1. So the premise
may be true, while the conclusion false.
However, if we define a new consequence operation by set of rules R¬p

CPL
— let us denote it by CTR¬p

CPL

— then q ∈ CTR¬p

CPL

({p ∨ q}). It happens
because applying rules of R¬p

CPL to {p ∨ q,¬q} in all branches we obtain t-
inconsistency, since to all branches the new rule R¬p enables us to introduce
formula ¬p.
A consequence operation defined by ruleR¬p={〈X,X∪{¬p}〉 :X⊆For}

and classical rules is monotonic. Taking supersets of {p∨ q} does not revoke
conclusion q, because rule R¬p = {〈X,X ∪ {¬p}〉 : X ⊆ For} enables us to
add formula ¬p to any t-consistent set of formulas. In cases of t-inconsistent
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sets of premises we have the classical tableau rules that are sufficient to prove
any formula. Surely, the consequence operation is also cognitive.

R¬p is a rule of type (a). We can make it weaker, defining a suitable
rule of (e1)-type. Thus we give another example.

Example 12

We take the rule:

R¬p
p = {〈X,X ∪ {¬p}〉 : X ⊆ For and X ∩ {p} = ∅}.

By adding R¬p
p = {〈X,X ∪ {¬p}〉 : X ⊆ For and X ∩ {p} = ∅} to

the classical tableau rules, we get R¬p,{p}

CPL . This way we obtain conse-
quence operation C

TR
¬p,{p}

CPL

. Operation C
TR

¬p,{p}

CPL

is cognitive and non-

monotonic.
Returning to the former example, now we have q ∈ C

TR
¬p,{p}

CPL

({p ∨ q}),

but q 6∈ C
TR¬p,{p}

CPL

({p ∨ q, p}), since we can not apply R¬p
p to {p ∨ q, p}.

Hence for some X,Y ⊆ For, X ⊆ Y , but C
TR¬p,{p}

CPL

(X) 6⊆ C
TR¬p,{p}

CPL

(Y ).

Example 12 clearly shows that (e1)-type rules (and some subsets of
them) may destroy the property (M). Considering now (e1)-type and (e3)-
type rules we put the same questions as before: under what conditions are
they cognitive?
Again, formula A that is new in an output must not be a counter-

tautology or a tautology, which we have assumed. Moreover, A should not
follow classically from all inputs of a given rule. In the case of rules of
(e1)-type this happens, since their inputs change. The problem may appear
in applications of (e3) rules, since the fixed set Y could be contradictory
and then we would always add A trivially. So, in the case of (e3) rules
fixed Y must not be contradictory. If the constant set of inputs Y is not
contradictory, we call a rule (e3) non-contradictory. Here, however, a new
problem appears. A set of filters might block all applications, when it was
equal to For. So, each set of filters have to be a proper subset of For. It must
not block at least one formula that is not a counter-tautology in an input
set. By classical tableau rules counter-tautologies allow one to conclude any
conclusion, so we do not need such rules. If filters in the rules of kinds
(e1) or (e2) do not block at least one formula that is not a non-counter-
tautology, we call them non-trivial.
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The same is about (b) rules (and (d), (e2), (e4) rules — they are identi-
cal, as we know they are singletons). To apply them interestingly they should
have non-contradictory inputs. Then we call them non-contradictory, too.
At the same time, we would like to have non-monotonic operations.

To block some applications and in that way become non-monotonic, the
(e1) and (e3) rules must be non-redundant. Thus we have a corollary:

Corollary 13

If R′
NCPL consists of at least one rule of type:
– (e1)-type that is non-redundant and non-trivial,
– (e3)-type that is non-redundant, non-trivial and non-contradictory,
– (b)-type that is non-contradictory,

then operation CTR′
NCPL
defined by R′

NCPL ∪ RCPL is cognitive and non-
monotonic.

Now, we can sum up the relationships between non-classical tableau
rules and the cognitive consequence operations they determine. The rules
of type (e1) and their proper subsets determine cognitive and non-monotonic
consequence operations, if they are non-redundant and non-trivial; however,
singelton subsets of (e1) must be non-contradictory. But if they are redun-
dant, they and their (c)-types subsets that are non-contradictory determine
cognitive and monotonic consequence operations.
Our hypothesis is that all supraclassical consequence operations (mono-

tonic as well as non-monotonic) can be defined by some sets of non-classical
tableau rules R′

NCPL along with classical rules RCPL. Hence, also all cogni-
tive logics can be defined by the tableau methods presented here. But the
hypothesis naturally requires some further examination.

5. Philosophical conclusions

Which of the proposed supraclassical, cognitive consequence operations
is right? A probable answer is: none of them. In the case of commonsense
reasoning we can only tend to one of the many options. On our choice
decides an intuition, similarly as in the case of people who made conclusions
incorrectly from the classical point of view, but the most reliably they could.
Where does the intuition come from? Is it a result of our everyday life

experiences, our species’ knowledge, our dower, or all of these things com-
bined? — the question is about how to transcend the formal ways of repre-
senting cognitive reasoning.
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N O T E S

1 The research presented in the following article was financed by National Science Cen-
tre, Poland, number of grant: 2015/19/B/HS1/02478.
2 Instead of Classical Propositional Logic we will write in short: CPL.
3 We obviously mean a language form of argumentation, so the form which is examined

in logical research. In fact, any real argumentation can be carried in various environments:
artificial, biological, psychological etc. However, in logic we deal with an intersubjective
representation of arguments, which are linguistic counterparts of real arguments.
4 Surely, by using the term situation we do not decide that in a truth theory we must

have a ontological, epistemic or non-epistemic standpoint etc. In logic when we inter-
pret a formal language, we use valuations/models, generally formal semantics/structures.
The relationship between formal structures and the world we describe in a language
is a philosophical issue.
5 Honestly speaking, probably the first who used the term cognitive logic in the men-

tioned context was Jacek Malinowski. During the process of preparing of cognitive science
studies at Nicolaus Copernicus University in Toruń in 2008, he proposed lectures about
systems of various so called non-monotonic logics that he called Cognitive Logic. Since the
first course started on the 1st of October 2009, so far the lectures have still been a part
of the main core of that education.
6 To make it clear, this kind of approach to the research on supraclassical, in particular,

so called non-monotonic logics, was described as deeply rooted in the Polish tradition,
especially when we take into account a consequence operation, one of the most important
notion that was invented in this tradition by influential logician, also in a non-monotonic
area, David Makinson. He wrote this in the preface to a Polish edition of his book Bridges
from Classical to Nonmonotonic Logic, one of the most fluent modern synthesis of results
in non-monotonic logics’ domain (Makinson, 2008, p. IX).
7 Obviously, when C1 ≥ C2 or C2 ≤ C1 we can also say that C2 is weaker than C1.
8 Hence, we may use Cn and CPL interchangeably.
9 It is what David Makinson in his mentioned book names pivotal assumptions operation

and in a non-monotonic form default assumptions operation, see for details (Makinson,
2005, chapter 2).
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