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Abstract. As defined by the National Institutes of Health: “Biomedical engi-
neering integrates physical, chemical, mathematical, and computational sciences
and engineering principles to study biology, medicine, behavior, and health”.
Many issues in this area are closely related to fluid dynamics. This paper pro-
vides an overview of the basic concepts concerning Computational Fluid Dy-
namics and its applications in medicine.

Introduction

Approximately 65% of the human body is composed of water. Fluids
are responsible for a considerable part of its physiology. The process of
breathing is related to the passage of air (i.e. gas) to the lungs and complex
chemical processes that govern the flow of its components through the hu-
man organism. Due to the similarity in physical characteristics (dynamics
of motion, in particular), liquids and gases are classified as a single group,
which is referred to as fluids. The aim of this paper is the reasonably com-
prehensive presentation of concepts the knowledge of which is required in
order to conduct computer-assisted analyses of the behavior of fluids in
various conditions. Such analyses, in general, are affiliated with the field
known as computational fluid dynamics (CFD). Therefore, some fragments
may be found complicated by readers, but at the same time, they emphasize
the demand for experienced specialists in teams that study specific cases.
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Significant conclusions that address this issue are presented in the last chap-
ter. Such analyses have been widely employed in medical research (Chan-
dran et al., 2012; Pozrikidis, 2010; Rubenstein et al., 2015; Spagnolie, 2015;
Tu et al., 2013, 2015). For example:
• Macrocirculation
– mechanics of blood flow through the heart with the values of the
systolic and diastolic pressure as parameters – a description based
on Navier-Stokes equations
– blood flow through veins and arteries with an allowance for resis-
tance; Windkessel effect with pulsation described by the Hagen-
Poiseuille formulas

• Microcirculation
– blood flow in aneurysms in accordance with Bernoulli’s principle
– lymphatic system with osmotic transport and muscles as the pump-
ing mechanism

• gas exchange in the respiratory system modeled in accordance with the
Boyle-Mariott law.

Classification of Fluids

In standard physics, four states of matter are considered: solids, liquids,
gases and plasma. The first two belong to the group of condensed bodies,
which is characterized by strong intermolecular interactions, which in turn
result in the intensive coordination of atom positioning (in case of solid bod-
ies, in a large area). Gases and plasma form the group of uncondensed bodies,
in which intermolecular interactions are weak enough to enable the indepen-
dent movement of molecules, at least for short distances. Solid bodies and
liquids are associated with the notion of a thermodynamic phase, i.e. the
part of the physical system that is uniform with respect to both physical
and chemical properties. Generally, in solid bodies and liquids, several ther-
modynamic phases may occur concurrently, being separated by interfacial
surfaces (phase borders), on which gradual changes of properties take place.
In the case of liquids, multiphase systems occur in the form of hetero-

geneous mixtures. Broadly speaking, we can also differentiate homogeneous
mixtures, known as proper solutions, which comprise single-phase systems.
Improper solutions are multiphase and thus classified as heterogeneous mix-
tures. In general, the classification of heterogeneous mixtures, especially
the distinction between improper and proper solutions, is ambiguous and is
highly dependent on the scale of measure. As such, it sometimes requires
subtle analyses.
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Heterogeneous mixtures have two or more thermodynamic phases. Usu-
ally, one of them is treated as the dispersing phase (a type of solvent, which
is commonly continuous), while others are considered as dispersed phases
(solutes, which for the most part form a material that is more or less re-
fined). Mixtures are generally divided into one of three groups, depending
on the magnitude of the dispersed phase:
• Solutions – the dispersing phase is referred to as a solvent, while the
dispersed phase is a solute. Molecules of the dispersed phase are invis-
ible, and their diameter is smaller than 10−9m, i.e. smaller than 1nm
(similar to the dimensions of molecules of a chemical compound).

• Colloids – mixtures in which the diameter of dispersed phase molecules
falls within the range of [10−9m, 10−6m], i.e. 1nm− 1µm.

• Suspensions – a solution in which the diameter of dispersed phase
molecules is larger than 10−6m, i.e. larger than 1µm.

Examples
• In solutions, in cases where gas is the dispersing phase, the only pos-
sible state of aggregation for the dispersed substance is gas as well.
Dry, clean air is the obvious example thereof, since nitrogen (N2) acts
as the solvent, while oxygen (O2), argon (Ar), carbon dioxide (CO2),
neon (Ne), helium (He), methane (CH4), krypton (Kr), hydrogen (H2)
and xenon (Xe) are the dissolved substances.

• Human blood is a more complex mixture. It may be perceived as the sus-
pension of cell elements (solids as a state of matter) in the blood plasma
(liquid as a state of matter). Volume proportions of cell elements and
blood plasma are 45.7% and 54.3%, respectively. Cell elements comprise:
– red blood cells (erythrocytes) – they constitute 99.7% of cell ele-
ments and assume the form of biconcave disks of 2.5µm in thickness
and 8µm in diameter.
– white blood cells (leukocytes) – they represent 99.7% of cell elements
and form spheres of diameters ranging from 20 to 100µm. Among
leukocytes, we can distinguish granulocytes (eosinophils, basophils
and neutrophils), lymphocytes and monocytes.
– platelets (thrombocytes) – they account for 99.7% of cell elements
and take the form of ellipsoids with the length of their axes amount-
ing to 1.5µm and 4µm, respectively. Blood plasma is already a so-
lution, with water being the solvent and the list of dissolved sub-
stances including, among others: sodium ions, chlorides, potassium,
magnesium and calcium ions, phosphates, and proteins – albumins
and globulins (α1, α2, β, γ).
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Equations

Fluids can be analyzed on three different levels of accuracy. The devel-
opment of a mathematical model suitable for the given problem is essential.
Significant theoretical elements of these three approaches are presented be-
low. Some details and the occasional presence of mathematical formalism
will require the readers who wish to fully understand the presented material
(despite the presentation being rather synthetic) to reach for complemen-
tary readings. Others shall realize what problems are to be tackled in the
analysis of fluid behaviors and what kind of specialists need to be asked for
cooperation.

Macroscopic Model

This approach involves the employment of equations and tools of clas-
sical continuum mechanics. This description is epitomized by the Navier-
Stokes equation. Continuity of matter is comprehended here as the omission
of its molecular structure. What indicates the potential of such approxima-
tion is theKnudsen number (Kn). In practice, fluids with a Knudsen number
lower than 0.01 may be treated as being composed of continuous matter.
Let us assume that D ⊂ R

3 denotes the volume within which the fluid is
analyzed. In different moments in time, the fluid may be located in various
areas of the volume D. It may also have a static location. Let us consider
a certain value H (variable of interest), scalar or vector, in the region D.
It produces in D the scalar or vector field, respectively. In various D points,
this field may have different values. Furthermore, it may change in time at
any point. It must be emphasized that the field which has been defined in
such fashion may be perceived in two ways. On the one hand, it may be
considered as the property of the region – then, points of the region are
treated as fixed. On the other hand, we may observe only those fragments
of D which contain fluid, tracking the movement of molecules of this fluid.
In such a case, locations (related to the fluid) in D are treated as changing
in time. Now, let us describe this issue in a slightly more precise manner
by presenting fundamental principles that govern flow dynamics in a more
formal depiction. We have decided to pass the question of turbulent flows
over, due to their rather insignificant applicability in medicine.
Let us assume that r(t) = (x(t), y(t), z(t)) ∈ D and Y is one of the fields

R, R2, R3. We learn that H is the following function:

H : [T0, T1]×D → Y, (t, r) → H(t, r), (1)

where [T0, T1] is the analyzed time interval.
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The derivative of this function relative to time is known as the material
derivative. Accordingly, the material derivative is calculated in the same
fashion as the composite function derivative.

dH

dt
(t, r(t)) =

(

∂H

∂t
+
∂H

∂x

dx

dt
+
∂H

∂y

dy

dt
+
∂H

∂z

dz

dt

)

(t, r(t))

(2)

=

(

∂H

∂t
+ ~v · ∇H

)

(t, r(t)),

as ~v(t, r(t)) = r′(t).

The element is ∂H
∂t , called the local derivative, and it represents changes

of H in the precisely specified point, through which other elements flow. If
the derivative is zero, then the field H, which is otherwise non-stationary,
is stationary. Stationarity is the feature of the region, not the fluid, since
it only denotes that the field, in the specified point, remains unchanged
in time. Nevertheless, if the field is bound with a fluid molecule that is
present at this point at the given moment, then it may change the value of
this field after moving to another point.
Element ~v · ∇H is known as the convective derivative – it shows the

change of H in time as the result of the fluid element moving at the speed
of ~v from a point with a given value of H to another point with a dif-
ferent value. It may also be interpreted as the observation of the field by
an observer who is situated at a given point and moves at the velocity ~v.
If the convective derivative is non-zero in a given point of the field, then
such a field is heterogeneous. Otherwise, if it is zero in the entire field, then
it is regarded as homogeneous.
In order to analyze the behavior of fluids on a macroscopic level, we can

generally adopt one of two approaches:
• Lagrangian approach – the behavior of a chosen fluid molecule (posi-
tion, velocity, etc.) in time is examined, which enables the tracking of
fluid paths and provides us with the direct overview of its dynamics
(Figure 1).

• Eulerian approach – in this case, we focus on the analysis of points
(stationary, i.e. their position does not change in time!) in space, in
which the fluid is contained, by defining the change of their properties
over time – the location of the examined point is fixed, but various
fluid molecules of distinct properties may flow through this point at
different moments in time (velocity etc.). This approach places emphasis
on properties of the field of the fluid without, obviously, revealing its
dynamics (Figure 2).
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Figure 1. Lagrangian approach – the fluid molecule in time t1 is situated at
point p1 = p(t1) and moves at the velocity ~v(t1, p(t1)). Then, it
moves betweenmoments t1 and t2 along the path, reaching in time t2
point p2 = p(t2) at the velocity ~v(t2, p(t2))

Figure 2. Eulerian approach – at the given point p = (x, y) of the fluid
domain, vectors of velocity in two distinct moments in time
are shown: t1 and t2

In Figure 1, it is clearly visible that according to the Lagrangian ap-
proach, the hypothetical point p1 is not parameterized with time from the
perspective of the fluid domain, while time is the parameter of the location
of the determined fluid molecule p(t1), which is being tracked.
The flow of the fluid is incompressible, provided that none of its moving

parts change their density in time. The fluid is incompressible if the density
of each molecule is constant in time.
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Let us consider the value ϕ (vector or scalar) at the moment t at the
point r = (x, y, z) ∈ V ⊂ R

3 in units of the volumetric density, i.e. [ϕ] = j/

m3, where j is the unit of measure ϕ (Spiegelman, 2000). The boundary of
volume V is formed by surface S = ∂V (Figure 3), meaning the perpen-
dicular vector to ∂V is well defined at each point s ∈ ∂V . This vector is
marked with ~dS, being combined with the differential surface dS := dS(s)
through the normal vector ~n, i.e. a unitary vector that is perpendicular to
the surface at the given point: ~dS = dS · ~n. Pursuant to common conven-
tion, the sense of a vector that is perpendicular to the closed surface is
directed towards outside ∂V . The sum ϕ in the volume V is represented by
an integral

ϕV (t) =

∫

V
ϕ(t, r)dV, [ϕV ] = j (3)

Note. It is assumed that the value ϕ has been properly specified in the
analyzed space, i.e. if required, the space is not a vacuum and thus contains
molecules of a certain medium.

Figure 3. Volume V is limited with the boundary S that is directed toward
the outside

Let us examine the rate at which value ϕ changes in volume V , i.e.

d

dt
ϕV (t) =

d

dt

∫

V
ϕ(t, r)dV,

[

d

dt
ϕV (t)

]

=
j

s
(4)

The change of value ϕ in volume V may generally result from twofold
variations: those that originate in volume V and those that develop from
the interaction of volume V with the environment. The latter are detected
by the boundary surface ∂V . In both types, factors that increase or decrease
the number of values ϕ in volume V may occur (Figure 4).
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Figure 4. Transportation diagram for the value ϕ. Medium molecules are
marked with spheres, and values ϕ are marked with rectangles.
Part b) represents later

1. volume V as the generator of measure ϕ – rectangle F
2. volume V as the annihilator of measure ϕ – rectangle D
3. stream of value ϕ through the surface ∂V into (the exterior of) volume V
1. value ϕ transported to (from) volume V with the aid of medium
molecules – rectangle A (E)

2. value ϕ transported to (from) volume V without medium molecules
– rectangle B and C

Then, the equation that illustrates the sum of these behaviors takes the
following form:

[General conservation law]

∂

∂t
ϕ(t, r)−H(t, r) +∇ · (~F + ϕ~v)(t, r) = 0, (5)

where H is the resultant of emission and annihilation, whereas F is the re-
sultant of streams without molecules. Let us now consider certain particular
cases of the general conservation law.

1. Let us assume that ϕ denotes mass density. It is commonly defined
through ρ(t, r). Then [ρ] = kg/m3. Naturally, the source term is H = 0
since mass can neither vanish nor be created unaided. Moreover, the
term is also F = 0 since mass can move only with the aid of medium
molecules (which, for the most part, are mass themselves). We even-
tually arrive at the formula for the law of the conservation of mass,
also known as the equation of continuity (with arguments of variables
having been intentionally omitted).
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[Equation of continuity]

∂

∂t
ρ+∇ · (ρ~v) = 0 (6)

By using the dependence

∇ · (s~w) = ~w · ∇s+ s∇ · ~w

of the divergence of scalar s and vector ~w, we shall get

∂ρ

∂t
+ ~v · ∇ρ+ ρ∇ · ~v = 0 (7)

The first term is a local derivative, whereas the other one is a derivative
of the density convection. In total, in accordance with the equation (2),
they form a material derivative dρ/dt. So the equivalent form of the
equation (7) is

dρ

dt
+ ρ∇ · ~v = 0. (8)

Three canonical versions of density fields are as follows:
– Stationary, compressible density field; that is, stationary and com-
pressible flow. It is represented by the zeroing condition of the local
derivative, while density may be different in various points of the
field (heterogeneity). Therefore, the equation of the stationary, com-
pressible flow, as the variation of equation (6), takes the following
form:

∇ · (ρ~v) = 0. (9)

– Stationary, incompressible density field; that is, stationary and in-
compressible flow. It is represented by the zeroing condition of the
local derivative and equal density in the entire field (homogeneity).
Thus, based on formula (8), the equation of the stationary, incom-
pressible flow is constructed as follows:

∇ · ~v = 0. (10)

– Non-stationary, compressible density field; that is, non-stationary
and compressible flow. The field is variable both in time and space
(heterogeneity). The equation of the stationary, compressible flow
is naturally the equation (7).
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As results from the law of conservation of mass, for the fluid of
volume V

∇ · ~v =
1

V

dV

dt
, (11)

so the divergence of velocity denotes the rate of change of the spe-
cific volume of the fluid in motion.

2. Let us assume that ϕ = ρcPT , where cP denotes specific heat with
the pressure determined as ([cP ] = J/m3K). Thermal flux has two
components: ~F = −k∇T , where k denotes thermal conductivity and
the transportation term related to ϕ. By gathering all types of heat
sources and heat sinks of the analyzed volume in H, we shall obtain the
equation of the conservation of energy.

[Equation of the conservation of energy]

∂

∂t
ρcPT +∇ · (ρcPT~v) = ∇ · (k∇T ) +H (12)

3. Let us assume that ϕ = ρ~v (momentum on the unit of volume), vector of
the source term ~H = ρ~g (gravity force on the unit of volume), while the
stream ~F denotes the surface force acting on the unit of the fluid’s sur-
face (usually referred to as the surface tension and denoted ~σ). Surface
tension is commonly divided into perpendicular components (scalars),
in other words pressure (marked as p), and tangential components (vec-
tor) (in classic cases known as viscosity). This leads us to the equation
of conservation of momentum in the NavierStokes form:

[Navier-Stokes equation]

∂

∂t
~v + ~v · ∇~v =

1

ρ
∇p+ v∇2~v + ~g, (13)

where v is the dynamic viscosity, while ∇~v is the so-called generalized
gradient. Such form of the Navier-Stokes equation indicates that the
fluid belongs to the group known as incompressible Newtonian fluids,
i.e. tangential stress is the linear function of nondilatational strain ma-
trices. Dynamics of non-Newtonian fluids are considerably more difficult
to describe – these fluids are exemplified by human blood.

Microscopic Model

The conception of this model is based on the description derived from
the kinetic theory of matter. It assumes that matter is comprised of ran-
domly moving molecules with space between them. In this case, the natural
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measure of quantity is the mole (the amount of matter that contains the
number of molecules equal to Avogadro’s number NA), from which the no-
tion of molecular mass is derived (denoted Mmol), i.e. mass of a single mole
of the given matter. While considering matter of volume V and mass M ,
we can see that the mole number of this matter is n = M/Mmol, and the
total number of molecules in this volume amounts to N = nNA. Thus, the
volume occupied by a single molecule of this matter equals V/N . By re-
ducing this volume conceptually to a single dimension and determining the
density of the analyzed matter through ρ =M/V , we can define the length
of the molecular separation as:

Lmol =

(

V

N

)
1

3

=

(

Mmol

ρNA

)
1

3

, [Lmol] = nm. (14)

For solids and liquids that are dense in their natural forms, the length of
molecular separation is comparable to the size of molecules, i.e. it equals one
angstrom. For example, in the case of iron, it is Lmol ≈ 0.23nm, while for
water this value is rounded off to 0.31nm. Gases are composed of molecules
that are considerably looser. For example, in normal conditions, an ideal
gas (pressure: 1 atmosphere, temperature: 20◦C) is characterized by Lmol ≈
3.4nm. This implies that in ideal gases the empty space is approx. 1000 times
larger than the volume of the molecules contained therein.
For mixtures, the length of molecular separation is defined by the mean

molar mass of respective phases. The employment of molecular mass in the
definition of Lmol implies that molecular masses of consecutive phases will
be scaled with the amount of moles, determined in terms of percentage, in
these phases. Let us use Mmol

i and ni to denote, respectively, molecular
mass and the mole number for the phase i. The total mole number in the
mixture amounts to n = Σini, while the total mass of the mixture equals
M = ΣiniM

mol
i . Then, the mean molar mass

Mmol =
M

n
=
∑

i

ni

n
Mmol

i . (15)

For example, in case of air, considered in simple terms as the mixture of ni-
trogen, oxygen and argon, the mean molecular mass amounts to 28.95 g/mol.
On the microscopic level, we do not consider gravitational forces, but

intermolecular forces and (less often in discussing dynamics) intramolecular
forces, i.e. chemical bonds. Fundamental features that make them distin-
guishable include the higher strength of chemical bonds and the resulting
stability of their interactions. In general, chemical bonds are divided into
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three distinct groups, depending on the remainder of electronegativity be-
tween bonded atoms: for the remainder below 0.4, covalent nonpolar bonds
are created, whereas for the values within the range of 0.4–1.7, covalent po-
lar bonds are formed; if the remainder exceeds 1.7, atoms are bonded with
ionic bonds. Furthermore, we also distinguish hydrogen bonds, the nature
of which differs from the standard electron exchange and which are signif-
icantly weaker than covalent and ionic bonds. Bonding of dipoles of water
molecules constitutes a classic example in this case. The hydrogen bond is
considered within the cross-section of the group of bonds and the group
of intermolecular forces. In the second group, we discern ion-ion interac-
tions, which are stronger than hydrogen bonds, and van der Waals forces,
which are weaker but more common. The latter are additionally divided into
permanent dipole-permanent dipole interactions (known as Keesom forces,
e.g. hydrogen chloride molecule HCl), induced dipole-induced dipole at-
traction, known as Debye interaction, and temporary dipole-induced dipole
interactions, referred to as London forces (the only interactions between
molecules of noble gases).
The foundation of the microscopic modeling of fluids is the equation

of state, which shows reciprocal dependencies between parameters of the
system that is analyzed as a thermodynamic system. Rare gases can be ap-
proximated with the equation of state of an ideal gas, in which we consider
only elastic collisions of chaotically moving molecules (absence of classical
intermolecular interactions). This equation is known as the Clapeyron equa-
tion, and it delivers the dependency between gas pressure p, its volume V ,
temperature T and the number of moles n:

pV = nRT,

whereR is the universal gas constant: R = NAkB,NA – Avogadro’s number,
kB – Boltzmann constant, R = 8.314 J/(mol·K) Its more accurate version
is provided in the Van der Waals equation of state, which takes into con-
sideration the molecular volume Vm = V/n, the volume of the mole of gas
molecules b as well as reciprocal interactions of molecules (constant a):

(

p+
a

V 2
m

)

(Vm − b) = RT.

The movement of molecules that are considered in microscopic modeling
as separate masses is calculated through the second law of motion, with
collisions allowed for, whereby the intermolecular force is often computed
as the derivative of the potential energy (denoted U). Thus, the typical
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system of equations for dynamics in a simple system of N atoms assumes
the following form:

mi
d2~ri
dt2

= fi, fi =
∂U

∂ri
, i = 1, . . . , N. (16)

In practical calculations of interactions between atoms or molecules, a con-
venient approximation of potential energy is frequently employed through
the Lennard-Jones potential, which separates attractive and repulsive inter-
actions. The former are in this approximation proportional to R−6, while the
latter remain proportional to R−12, where R denotes the distance between
atoms/molecules. Then

ULJ = 4ε

[

(

σ

R

)12

−
(

σ

R

)6
]

, (17)

where σ denotes the distance for which the interaction energy is 0, while
ε is the depth of the potential well (ULJ achieves its minimum value equal
to −ε for R = 1.22σ).

Mesoscopic Model

This approach fills the gap between the macroscopic and microscopic
description, in an attempt to apply the law of the kinetic theory of matter for
problems related to flows on macroscopic scales. The key here is the Boltz-
mann transport equation and the distribution function contained therein
(denoted f), which determines the number of (mostly abstract) molecules
moving at the moment t in volume dr (which includes point r), with the
velocity ~v = [vx, vy, vz]. Thus, such amount of molecules is determined by
the following expression:

f(r,~v, t)drd~v.

What is intriguing here is the fact that potential values dr and d~v are dif-
ferentials from the mathematical point of view, but the boundary cross-
ing to 0 is not substantiated in terms of physics since the uncertainty
principle prohibits such situations in quantum physics, and in classical
physics such a crossing brings the loss of continuity and smoothness of
function f, while these exact properties are useful in the mesoscopic ap-
proach. Thus, dr is comprehended here as large enough to contain a large
number of molecules and at the same time small enough to avoid clas-
sification as a macroscopic case. For example, if dr amounts to 10−12m,
the diameter of volume reaches 10−4, making it possible for dr to con-
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tain enough molecules for fine suspensions. The Boltzmann transport equa-
tion (also referred to as the Boltzmann kinetic equation) is similar in
its construction to dynamic equations in the macroscopic approach – it
determines the material derivative of the distribution function. That is,
it simply measures the rate at which the amount of molecules of spe-
cific properties changes. However, in this case, function f is dependent on
three additional variables that create the vector ~v. Therefore, by denot-
ing the vector of acceleration with ~a = ~v′ the material derivative com-
prises three blocks. By assuming that the only sources of changes in the
molecule distribution are collisions and by denoting the integral collision
with B(f, f) in the phase volume dbd~v, we obtain the basic form of this
equation.

[Boltzmann Transport Equation]

∂

∂t
f + ~v · ∇rf + ~a · ∇~vf = B(f, f). (18)

When collisions in the fluid do not occur (the right side of the Boltzmann
Transport Equation is zero), then the fluid is incompressible.

Numerical Methods

In practice, even the simplest variants of the presented equations do
not have analytic solutions. Therefore, the only viable solution is to solve
them with the aid of computers. This leads us straight into the vast field of
numerical methods, where even the fragment concerning the issue of solving
fluid equations is colossal and contains hundreds of specialized algorithms.
They can be classified in a variety of ways, but we have decided to present
the classification that is based on the division which is used for classifying
equations. Then, two examples of such methods are presented along with
the indication of their applicability in medical research.

Classification of Methods of Computer-Assisted Fluid Dynamics

Macroscopic models
• Grid methods
1. Euler description
– Finite Difference Method (FDM)
– Finite Volume Method (FVM)
– Volume of Fluid (VOF)
– Level Set Method (LSM)
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2. Lagrangian description
– Finite Element Method (FEM)

• Non-grid methods
– Direct Simulation Monte Carlo (DSMC)
– Smoothed particle hydrodynamics (SPH)

Microscopic models
• Non-grid methods
– Direct Simulation Monte Carlo (DSMC)
– Molecular Dynamics (MD)
– Particle Mesh (PM)
– Particle ParticleParticle Mesh (PPPM)

Mesoscopic models
• Lattice Boltzman Method (LBM)

Diffusion Equation and the FVM Method

Diffusion is the process of spontaneous propagation of molecules or
energy in each medium, the consequence of chaotic collisions between
molecules of diffusing substances or with other molecules contained in the
environment (Figure 5).

Figure 5. Diffusion of molecules of two types after the removal of an obstacle
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Figure 6. Diffusion of oxygen and carbon dioxide in the lungs

One of the most evident examples of this process in the human organism
is the diffusion of oxygen and carbon dioxide in the lungs (Figure 6).
The diffusion equation may be treated as a special case of the Navier-

Stokes equation – while determining concentration of a substance through
ϕ(r, t) ([mol/m3]), it takes the following form:

∂ϕ

∂t
= D∇2ϕ. (19)

The diffusion coefficient D is bound by the Stokes-Einstein law with the
dynamic viscosity ν, which is included in the Navier-Stokes equation, but
its applicability has been confirmed for large molecules only.
The Finite Volume Method (Versteeg et al., 2007), as other numerical

methods, discretizes the equation domain by defining the infinite amount
of computational points within it. In the case of the FVM, the volume V ,
analyzed in the finite time interval [t0, t1], is divided into a finite number
of control volumes Vp and a finite number of time intervals [t, t+∆t] (Fig-
ure 7). Then, we need to integrate the equation (19) on the elements of this
division

∫ t+∆t

t

∫

Vp

(

∂ϕ

∂t
−D∇2ϕ

)

dV dt = 0 (20)
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Figure 7. Example of the control volume topology

The integral from the local derivative is approximated through the difference
quotient to the derivative under the integral in the time interval [tn, tn+1].

∫ t+∆t

t

∫

Vp

∂ϕ

∂t
dV dt ≈ Vp

ϕn+1 − ϕn

∆t

The integral from the diffusion term is first transcribed to the integral over
the surface ∂Vp, which limits volume Vp:

∫ t+∆t

t

∫

Vp

D∇2ϕdV dt =

∫ t+∆t

t

∫

∂Vp

D∇ϕ · ~dSdS (21)

and then the surface integral is approximated with the standard numerical
method, i.e. one of the numerical quadratures, e.g.

∫ t+∆t

t

∫

∂Vp

D∇ϕ · ~dSdS ≈
N
∑

1

Di(∇ϕ)i ·Ni, (22)

where index i denotes the successive sample of parameters under the inte-
gral. As an example (Figure 8), the mixing of two fluids of different diffusion
coefficients is presented. In the central figures, the visualization of the ve-
locity field is also presented. In the last figure, the movement paths for
certain molecules, which more or less correspond to the movement phase
shown in the penultimate figure, are visualized. The visualization was made
in theOpenFoam environment (see www.openfoam.com), which implements,
among others, the FVM method (Marić et al., 2014).

77



Wojciech Kowalewski et al.

Figure 8. Mixing two fluids of various diffusion coefficients – OpenFoam
simulation

Protein Simulation and the MD Method

Molecular dynamics (Allen, 2004; Frenkel et al., 2001) typically consid-
ers the reciprocal interaction between the system of molecules or atoms. It
is commonly assumed that the analyzed forces are potential, i.e. they can
be expressed as the derivatives of potential energy, and central, i.e. their
value depends only on the distance from the source of the force. Fur-
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thermore, we can distinguish long-range forces (electrostatic and gravita-
tional) and short-range forces (vanishing faster than the inverse of a square
of the molecule distance), which result from the Lennard-Jones potential.
By confining the scope of analysis to the latter only and using ri, ~vi, rij
to denote, respectively, location and velocity of molecule i as well as the
distance between molecules i and j, we learn that force ~fij = ~f(rij)

is equal to

~fx(rij) = −xi − xj
rij

dULJ

drij
= 48(xi − xj)

(

1

r14ij
− 1

2r8ij

)

. (23)

The overall force acting on molecule i is ~Fi =
∑

j 6=i
~fij, so the ac-

celeration ~ai of this molecule is calculated as ~ai = ~Fi/mi. In molecu-
lar dynamics, we normally analyze volumetric properties, which are in-
dependent from the surface. The surface influence is estimated through
the proportion of the number of molecules at the surface to the sum of
all molecules that are being examined. In real systems, the number of
system molecules amounts to 1023, thus making the influence of the sur-
rounding surface negligible. However, in algorithmic practice, we usually
consider the number of molecules in the 103–106 range, which makes the
influence of the surface unnegligible. In order to eliminate them, we can
apply the periodic boundary conditions – molecules are typically restricted
with a hexahedron, and we assume that the space is filled with an infi-
nite number of such hexahedrons. Once the number of molecules is in-
creased to 109, periodic boundary conditions are no longer necessary –
the computing power of today’s computers allows that. MD plays a vi-
tal role in computer-aided drug design (CADD). This stems from the
fact that MD simulations can reproduce the dynamics of multiple bio-
logical processes, such as the creation of enzyme (receptor)-inhibitor (lig-
and) complexes, or characterize conformational changes in activated recep-
tor molecules with high precision (Jarmuła, 2013; Tautermann et al., 2015;
Zhao et al., 2015).

Protein Simulation

The physiologic environment of proteins is too complex for the com-
puting abilities of the MD method, therefore proteins are usually magnified
by placing them in an aqueous solution. The simulation process typically
begins with sampling the protein structure in the PDB format (Protein
Data Bank). An example of such a simulation in the Gromacs environment
(www.gromacs.org) is summarized in the Figures 9 and 10.
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Figure 9. The structure of the orthorhombic form of hen egg-white lysozyme
(viewer – VMD: CPK and Ribbons modes); source file: 1AKI.PDB –
http://www.rcsb.org/

Figure 10. The radius of gyration of a protein – a measure of its compactness;
source – Gromascs simulation based on Lemkul (2013)

CFD Analysis

The above-discussed considerations are summarized by the further spec-
ification of the step-by-step procedure for typical problems related to re-
searching fluid behaviors – these actions are recapitulated within the notion
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of the CFD analysis. The CFD analysis is usually divided into 3–7 stages.
Some of them must be conducted repeatedly in order to acquire the results
of desired quality (Marić et al., 2014; Versteeg et al., 2007). In this paper,
the 7-stage process is presented.
1. Formulation of the problem. The initial stage of the CFD analysis

has significant influence over consecutive stages. It usually requires cooper-
ation between an expert from the target field and a CFD specialist. Due to
the complexity of even the most fundamental problems of fluid mechanics,
this stage should result in the maximal simplification of the final set of prob-
lem parameters, permissible without considerable losses in the accuracy of
numerical calculations at consecutive stages. For instance, the decision must
be made whether these fluids can be considered as incompressible and/or
non-turbulent.
2. Mathematical model. This stage may be more or less complex,

depending on whether the theoretical model of the analyzed problem has
already been researched or still needs to be researched. If the latter is the
case, it will be necessary to employ a mathematician or a theoretical physi-
cist, who must collaborate with an expert from the target field in order
to construct a correct theoretical model. Still, even if the theoretical model
exists, it remains crucial that the CFD specialist understands its significant
elements since his/her role at this stage consists of selecting an existing nu-
merical algorithm or developing a new one (or alternatively modifying an
existing one), if there are no such algorithms or none are suitable. CFD algo-
rithms are usually developed for the type of equation or a group of equations
that may be employed in a wider spectrum than just a single analyzed issue.
In very general terms, this stage may be summarized as a two-part process
(Price, 2006): first, we choose the coordinate system that is adequate for
the analyzed problem, and then we reformulate behavioral principles in the
language of that system.
3. Construction of the discretizing grid. The necessity of applying

numerical methods in fluid dynamics implies the obligation to discretize the
domain of the active field. For example, in grid methods of the mesoscopic
model, two distinct approaches are distinguished (Figure 11):
– Lagrangian model – the grid spans the region of the fluid and moves
along with it – by tracking its elements, we can follow the paths of
respective fluid molecules
– Eulerian model – the grid spans the entire analyzed space and is fixed
– we can track its nodes by examining which elements of the fluid are
currently located in a given node. In this situation, it is more difficult
to investigate trajectories of fluid molecules.
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Figure 11. The static Eulerian grid, spread over the fluid domain, and the
moving Lagrangian grid with the ds resolution, defined on the
boundary of the fluid (based on de Lima et al., 2007: Figure 1)

Depending on the scene geometry and the topology of the objects contained
therein, the process of generating grids may prove very complicated. In gen-
eral, structured and nonstructured models are chosen for such grids. Both
options allow adaptive compression of grids in certain subregions, while the
latter enables the definition of grids with non-trivial topology.
4. Calculation of boundary and initial conditions in grid points.

Due to the significant density of discretizing grids, this stage typically re-
quires the employment of additional programs, which are used to prepare
files with values that are present in the assumed equations of model pa-
rameters at grid boundaries as well as values of the entire field at the mo-
ment t = 0.
5. Numerical solving of equations of the assumed mathematical

model.
6. Analyses of the achieved solution. At this stage, solutions that

are saved in files are usually visualized in different ways with the aid of
special tools. Furthermore, the same or other tools allow us to generate
additional information concerning the analyzed problem.
7. Critical discussion of the results. The final stage should include

the verification of the end results, which is usually done by comparison with
values measured in natural conditions. Broadly speaking, these measure-
ments may be found difficult and expensive to make.
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