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Abstract. Biomedical signals are frequently noisy and incomplete. They pro-
duce complex and high-dimensional data sets. In these mentioned cases, the
results of traditional methods of signal processing can be skewed by noise or
interference present in the signal. Information entropy, as a measure of disorder
or uncertainty in the data, was introduced by Shannon. To date, many differ-
ent types of entropy methods have appeared with many different application
areas. The purpose of this paper is to present a short overview of some methods
of entropy analysis and to discuss their suitability for use in the analysis of
biomedical signals.

Introduction

Over the last few years, entropy has emerged as an appropriate com-
plexity measure in the study of time series from biological systems, such
as the brain, the heart, the muscles, or the uterus. Biological systems are
characterized by complex dynamics. The physiologic signal contains useful
information, which allows scientists to view activity, redundancy, or noise
information. Biomedical signal processing methods have become more so-
phisticated and extract information from signals that is not apparent from
visual observation of the signal alone. In order to conclude that something
is wrong or that the patients involved have a disease, further processing is
necessary. The algorithms used in biomedical signal processing try to deal
with the unique nature of physiologic signals such as nonstationarities, event
detection, and disturbances.
The concept of entropy is used in many fields of science, including:

information theory, statistical mechanics, chaos theory, neural networks,
mathematical linguistics, and taxonomy. Considering different approaches,
entropy can be used as a measure of disorder or uncertainty in a system. If
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the degree of disorder is low, systems become organized. The ideal system
is when everything is in complete order and the entropy value is zero. If the
degree of disorder is high, then the system lacks stability. The change of
entropy is inversely related to the change of free energy.
The notion of entropy was introduced in the nineteenth century by

Rudolph Clausius in the context of thermodynamics (Clausius, 1850). It
is connected with the second law of thermodynamics, which states that
the change of the entropy in the volume element (at an infinitesimal
change of state) is equal to the ratio of the heat state changes in temper-
ature:

∆S =

∫
dQ

T

A simple system for which S increases is a dish containing gas. Initially,
the molecules are in the mid-volume range and it is possible to locate them.
At some point, the molecules begin to fill the entire volume of the vessel. In
such a system, disorder increases and the molecules are not separated from
the other parts of the vessel. The increased state of disorder decreases the
amount of knowledge about the state of the system.
Boltzmann presented a statistical interpretation of thermodynamic en-

tropy (Boltzmann, 1896). He linked the macroscopic property of entropy
with the microscopic state of a system. The probabilistic study of entropy
is presented in Boltzmann’s law:

S = k lnW

where S is entropy, k is Boltzmann’s constant, and W is probability, deter-
mined by the configurational properties of a statistical system.
The third major form of entropy was introduced in communication the-

ory through the work of Shannon et al. (1949). For more details regarding
theoretical development of entropy, refer to Ben-Naim (2008).
The possibility of using entropy for determining the degree of disorder

within a system resulted in the definition of various forms of entropy (Fig-
ure 1). In the next sections, some of the applications of these forms will be
highlighted. Several previous reviews have summarized the implementation
of information entropy in medicine (Holzinger et al., 2014; Zanin et al., 2012)
and provide more detail about these applications.
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Figure 1. Different forms of entropy, presented in chronological order

Entropy Methods

Shannon entropy. Information entropy was proposed by Shannon et al.
(1949). Information entropy S of a random variable X that takes the values
x1, x2, . . . , xN is defined as:

Sen =
n∑

i=1

p(xi) loga
1

p(xi)
= −

n∑

i=1

p(xi) loga p(xi), a > 1

where p(xi) are probabilities of acceptance by the random variable X val-
ues xi.
Shannon entropy is characterized by a degree of uncertainty associated

with the occurrence of the result. A higher value of the entropy gives a more
uncertain outcome and is more difficult to predict. Generally, the entropy
of X is a measure of expected uncertainty obtained during the measurement
of that variable.
Shannon entropy may be used globally, taking all data into account, or

locally, around certain points. This measure can provide additional infor-
mation about specific events, for example outliers or rare events.
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Renyi and Tsallis entropy. Renyi entropy (Rényi, 1970) and Tsallis
entropy (Tsallis et al., 1998) are generalizations of Shannon entropy that
depend on a parameter. If p(xi) is a probability distribution on a finite set,
its Renyi entropy of order α is defined as:

Ren =
1

(1− α)
ln

n∑

i=1

p(xi)
α

where 0 < α < ∞. Renyi entropy approaches Shannon entropy as α → 1:

lim
α→1

Ren = −
n∑

i=1

p(xi) ln p(xi)

The most convincing uses of Renyi entropy seem to involve the limiting
cases R0 = limα→0 Rα and R∞ = limα→∞ Rα. These are known as max-
entropy and min-entropy, respectively.
Tsallis entropy is defined as:

Ten =
1

(α− 1)
(1−

n∑

i=1

p(xi)
α)

Tsallis entropy has been used in statistical mechanics and in computer sci-
ence, in pattern recognition, for example.

Approximate entropy. Pincus (1991) introduced approximate entropy,
which is useable to quantify regularity in data without knowledge about
a system. In the first step of approximate entropy, the vectors are con-
structed in a pseudo-phase:

y(i) = [x(i), . . . , x(i +m− 1)]

y(j) = [x(j), . . . , x(j +m− 1)]

from a time series of N data points x(1), x(2), . . . , x(N),m is the embedding
dimension.
Approximate entropy can be defined as:

Appen = Φm(r)− Φm+1(r)

where

Φm(r) =
1

(N −m+ 1)
·
N−m+1∑

i=1

lnCm
i (r),
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and

Cm
i (r) =

(number of y(j) such that d[y(i), y(j)] ≤ r)

N −m+ 1

and r is a filtering level, while d represents distances of points. Usually,
r = 20% of the standard deviation of the amplitude values and m = 2.

Appen was introduced to avoid problems in the finite length of a real
time series and in the need to distinguish the nature of the generating sys-
tems (Fusheng et al., 2001; Oczeretko et al., 2005). Larger values of approx-
imate entropy correspond to more complexity and irregularity in the data.
The disadvantages of Appen are that it is strongly dependent on the

record length and is often lower than expected for short records. Another
disadvantage is that Appen lacks relative consistency (Richman et al., 2000).

Sample entropy. To overcome the disadvantages of Appen, sample en-
tropy (Sampen) was proposed to replace Appen by excluding self-matches
(Richman et al., 2000), thereby reducing the computing time by one-half
in comparison with Appen. The advantage of Sampen is that it is largely
independent of record length and displays relative consistency.
In order to compute the Sampen, we must define Φm(r) and Φm+1(r).

The probability Φm(r) that two sequences match for m points is computed
by counting the average number of vector pairs for which the distance is
lower than the tolerance r:

Φm(r) =
1

N −m
·
N−m∑

i=1

Cm
i (r)

Similarly, Φm+1(r) is defined for an embedding dimension of m + 1.
The Sampen is calculated as:

Sampen = ln
Φm(r)

Φm+1(r)

Sample entropy is independent of the length of recording and displays
relative consistency under various conditions.

Fuzzy entropy. Fuzzy entropy (Fuzzyen), a measure of time series reg-
ularity, was proposed by Chen et al. (2007). Similar to the two existing
related measures, Appen and Sampen, Fuzzyen is the negative natural log-
arithm of the conditional probability that two similar vectors for m points
remain similar for the next m + 1 points. Importing the concept of fuzzy
sets, the vectors’ similarity is fuzzily defined in Fuzzyen on the basis of ex-
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ponential functions and their shapes. Besides possessing the good properties
of Sampen superior to Appen, Fuzzyen also succeeds in giving the entropy
definition in the case of small parameters. The method can also be applied
to noisy physiological signals with relatively short datasets.
In the first step of fuzzy entropy, the vectors constructed in the pseudo-

phase are transformed into:

ȳ(i) = [x(i) − x̄(i), . . . , x(i +m− 1)− x̄(i)]

ȳ(j) = [x(j)− x̄(j), . . . , x(j +m− 1)− x̄(j)]

where x̄(i) is the mean value of y(i):

x̄(i) =
m−1∑

k=0

x(i+ k)

m

In the next step, the fuzzy membership matrix is defined as:

Dm
i,j = µ

(
d
(
ȳmi , ȳmj

))

with the fuzzy membership function:

µ(x) = e−(
y

r )
n

Finally, fuzzy entropy is defined as:

Fuzzyen = ln
Φm

Φm+1

where

Φm =
1

N −m

N−m∑

i=1

N−m∑

j=1,j 6=i

Dm
i,j

N −m− 1

Fuzzyen uses a fuzzy relationship function, which leads to a weaker
influence of the threshold parameter choice.
Fuzzy entropy led to fuzzy measure entropy, which introduced a dis-

tinction between local entropy and global entropy (Liu et al., 2013).

Spectral entropy. Entropy can be interpreted as a measure of uncer-
tainty about an event at frequency f. Spectral entropy (Kapur et al., 1992)
uses the Fourier transformation method, in which the power spectral den-
sity (PSD) P̂ (f) can be obtained. The PSD represents the distribution of
power as a function of frequency. So, normalization of P̂ (f) yields a proba-
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bility density function. Using the definition of Shannon’s entropy, spectral
entropy can be defined as:

Spen =
fh∑

i=fl

pi log(pi)

where [fl, fh] is the frequency band.
Spectral entropy is usually normalized Spen/ logNf , where Nf is the

number of frequency components in the range [fl, fh].

Permutation entropy. The complexity of time series can also be quan-
tified by using symbolic dynamics. The permutation method was proposed
by Bandt et al. (2002) to map a continuous time series onto a symbolic
sequence. The result of the statistics of the symbolic sequences is called
permutation entropy.
Generally, each time series is associated with a probability distribu-

tion Π, whose elements πi are the frequencies connected with i possible
permutation patterns, where i = 1, . . . ,m!. Permutation entropy (Pen) is de-
fined as:

Pen = −
m!∑

i=1

πi lnπi

Normalized permutation entropy can be defined as:

Pennorm
= − 1

log2 m!

m!∑

i=1

πi log2 πi

A related information measure is normalized Kullback-Leiber entropy
(Frank et al., 2006), which is defined as:

KLen = 1− Pennorm

KLen quantifies the distance between the ordinal probability distribution
and uniform distribution.
Permutation entropy is the temporal information contained in the time

series and has the qualities of simplicity, robustness, and low computational
cost.

Biomedical Applications

The concept of entropy has been used in many diverse applications
within the biomedical domain. The aforementioned entropy measures have
been applied in physiological time series, for example, with electroencephalo-
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graphic signals (EEG), electrocardiographic signals (ECG), electromyo-
graphic signals (EMG), and electrohysterographic signals (EHG).
Cornforth et al. (2013) used Renyi entropy to detect cardiac autonomic

neuropathy (CAN) in diabetes patients. Multi-scale entropy was applied to
the ECG recording. They obtained significant differences between controls
and early CAN. Their results suggest that it is easy to distinguish between
people with early CAN and controls. This is an important finding and gives
hope for a simple and relatively non-invasive test for people developing this
disease.
Graff et al. (2012) investigated the usefulness of entropy measures,

namely approximate entropy, sample entropy, fuzzy entropy, and permu-
tation entropy, calculated for short ECG series in distinguishing healthy
subjects from patients with congestive heart failure (CHF). They found
that with a reduction of the data set length up to 250 RR intervals, values
of entropy can remain significantly different in patients with CHF compared
to healthy individuals.
Akareddy et al. (2013) improved approximate entropy and used it

in EEG signal classification for epileptic seizure detection. Their results
showed that the accuracy of the proposed method was better than the ex-
isting method for epileptic seizure identification.
Sharma et al. (2015) used different entropy measures, namely: average

Shannon entropy, average Renyi’s entropy, average approximate entropy, av-
erage sample entropy, and average phase entropies on intrinsic mode func-
tions for the automated identification of focal EEG signals. Their results
also confirmed the usefulness of entropy measures to differentiate focal and
non-focal EEG signals.
Ferlazzo et al. (2014) evaluated permutation entropy extracted from

EEG recordings during both interictal and ictal phases in patients with
typical absences (TAs) and healthy subjects. In patients with TAs, a higher
randomness in fronto-temporal areas associated with high permutation en-
tropy levels and a lower randomness in posterior areas associated with low
permutation entropy levels occurred. Based on this, they claimed that per-
mutation entropy seemed to be a useful tool to disclose abnormalities of
cerebral electric activity.
Avilov et al. (2012) also used permutation entropy on EEG recordings

but to detect epileptic seizures. They showed that the PE of a sick pa-
tient is twice larger than in healthy patients, and that the PE increases
for time ranges where the appearance of epileptiform activity takes place.
Li et al. (2014) were the next researchers who used permutation entropy to
measure the changes in EEG signals during absence seizures. Their experi-
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mental results showed that the mean value of permutation entropy decreases
from the seizure-free to the seizure phase and provides evidence that absence
epilepsy can be effectively distinguished.
Liang et al. (2015) compared twelve entropy indices, namely response

entropy, state entropy, three wavelet entropy measures (Shannon, Tsallis,
and Renyi), Hilbert-Huang spectral entropy, approximate entropy, sample
entropy, fuzzy entropy, and three permutation entropy measures (Shannon,
Tsallis and Renyi) in monitoring depth of anesthesia and detecting burst
suppression. They found that Renyi permutation entropy performed best in
tracking EEG changes associated with different anesthetic states, and that
approximate entropy and sample entropy performed best in detecting burst
suppression.
Zhang et al. (2012) presented the possibility of using sample entropy for

muscle activity onset detection by processing surface EMG against ECG ar-
tifacts. A sample entropy threshold was used for detection of muscle activity
and performed significantly better.
Diab et al. (2014) investigated the performance of four non-linearity de-

tection methods: statistics (Time reversibility), predictability (Sample En-
tropy, Delay Vector Variance), and chaos theory (Lyapunov Exponents).
Applied to real uterine EMG signals, they were used to distinguish between
pregnancy and labor contraction bursts. Their results confirmed the sensi-
tivity of sample entropy.
Alamedine et al. (2014) proposed several selection methods in order to

choose the best parameters to classify contractions in uterine EHG signals
for the detection of preterm labor. One of them was sample entropy, which
was potentially most useful to discriminate between pregnancy and labor
contractions.
Garcia-Gonzalez et al. (2013) also investigated the differences in the

contractions generated by women that chose to have a vaginal delivery as
opposed to those who elected to have caesarean section. They used sample
entropy to calculate the irregularity of manually selected contractions of the
EHG time series and confirmed that sample entropy could provide an index
to evaluate the quality of the active phase of labor at term.

Conclusions

Entropy measures have been used in analyzing short, sparse, and noisy
medical time series. These methods solve important problems in time series
analysis, such as: classifying different dynamics, identifying missing points in
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time series, predicting appearance events, determining time scales, quantify-
ing similarities between time series, or identifying directionality and causal-
ity. Furthermore, entropy measures can be extended to multi-variety and
multi-scale systems (Humeau-Heurtier, 2015). Besides the advantages of us-
ing entropy measures, there are a lot of unsolved problems. One of them is
how to use entropy measures for the classification of pathological and non-
pathological data. In studies concerning biomedical data, a common aim is
to distinguish between two states of a system. There is little knowledge con-
cerning how to solve the problems of classification and selecting appropriate
data ranges to use. This is directly related to the choice of parameter selec-
tion concerning the threshold value r, which has an influence on the value of
entropy. There are different parameter sets used, but until now all possible
combinations have not been tested and no consensus has been reached. This
parameter is dependent on the data and its type.
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Pincus, S. M. (1991). Approximate entropy as a measure of system complexity.
Proceedings of the National Academy of Sciences, 88(6), 2297–2301.
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