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Abstract. In this paper, I propose a populational schema of modeling that
consists of: (a) a linear AFSV schema (with four basic stages of abstraction,
formalization, simplification, and verification), and (b) a higher-level schema
employing the genetic algorithm (with partially random procedures of muta-
tion, crossover, and selection). The basic ideas of the proposed solution are as
follows: (1) whole populations of models are considered at subsequent stages of
the modeling process, (2) successive populations are subjected to the activity of
genetic operators and undergo selection procedures, (3) the basis for selection
is the evaluation function of the genetic algorithm (this function corresponds to
the model verification criterion and reflects the goal of the model). The schema
can be applied to automate the modeling of the mind/brain by means of ar-
tificial neural networks: the structure of each network is modified by genetic
operators, modified networks undergo a learning cycle, and successive popula-
tions of networks are verified during the selection procedure. The whole process
can be automated only partially, because it is the researcher who defines the
evaluation function of the genetic algorithm.

Keywords: modeling, modeling schema (linear vs. populational), cognitive mod-
els, artificial intelligence, genetic algorithms, artificial neural networks.

Introduction

This paper elaborates on some of my earlier ideas concerning the
methodological structure of the modeling process (see Stacewicz & Włodar-
czyk, 2011; Stacewicz, 2010). My aim here is to develop them into a proposal
of a modeling schema that would allow for the automation of the model-
ing process. The schema I envisage is based on the genetic algorithm, an
evolutionary computer-science method, inspired by the biological theory of
natural selection, that has found many applications in a wide range of fields.
The schema is also populational in character: whole populations of models
(rather than single models) are considered at subsequent stages of the mod-
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eling process and the optimum model is produced by means of cyclically
repeated operations of mutation, crossover, and selection.
Given the centrality of genetic algorithms to my account, I devote

a whole section of this paper (section III) to discussing them in a semi-
formal manner and characterizing in detail such procedures as mutation,
crossover, and selection. As a hypothetical example of the use of the evolu-
tionary modeling schema, I present a typical problem encountered in cog-
nitive science of partial mind-brain modeling by means of artificial neural
networks. The idea is that an artificial neural network that models a cer-
tain part of the brain undergoes artificial evolution governed by a genetic
algorithm. The operations performed by the algorithm are aimed at ob-
taining the right pattern of connections between the neurons comprising
the network.
I assume that the reader is familiar with artificial neural networks, so

I only provide brief general information about them and illustrate it with
a few examples. I concentrate on the idea of fine-tuning the network by
means of genetic algorithms (as part of the so-called COGANN strategy),
which I develop in the context of mind-brain modeling.
As this article is methodological in character, what I present are some

general ideas and schemas rather than detailed computer science solutions.
In fact, the basic assumption of this paper is that formal computer science
structures, such as genetic algorithms and artificial neural networks, consti-
tute an appropriate basis for methodological propositions, especially those
concerning reconstruction or automation of modeling activities.

I. Modeling and computer science

Modeling is widespread in contemporary science in almost all fields of
research, including the natural sciences, the social studies and the human-
ities. Understood empirically (as there is another concept of modeling used
in the deductive sciences1), modeling consists in constructing a simplified,
though cognitively useful, image (description) of a phenomenon under in-
vestigation. The image is based on a theory accepted in a given field and is
created to effectively expand knowledge about a particular object (for exam-
ple, the neuron, which is the object of neurobiology, or the atom in physics).
In terms of their relationship to theory, models are divided into theoret-

ical and real ones. Theoretical models are narrow fragments of theory and
take the form of symbolic descriptions of the phenomena. Real models are
physical realizations of the aforementioned descriptions – material systems
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based on them. Both types of models perform cognition assisting functions,
that is, they help the researcher to better understand a given phenomenon
and solve problems related to it (for example, connected with predicting the
course of similar phenomena) more effectively.
The basic character of the constructions of the first type – that is, their

theoretical nature – means that any type of modeling appeals (directly or
indirectly) to formal sciences. These sciences provide general notions and
structures without which it would be impossible to construct a theory that
could serve as a basis for building a model (which, in turn, becomes part
of the theory). The typical examples here are equations, functions, logical
formulas, data structures, and algorithms. Depending on the scientific origin
of the structures used, we can talk about various types of models, including:
mathematical, logical, cybernetic, and computer science models. Usually,
these structures comprise more than one formal layer – for instance, a deeper
mathematical layer and a more superficial, computer science one.
This article is chiefly concerned with models constructed in computer

science. This is an extremely complex topic, involving various planes on
which contemporary computer science merges with mathematics and mod-
eling theory. By way of an introduction, I shall outline three preliminary
issues whose discussion will lead us to the main problem of the article.
The first issue is connected with the idea of the control code. Accord-

ing to it, the basic function of computer science consists in transforming
mathematical schemata into machine codes and, going further, into the real
actions of machines controlled by these codes. What is the connection with
modeling here? It is quite simple. The indicated function allows us to move
from a theoretical model to a real one – that is, to transform static mathe-
matical descriptions into computer programs, which are run in time. These
programs make it possible to computationally implement the theoretical as-
sumptions of models, causing them to work and reflect – depending on the
cognitive needs – a given variation of the phenomenon under investigation
(see Stacewicz & Włodarczyk, 2010).
As an illustration, let us consider a typical mathematical structure such

as a set of linear equations, assuming that the theoretical model of a certain
phenomenon X (e.g., in the field of economics) takes the form of a set of
linear equations with n unknown values x1, x2, . . . , xn.

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2...
an1x1 + an2x2 + . . . + annxn = bn
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Such a model describes, first of all, certain interdependencies between
the phenomenon under investigation (they are represented by the equa-
tions). Secondly, it comprises an unlimited number of solutions to differ-
ent problems connected with phenomenon X. Substituting various val-
ues as coefficients of the unknown values, we obtain different variants
of the problem, the solutions to which are particular values of the vari-
ables x1 to xn. What is essential here, however, is that the model it-
self, irrespective of the possibility of solving the set of equations defin-
ing it, is static in character: particular equations will represent the rela-
tions on which the researcher focuses (leaving aside the complexity of phe-
nomenon X).
By adding a certain algorithmic description to the model, with infor-

mation on how to mechanically solve a given set of equations (there may be
many such descriptions – some more effective than others), and transform-
ing the model into an appropriate computer program, we can obtain more
than just a mathematical description of phenomenon X.
This expanded programming and computer model has a different

methodological status than the set of equations itself. Contrary to a purely
theoretical model (which describes only the relations defining the prob-
lem), it is a real model, the functioning of which may be observed and
changed.
The assisting function of computer science, which makes it possible to

transform a theoretical model into a real one, does not exhaust the model-
making potential of the discipline. As it turns out, in the case of many
models (both theoretical and real ones), it is the sphere of computer science
which constitutes the proper modeling plane. In other words, the essence of
the modeled phenomenon is reflected by the concepts of computer science
(and not mathematical ones).
This is certainly the case in the field of cognitive science, with its so-

called partial models of the mind – models of certain isolated cognitive acts,
such as perception, reasoning, or learning. For example, modeling the act of
perception by means of an artificial neural network (such as a perceptron),
we reflect the essence of perception by means of computer science concepts:
network data processing technology, network structure, artificial neuron,
learning algorithms, etc. Naturally, this type of description has a deeper
mathematical layer in which, for example, mathematical functions of ar-
tificial neuron activation are specified, but its specificity is determined by
computer science formalisms (see Żurada, 1992).
Moving towards increasingly important computer science applications

in modeling, we reach the point where the actual message of the article
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starts. This is the issue of computer science applications in describing the
very modeling schema – the general schema, that is, independent of the type
of phenomena under investigation.
If we assume that the modeling process consists of a series of identi-

fiable stages which take place in a sequence, irrespective of the subject of
programming and which – again, irrespective of the subject – involves the
same methodological procedures, we may wonder to what extent the pro-
cess may be automated by means of appropriate algorithms. If the process
cannot be automated, it can perhaps be described in a precise way – so that
the modeler could take advantage of “IT support” at this or that stage of
the modeling process.

II. Linear modeling schema

In Stacewicz and Włodarczyk, 2010, and Stacewicz, 2010, I presented
a methodological reconstruction of the modeling process according to which
the process comprises four cyclically repeating stages: abstraction, formal-
ization, simplification, and verification.
At the first stage, the researcher identifies significant features of the

modeled phenomenon, abstracting away from its other features. At the sec-
ond stage, the researcher formalizes the model by choosing particular formal
tools (in the computer science layer of the description these are, for exam-
ple, data structures and algorithms).2 At the third stage, she simplifies the
formalized model by eliminating (with the use of formal transformations)
some of the initially chosen features and relationships between them. At the
fourth stage, the researcher verifies the model by investigating its proper-
ties, such as its correspondence with the described fragment of reality, non-
contradiction or the desired level of non-contradiction, as well as predictive
effectiveness and simplicity – the point of reference for the verification may
be the domain modeled, as well as alternative models of the phenomenon
under investigation.3

Based on the sequencing of the process described, and using the first
letters of its particular stages, the schema presented here may be called
a linear AFVS schema. The name aptly reflects the situation in which the
researcher moves from stage to stage, transforming a single model (and not,
for example, a series of test models).
It must be stressed that the fourth stage of the modeling procedure,

consisting in a gradual movement towards the most adequate model, does
not conclude the modeling process. Instead, the process enters into a loop:
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it goes back to the first stage, in which – depending on the results of the
verification – another set of features of the phenomenon under investigation
is considered. Thus, a different type of abstraction is conducted, which be-
comes the basis for the subsequent stages. It has to be added that depending
on the range of changes within the framework of the new abstraction pro-
cedure, the author of the model may choose new formal structures or keep
the ones used before.
As an example illustrating the AFVS schema (and, at the same time,

introducing the issues discussed in chapter V) we will briefly describe a cycle
of modeling of perception by means of an artificial neural network, called
a perceptron (see Rojas, 1996). A perceptron is a typical multilayer net-
work usually used to recognize objects based on the value of their specified
features (for example, letters, based on the location of segments construct-
ing them). The network categorizes objects in the following way: a signal
representing an object is fed to the initial layer of the network (the first
layer of artificial neurons) – its components, corresponding to the specified
features of the object, are fed to different neurons. The signal is propagated
in parallel manner by subsequent layers of neurons (the so-called hidden
layers). The propagation ends when the state of the neurons in the final
layer stabilizes, interpreted as a decision about the object’s belonging to
a certain category (see, e.g., Rojas, 1996).
In the problem discussed here, the model of perception is a perceptron

with a defined structure of connections between artificial neurons and the
weights of these connections (their throughput). The structure unequivo-
cally defines the operation of the model, that is, the process of assigning
the objects presented to the proper categories. Assuming that seeking the
proper model can be described by the AFVS schema, we obtain the following
correspondences.
The stage of formalization corresponds to the choice of the type of net-

work which constitutes the basis for the model. In this case, it is a perceptron
with a particular number of neurons on each layer.
The stage of abstraction consists in determining what features of rec-

ognized objects subsequent neurons of the initial layer are to correspond to
(for example, shape, color, toughness, etc.).
The stage of simplification, that is, of refining or adjusting the struc-

ture of the network, corresponds to the procedure of network learning
based on a properly chosen set of examples. This is a purely formal pro-
cedure, adjusted to the type of network, described by an algorithm which
is well justified mathematically (e.g., by the algorithm of error back propa-
gation).
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The stage of verification consists in the assessment of the trained net-
work with respect to the quality of recognition of a certain set of test objects.
Depending on the verification results, the researcher constructing the model
may: (a) change the type of modeling network (at the level of formalization)
(b) change the functions of neurons of the initial layer; that is, assign them
to other features than the current ones (a change at the level of abstrac-
tion).
In what follows, the AFVS schema described above will become the

starting point for a far-reaching broadening, in which we will introduce two
new elements:
1) populationality – populations of models, rather than single ones, will be
generated and verified within a single modeling cycle,

2) random factor – models comprising subsequent populations will be cre-
ated partially at random.
Before we do that, however, we will describe the idea of genetic algo-

rithms known from computer science, which will constitute the basis for the
proposed broadening.

III. Genetic algorithms

Genetic algorithms are a perfect example of benefits derived from inter-
disciplinary studies. The concept of such algorithms was drawn from biology,
specifically from the theory of natural selection. However, a problem solving
schema was developed based on it in the field of computer science (see Hol-
land, 1975; Goldberg, 1989). The name of the schema – genetic algorithm
– alludes to the fact that the data processed using it are coded as sets of
genes and certain mechanisms known from genetics are applied during their
artificial evolution.
The practical equivalent of genetic algorithms – their realization, to be

exact – are computer programs called evolutionary or selective. The princi-
ples of their operation differ significantly from the principles characterizing
traditional programs. While the latter ones proceed step by step to the
outcome, in accordance with a sequence instruction set beforehand, evo-
lutionary programs generate whole populations of results and check their
compliance with the requirements for solving the problem. Generating sub-
sequent populations takes place based on principles resembling the natural
evolution of organisms: potential solutions mutate, crossbreed, proliferate,
and die. Most importantly, however, they are subjected to the selection
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procedure, as a result of which more and more outcomes approximating the
expected solution appear in subsequent populations. Drawing on biologi-
cal terminology, one can say that subsequent populations become more and
more adjusted to the environment – that is, to the pre-set requirements of
the problem being solved.4

The principles described above are reflected by such a general schema
of the genetic algorithm:

Genetic algorithm
(Pt – subsequent populations of trial solutions to a problem)

1. Generate initial population Pt; t = 0

2. Until the final condition is fulfilled perform 3 . . . 6
3. Process (Pt) [for example, perform mutations and crossover]
4. Evaluate (Pt)
5. Perform Selection (Pt)
6. t = t+ 1

7. The solution to the problem is the best element in Pt population

Referring to the subsequent points of the schema we will describe in more
detail the functioning of a program consistent with it, that is, an evolu-
tionary program. Firstly, the program is to solve a problem P associated
with it (for example, to determine the roots of a certain complex non-linear
set of equations). The general method it implements consists in searching
the space of potential solutions of the problem P . These potential solutions
are called chromosomes or individuals and are most often coded in the form
of binary sequences.
Before starting the evolution (point 1) the program randomly generates

a certain group of chromosomes, which are labeled as the initial popula-
tion P0. The subsequent steps (from 3 to 6) mark the course of the artificial
evolution during which subsequent populations randomly change their con-
tent, so that, statistically, the average adjustment of the population to the
requirements of the problem being solved grows.
In the third step (point 3 of the schema) some chromosomes of the

current population are subjected to the activity of genetic operators, such
as mutation, crossover, and inversion. Speaking in very general terms as
yet, these operators cause random changes in the code of non-selectively
chosen individuals. As a result, new individuals appear in the population,
which are added to it or which replace the existing chromosomes.
In the fourth step (point 4 of the schema) each of the chromosomes in the

newly created population is evaluated as to its adjustment to the problem P .
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The evaluation consists in establishing the value of a certain function, which
depends on the definition of the problem and usually constitutes a constant
element of the program (for example, if the program solves a set of equations,
a hypothetical function may “measure” to what extent potential roots fulfill
subsequent equations).
The results of the evaluation procedure become the basis for selec-

tion (point 5 of the schema), which consists in choosing chromosomes with
the highest evaluation function value in the current population. Strictly
speaking, it is probability which determines the choice: better chromo-
somes are chosen with greater probability and worse chromosomes with
lesser probability, so the higher the value of evaluation function of a chro-
mosome, the greater representation it has among the selected chromo-
somes.
A new population results from the selection, which – just like the pre-

ceding one – will be processed in the subsequent step of the evolution. The
program ends its work when one particular final criterion has been met –
for example, when an individual with a sufficiently high evaluation function
value appears in the population, or the average fitness of the population
reaches a certain satisfactory value.
As can be seen from the description above, the specificity of the evo-

lutionary method rests upon points 3 and 5 of the schema discussed. They
make the search of the space of potential solutions (a) partially random,
(b) globally directed by the evaluation function connected with the prob-
lem. Randomness at the level of processing and modification of subsequent
populations is usually granted by the operations of mutation and crossover,
performed on randomly chosen chromosomes, or, strictly speaking, on their
fragments. In the case of binary representation of individuals, the idea of
mutation is as follows:
For each individual the program generates a random number from the

(0, 1) interval. If the number is less than the probability of mutation pM (for
example, pM = 0, 02), the individual undergoes mutation (that is, in ran-
domly chosen positions of the code zeros are exchanged for ones and re-
versely). Otherwise, the individual does not undergo mutation. Crossover
takes place according to a similar schema. The program generates a num-
ber from the (0, 1) interval for each chromosome. If the number is less
than the probability of crossover pC (for example, pC = 0, 3), the chro-
mosome is chosen for crossover; that is, it is added to the set of parent
chromosomes CR. Then subsequent pairs from the set CR are crossed-
over; that is, they are divided into parts from which their offspring is com-
posed.5
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Algorithmical schemas of these operations are as follows:

Mutation

1. For i = 1, . . . , n perform steps 2 and 3
2. Randomly generate number r from the interval [0, 1]
3. If (r < pM ), choose Ci to be mutated (M = M ∪ Ci)

4. In subsequent Ci from the set M change randomly chosen zeros to ones
and randomly chosen ones to zeros.

Crossover

1. For i = 1, . . . , n perform steps 2 and 3
2. Randomly generate number r from the interval [0, 1]
3. If (r < pC), choose Ci for crossover (CR = CR ∪ Ci)

4. Cross-over subsequent pairs of chromosomes from CR.6

Irrespective of the genetic operators (although mutation and crossover
are the most frequent), it is the selection procedure which determines the
evolutionary character of the method presented. It is usually based on the
so-called roulette rule, which, as its “gambling” name indicates, involves
random choices and probabilities connected with them (see Goldberg, 1989).
Before the roulette rule starts to “work”, subsequent chromosomes of

the current population (Ci) are assigned selection probabilities, equaling
the results of division of particular chromosome fitness by the sum of the
values of evaluation function of all chromosomes. These probabilities may
be illustrated as smaller or larger sections on the roulette wheel, covering an
area amounting to one. The wheel is set in motion as many times as there
are chromosomes in the population. Each time when the wheel stops and
the roulette indicator shows a given section, a new individual corresponding
to the section joins the new population. Because of the random nature
of the whole procedure some individuals may be chosen a few times and
others may never be chosen. The following schema reflects the description
above:

Selection

1. Calculate the fitness of subsequent chromosomes Ci, that is, O(Ci),
i = 1, . . . , n.

2. Calculate the sum of fitness values F =
∑

i=1,...,nO(Ci)

3. Calculate the probability of choices pi = O(Ci)/F
4. Calculate the joint probability of qi =

∑

j=1,...,i pj
5. For i = 1, 2, . . . , n perform steps 6, 7, 8
6. Randomly generate number r from the interval [0, 1]
7. Search for j fulfilling the condition: qj ≤ r < qj+1
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8. Widen the set of selection results SEL (initially SEL = ∅).
SEL = SEL ∪Cj

7

Finally, it has to be stressed that the genetic algorithm is a certain non-
standard – partially random and, above all, referring to biological analo-
gies – method of searching the space of solutions to a certain problem.
As the key element of each algorithm is the evaluation function (evalua-
tion of potential solutions), in fact, we are dealing with a certain method
of determining the maximum or local maximums of this function. Chro-
mosomes which are selected as a result of artificial evolution are solutions
in which the aforementioned function takes on the highest values, globally
or locally.
Therefore, irrespective of certain general features of the schema de-

scribed, it is this, and not any other evaluation function which determines
the specific nature of a particular genetic algorithm (and the correspond-
ing evolutionary program). The function sets the goal of the algorithm
and, as the goal is the solution to a given problem, its definition con-
tains the information on the most significant features of the problem (see
Michalewicz, 1999). On the other hand, in terms of biological analogies, the
evaluation function models the environment in which the potential solutions
are selected.

IV. Evolutionary modeling schema

From a certain point of view, modeling can be understood as a problem
solving procedure characterized as follows: Find a model M which sufficiently
fulfills the verification criterion. In this light, the AFSV schema discussed in
the second chapter constitutes the general basis for methods which, roughly
speaking, consist in correcting certain parameters of the initial model, until
it reaches the maximum adequacy. These parameters are determined and
modified at the level of abstraction, while their temporary usefulness is
checked at the stage of verification (when the model determined by them –
formalized and then simplified – undergoes evaluation).8

With such an approach, modeling comes down to searching the set of
possible values of the aforementioned parameters, aiming at determining the
most adequate combinations of these values. Adopting such a perspective,
we gain the interesting possibility of enjoying the merits of genetic algo-
rithms, which are, after all, a certain non-standard method of searching the
space of solutions to problems posed. Strictly speaking, we gain the possibil-
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ity of joining the sequential AFSV schema with the populational algorithm.
The basic ideas for the suggested solution are as follows:
(1) not single models, but whole populations of them are considered in the
subsequent modeling steps;

(2) subsequent populations are subjected to the activity of genetic operators
(such as mutation and crossover);

(3) populations created having used genetic operators undergo selection
procedures, as a result of which subsequent populations are created;

(4) the basis for selection is a certain criterion which is identical with the
accepted model verification criterion.
Summing up the points above, it can be said that the sequential ASFV

scheme is embedded in a higher level scheme – a genetic algorithm (see
Stacewicz, 2010). Writing our proposal in a quasi-computer science manner
– in a form analogous to the genetic algorithm schema – we obtain the
following evolutionary modeling schema.

Evolutionary modeling schema (AFSV/GA)

1. Generate an initial population of models Pk; k = 0
Pk = {mk1,mk2, . . . ,mkn} (n is the number of models in the popula-
tion)

2. Until the final condition is fulfilled perform 3 . . . 6
3. Process (Pk)9 – using genetic operators with models mk1,mk2, . . . ,

mkn

4. Evaluate (Pk) – evaluating subsequent models
5. Perform Selection (Pk) – based on the verification criterion
6. k = k + 1

7. The best element in the final population Pc is the solution to the prob-
lem.

The realization of the proposed schema leads to the following sequence
of events, connected with modeling a certain phenomenon Z:
In the first step of the procedure an initial population of test models P0

is generated. Models contained in it have a strictly defined formal shape
(depending on the initially accepted formalization method) and they differ
from one another by the choice of features comprising the description of the
modeled phenomenon Z (by definition, it is an incomplete description).
Having generated the P0 population, the first evolution cycle begins.

The P0 population models undergo recombination operations such as muta-
tion and crossover, as a result of which the set of features in the description
of the phenomenon Z changes, largely at random. Thus, it is in fact the
abstraction stage – only this time it is applied en masse to all models in the
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current population. Detailed definitions of recombining operations depend
on the formalism applied – the method of the mathematical representation
of models.
In the next step of the method, models comprising the P0 population

are simplified, which means that dispensable features and other needless
elements in the description of the phenomenon Z are eliminated (within
particular models). Here the operation – termed simplification in the AFSV
schema – constitutes an element of the Process (Pk) procedure.
Simplified models are then evaluated with respect to certain permanent

and predefined criteria (verification criteria specific for a given modeling
procedure). A set of values of evaluation function becomes the basis for
selection, as a result of which some models in a modified P0 population
become part of the P1 population, thus progressing to the subsequent cycle
of evolution.
Let us finally emphasize that the new schema AFSV/GA differs from

the AFSV schema in that its four basic stages of modeling – abstraction,
formalization, simplification, and verification – are merged with a genetic al-
gorithm. In combination with the algorithm, they perform slightly different
functions than they initially did. Enumerated, it looks as follows:
(a) the stage of formalization precedes launching a genetic algorithm – the
method of formalization does not change within the algorithm realiza-
tion process;

(b) genetic operators are applied at the stage of abstraction – they are used
with models in the current population;

(c) the stage of simplification concerns subsequent models in the population
formed with the use of genetic operators – it is realized in the same way
as envisaged in the AFSV) although parallelly and en masse (for all
models from the current population);

(d) the stage of verification is replaced by a selection procedure – the verifi-
cation criterion is retained, but it is used to evaluate particular models
of the current population (based on the evaluation, models are added
to the subsequent population or not).

V. Application of the evolutionary schema as part of
the COGANN strategy

Two questions come into play in view of the proposition of the evolu-
tionary modeling schema (EMS) presented in the previous section.
Firstly, is this schema actually used in practice; that is, do the scientists
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working on a model of a given phenomenon actually use anything resembling
an evolutionary strategy?
Secondly, even if the EMS schema is not present in the scientific practice,

can it constitute a good basis for the automation of the modeling process
(or automated support for researchers working on a model)?
We will not undertake to answer the first question in this paper.

It is worth noting, however, that some leading methodologists of sci-
ence, such as Popper, claim that the actual development of scientific
theories is evolutionary in nature. In one of his lectures, Popper (1994)
says explicitly that it is possible to view the development of knowledge
as a fight for survival between competing theories. Only the best ad-
justed theories will survive, though even they may be annihilated at any
time.10

If the theory is replaced by a model here (which seems justified, as
a model constitutes a part of a theory) the view is analogous to ours, al-
though more general.
As far as the second question is concerned – the one about the possible

automation of the modeling process – we think, in line with the previous
sections, that computer scientists provide valid premises for giving a positive
answer to it. From the point of view of pure computer science, it is simply
a fact that genetic algorithms exist – a technique which may be implemented
using a computer (that is, with entire or partial automation) and which
abounds in various mathematical and engineering applications.
From the point of methodology, however, the possibility of making a ge-

netic algorithm the core of a modeling schema is the answer.
Accepting these premises, we will point to such development of them

which leads directly to cognitive science and, specifically, to the mind/brain
modeling procedure which is justified from the point of computer science
and possible to realize with the use of the computer. We will refer not
only to genetic algorithms, but to a broader strategy called the COGANN
(Combinantions of Genetic Alghorithms and Neural Networks). This strat-
egy consists in solving problems using methods involving both genetic al-
gorithms and artificial neural networks. The possibility of cognitive inter-
pretation, on the other hand, is determined by the fact that at least some
neural networks are considered neurobiologically justified and mathemati-
cally grounded models of certain fragments of the brain (see, e.g., Church-
land, 1986).
In this paper, we assume that the field of artificial neural net-

works (ANN) is quite well-known. In section II, we briefly presented an im-
portant example of a network (a perceptron), which may be used as a model
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of neurobiological structures responsible for perception. We will collectively
discuss here these features of ANN which determine their specificity (against
other data processing systems) and, furthermore, which predispose them to
become good candidates for partial mind-brain models.
Firstly, then, ANN are systems of data processing inspired by biology,

which, both with respect to their structure and operating principles, resem-
ble fragments of the nervous system in living creatures (some talk directly
about the human brain here, but – because of the too highly specialized
nature of ANN – it is better to use more prudent terms).
Secondly, the structure of each ANN consists of a vast number of identi-

cal processing units called artificial neurons, which are linked by a specially
matched network of connections. Artificial neurons are frequently simpli-
fied realizations of real biological neurons. Each interneural connection has
a certain throughput, a so-called weight, which determines how powerful
a signal passing from one neuron to the other may be.
Thirdly, the whole dispersed or distributed “knowledge” of the net-

work about how it should function is comprised in the total arrangement
of weights. This means that a certain arrangement of weights makes the
network react to the received stimuli in a particular way.
Fourthly, the aforementioned knowledge is not usually coded in advance,

but is created in the learning process, when networks are presented with
certain typical stimuli, for which particular responses are expected by the
system designer. Technically speaking: most of the ANNs have the ability to
self-organize, which leads to the generalization of patterns presented to it.11

(See Żurada, 1992).
In computer science literature, the COGANN strategy is considered

with respect to particular algorithmic issues, such as the travelling salesman
problem, known from discrete mathematics. Despite that, at a certain level
of generality, four general variants are differentiated, within which there is
a different “division of roles” between connected genetic algorithms (GA)
and artificial neural networks (ANN).12 Let us enumerate:
(1) ANN and GA perform the same task, but in a different way (for in-
stance, by constituting a part of a larger algorithm package). From the
engineering point of view, such a solution is well grounded, as long
as there are variations of the task; that is, such sets of initial data
in case of which each method ensures different effectiveness of realiza-
tion.

(2) GA performs the task and ANN is used outside GA as a supporting
tool. For example, adequately chosen networks perform the operations
of genetic material recombination (such as crossover).
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(3) ANN performs the task but GA prepares ANN for action. In this varia-
tion genetic algorithm – appropriately to its main function – is respon-
sible for forming the network adequately through simulated, artificial
evolution.

(4) GA and ANN cooperate in performing one complex task. This coop-
eration may be manifested in two ways: (a) GA is responsible for one
particular element of task completion, while ANN is responsible for an-
other element of it, or (b) GA is responsible for the dynamic network
self-organization which takes place during the completion of the task
and is necessary for its completion.

Attempting to apply COGANN in the mind/brain modeling process au-
tomation, we may point to its third variation. In this variation, a certain
neurolike network may be prepared to function as a partial model of the
brain.13 By a functioning model we mean an already formed network (that is,
a network with an adequate structure of inter-neural connections and their
weights), which may be observed instead of the modeled object. The genetic
algorithm would be the tool generating the final model. The algorithm would
be responsible for selecting the best model among the mutating, crossover,
and competing trial structures.
Expressing the aforementioned idea in the spirit of the AFSV/GA

scheme (see section IV), we obtain the following image of the evolution-
ary modeling procedure. Whole populations of models undergo evolution,
while each model is an artificial neural network of a particular type (for ex-
ample, a perceptron), differing from the other elements of the population in
terms of the structure of connections between artificial neurons. Systems of
connections and their weights which define the models are properly coded
(for example, binarily) and all genetic operations coming into play con-
cern their codes. In accordance with the schema above, modeling consists
in the cyclical performance of procedures Process(Pk), Evaluate(Pk), and
Perform Selection(Pk). These procedures concern subsequent populations
of neural networks and are embedded in the genetic algorithm.
In the first part of the procedure Process(Pk) networks randomly cho-

sen from the current population Pk (generally termed chromosomes or in-
dividuals) undergo recombination, that is, operations such as mutation and
crossover, These operations are conducted on their codes, specifically on
those fragments of the code which correspond to the features of the objects
modeled. As they lead to changes in the fragments of the code, they are
nothing but a random realization of the stage of abstraction.
In the second part of the Process(Pk) procedure, each modeling network

undergoes a learning cycle proper to it (called self-organization14), during
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which weights of interneural connections are fine-tuned. Some of the weights
may change to zero, which may be interpreted as the disappearance of cor-
responding connections. In the terminology accepted here (see section II)
this procedure must be called simplification (the term is the more justified
the more neurons and connections disappear).
Having processed the populations, the coupled procedures Evaluate(Pk)

and Perform Selection(Pk), during which properly trained networks are
evaluated with respect to a predetermined modeling criterion and then cho-
sen (according to general selection rules) to become part of the subsequent
population.
Summing up the description above, it has to be stated that in the

sequence of procedures postulated in it there are two cycles of network
perfecting: the external one – connected with genetic operations, that is,
recombination and selection – and the internal one – connected with self-
organization (that is, learning) of temporarily created networks. Details
of both cycles depend, naturally, on the type of network; that is, on the
accepted method of model formalization.

VI. Final remarks

The method of modeling process automation presented in the article
is – as I have emphasized – a method of partial automation. This means
that the researcher is a non-negligible “component” of the whole process.
He not only initiates it, but also, above all, he determines the criteria which
the final construction should fulfill. Technically speaking, the criteria corre-
spond to the evaluation function of potential models – the function which
constitutes a key element of the genetic algorithm and reflects the goal
of modeling. Without direct determination of this function the evolutionary
schema would be entirely useless.
The necessity to determine the goal of modeling does not contradict an-

other feature of the proposed schema – its randomness. As we have explained
above, because of the random operations characterizing artificial evolution
(for example, mutations, crossover, and selection) the precise shape of the
final model is never predetermined, despite the fixed evaluation function.
This feature may be treated as an automated equivalent of human inven-
tiveness: the researcher diplays inventiveness at the level of setting a goal,
while at the stage of generating models fulfilling this goal the researcher’s
inventiveness is supported or replaced by the random mechanism of artificial
evolution.15
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The last of the remarks completing the text concerns the type and scope
of justification for the evolutionary modeling strategy. The methodological
justification refers to the fact that the core of the evolutionary strategy
is the locally non-deterministic (and, as such, supporting the researcher’s
inventiveness) and globally directed (and, therefore, not chaotic) process
of automatic generation of subsequent models based on a certain strictly
defined computer science procedure. These three features – partial proba-
bilism, global focus, and the possibility of automation – are highly beneficial
for the modeling practice. From the theoretical point of view, however, the
fact that genetic algorithms, which form the basis for evolutionary strat-
egy, have not been encapsulated by one comprehensive mathematical the-
ory describing, for example, the conditions for their concurrence, are not
beneficial. With the lack of this sort of formal justification, one needs to
rely on other arguments, properly empirical and supported by reasoning
by analogy. The first of them refers to the practice of computer experts
who more and more effectively use genetic algorithms in the field of opti-
mization, which is a field related to modeling (see section IV). The second
argument refers to the theory of biological darwinism – as this theory de-
scribes well the fact of the natural evolution of species, it is assumed that
genetic algorithms inspired by it allow for an effective evolution of popula-
tions of models.

N O T E S

1 In deductive sciences, especially in logic, the concept of a semantic model is used (see
Frigg & Hartmann, 2012, section 1.3). This type of model is a (formal) interpretation of an
axiomatic system such that it makes its axioms (and, by the same token, all the statements
of the system derivable from the axioms) true. Note that a fragment of a theory having
a semantic model, that is, an interpreted model, may perform the function of a model in
an empirical sense (it is then treated as a precise description of the phenomenon under
investigation in terms of an adequately interpreted theory).

2 It has to be noted that model formalization, that is, the choice of the adequate math-
ematical and/or computer science formalism, causes the model to become a certain type
of idealization of the studied phenomenon. Each formalization makes it necessary for
a phenomenon to be described by means of a certain ideal creation, generated by science,
not encountered in reality. Thus an inevitable deformation of the phenomenon takes place,
imposed by the formalization procedure itself. Preempting any remarks on that, we could
say that while modeling the mind/brain by means of a particular neurolike network, we
perform an idealization by appealing to certain features of a given network rather than
to any other ones (which may be effective, but which doubtlessly distorts the original
object).

3 In fact, it would be adequate to talk here, following Popper, about attempts of falsi-
fication; that is, verification aimed at rejecting the model (see Popper, 1934).
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4 From the methodological point of view, research on genetic algorithms belongs to the
field of research on artificial intelligence (that is, methods of solving complex tasks, which,
in human beings, normally require the engagement of intellect). To be precise, it belongs
to the naturalist trend in research. Within this trend – often set against logicism – it
is initially assumed that human cognitive abilities have biological and social roots and,
therefore, when realizing them artificially one has to refer to empirical data, connected
with, for example, the development and functioning of the human brain (the biological
basis of the mind). The typical example of naturalist systems are artificial neural networks,
inspired directly by studies of the human brain, as well as evolutionary systems which
process data in a way reminiscent of natural evolution. These latter ones are often based
on genetic algorithms (see Russell & Norvig, 1994; Stacewicz, 2010).
5 Classic crossover of two chromosomes Ci and Cj consists in: a) random choice of one

point of cutting inside the chromosome code, b) generating two daughter chromosomes in
such a way that the first of them contains the initial fragment of chromosome Ci (until
the point of cutting) and the final fragment of chromosome Cj (starting from the point
of cutting), while the other, reversely, contains the initial fragment of Cj and the final
fragment of Ci.
6 In the procedures presented – mutation, crossover, and then selection – the following

symbols were accepted:
Ci – marks i-th chromosome in the current population,
pM and pc – the probability of mutation and crossover, respectively,
M and CR – a set of chromosomes chosen for mutation and crossover, respectively.

It is worth noticing that the probabilities of reconfiguring operations (here: pM and pc)
either constitute a permanent element of the algorithm (which is most frequently the case)
or are changed globally, together with the progress of the algorithm, or are added to
particular chromosomes and are subject to evolution.

The probabilities of reconfiguring operations either constitute a permanent element
of the algorithm (which is most frequently the case) or are globally changed together
with the progress of the algorithm, or are added to particular chromosomes and undergo
evolution.
7 The method described here was modified in many ways, which, in general, consist in

certain “refinements” of the random nature of selection. The simplest of them is limited
to the chromosome with the highest evaluation value joining the population each time. In
more advanced modifications the expected numbers of copies of particular individuals are
added to the population (determined based on their selection probabilities). Only then
are the remaining places filled based on the roulette rule (see Goldberg, 1989).
8 From the perspective of computer science such a schema may be called a machine

learning schema. Thus, its possible computer science realization could draw on learning
algorithms known from computer science (see Mitchell, 1997).
9 In the subsequent points of the schema we apply the symbol Pk, although, in fact, the

population has already been modified (processed by Process (Pk) procedure).
10 Popper (1994) combines the evolutionary interpretation of knowledge/science with

a certain general schema of its development, which he calls the schema of attempts and
error elimination. According to it, researchers solving a certain problem (or a group of
problems) put forward a series of competing theories. During scientific competition the
theories are purified of errors (perfected) and the one which proves the best is temporarily
accepted as the basis for the solution (at the same time, however, new problems arise based
on it, which require generating subsequent theories).
11 It has to be noted that although in this paper we consider self-organizing networks,

some networks do not have the ability to self-organize (e.g. McCulloch-Pitts’ simple net-
works used for logic operations).
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12 See for example Rutkowska, Piliński & Rutkowski (1997, pp. 250–266).

13 Speaking about a partial model we mean either a model of a certain specialized system
inside the brain or a model of a certain isolated cognitive activity (such as the perception
of a certain type of objects).

14 Self-organization is a process characteristic for each network of changing weights of
connections, as a result of which the network gains the ability to function effectively (the
phase of learning usually precedes the phase of functioning). Various learning algorithms
are elaborated for various networks. Most of them have a good mathematical justification.

15 Here, a question may arise whether the evolutionary schema could not be used also at
the stage of generating goals, not only seeking models fulfilling particular goals. Although
this seems possible, immediately a question may arise, whether the evolutionary schema
could not provide full automation of the modeling process. And so, could evolutionary
strategy be used also at the stage of generating goals, not only seeking models fulfilling
particular goals? Although this seems possible, immediately yet another question arises,
concerning the criteria of assessment and choice of these goals. Who is to set them: the
researcher or the machine? If these new criteria (in fact, new goals) were to be found also
using some evolutionary strategy, another problem is posed of determining the new crite-
ria. What we have got here is, in fact, a certain “computer science” version of the ancient
skeptics’ reasoning, which, in a way, enforces the statement (consistent with modeling
practice) that in the modeling process the decisive and directional role of the researcher
should not be overlooked.
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