
STUDIES IN LOGIC, GRAMMAR

AND RHETORIC 39 (52) 2014

DOI: 10.2478/slgr-2014-0043

The Use of Principal Component Analysis and
Logistic Regression in Prediction of Infertility

Treatment Outcome

Anna Justyna Milewska1, Dorota Jankowska1, Dorota Citko1,
Teresa Więsak2, Brian Acacio3, Robert Milewski1

1 Department of Statistics and Medical Informatics, Medical University of Bialystok,
Poland

2 Department of Gamete and Embryo Biology, Institute of Animal Reproduction and
Food Research of Polish Academy of Sciences in Olsztyn, Poland

3 Acacio Fertility Center, Laguna Niguel, California, USA

Abstract. Principal Component Analysis is one of the data mining methods
that can be used to analyze multidimensional datasets. The main objective of
this method is a reduction of the number of studied variables with the mainte-
nance of as much information as possible, uncovering the structure of the data,
its visualization as well as classification of the objects within the space defined
by the newly created components. PCA is very often used as a preliminary step
in data preparation through the creation of independent components for further
analysis. We used the PCA method as a first step in analyzing data from IVF
(in vitro fertilization). The next step and main purpose of the analysis was to
create models that predict pregnancy. Therefore, 805 different types of IVF cy-
cles were analyzed and pregnancy was correctly classified in 61–80% of cases for
different analyzed groups in obtained models.

Introduction

Generally, clinical studies produce a large number of measurements
that have an effect on the size of a database. To appropriately analyze
such a large amount of information, data mining methods are usually em-
ployed (Milewski et. al., 2009, 2011, 2013b). The most popular methods of
data mining are: neural networks, cluster analysis, correspondence analy-
sis, or basket analysis (Milewska et. al., 2011, 2012, 2013; Milewski et al.,
2009). Principal Component Analysis has a different approach to the prob-
lem of dimensionality of the database. This technique relies on transfor-
mation of the initial set of features into new uncorrelated variables. New
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variables are called the principal components. They represent linear com-
binations of original variables and they can describe relationships between
studied characteristics. The main purpose of the analysis is the most opti-
mal reduction of database size with minimum information loss, while at
the same time maintaining as much variability in the data as possible.
PCA allows for the selection of the best diagnostic characteristics and can
be used in situations where subsequent analysis requires analyzing uncorre-
lated variables.

Principal Component Analysis

Principal Component Analysis was described for the first time by
Pearson in 1901 (Pearson, 1901). Over twenty years later, Fisher and
McKenzie proposed the first algorithm to PCA that is presently known
as a NIPALS (Fisher et al., 1923). However, Hotelling (1933) made the ma-
jor developmental impact on the method. Since then, PCA is quite popular
(Daszykowski et al., 2008) as a chemometric method in the interpretation
of complicated environmental and biological samples (Petrisor et al., 2012;
Szefer, 2003). There are many examples of application of PCA in different
fields of science: analytical chemistry (Suchacz et al., 2010), geology (No-
wicki et al., 2013), agriculture (Kolasa-Więcek, 2012; Ukalska et al., 2008),
psychology and sociology (Brzyski et al., 2012, Raskin et al., 1988) or in the
analysis of food quality (Czernyszewicz, 2008; Koter et al., 2003; Ry-
muza et al., 2013) as well as in image and signal processing (Hladnik, 2013;
Mudrova et al., 2005; Pandey et al., 2011).
The essence of Principal Component Analysis is to convert collections

of the p variables X1,X2, . . . ,Xp into a system of orthogonal variables:

Z1 = a11X1 + a12X2 + . . . + a1pXp

Z2 = a21X1 + a22X2 + . . . + a2pXp...
Zp = ap1X1 + ap2X2 + . . . + appXp

Newly created variables represent a new coordinate system obtained by
the rotation of the initial axis of the system. PCA can be applied when
observed variables are correlated. However, Tabachnick (1996) suggests
that application of the method makes sense only when the correlation be-
tween some features is greater than 0.3. Coefficients aij are established
based on the covariance matrix if analyzed variables are comparable. When
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variables are expressed in different ranges of values or units, the matrix
is converted into a correlation matrix using a standardization procedure
(Webb, 2003). The PCA algorithm assumes that eigenvalues (λ1, λ2, . . . , λp)

and their corresponding eigenvectors of appropriate matrix should be cal-
culated. Eigenvectors are normalized to become unit vectors. They can be
interpreted as coefficients of principal components. Moreover, the i-th eigen-
value is equal to the variance of the i-th component. Newly created variables
Z1, Z2, . . . , Zp are arranged in descending order according to the explained
variation. They are ordered by eigenvalues, from highest to lowest, so they
are arranged with significance. The variable Z1 is determined as the com-
ponent that corresponds to the greatest eigenvalue. For a univocal solution,
Z1 is established in such a way that the following conditions should be
executed:

p
∑

i=1

a2
1i = 1

The first component explains the highest part of variability of the collected
data. Each of the succeeding components is determined by the maximization
of the variability that was not explained by previous features. Because the
succeeding principal components are in orthogonal position to each other,
the sum of their variances provides information about the total variance
of the initial variables. This allows one to establish what percentage of the
total variability is represented by the i-th component:

λi

λ1 + λ2 + . . . + λp

It offers a view on the significance of that component in analysis.
The result of the PCA analysis is the same number of variables as the

number of observed characteristics. However, during further considerations
only the first few and most important ones are taken into account because
they explain the majority of the variability of the original set of features.
The selection of the components can be based on the following criterion:
a) Criterion of sufficient quality of representation – it allows one to take
into consideration such initial components that the sum of the vari-
ances corresponding to them determines a majority of the total observed
variability of data (so it is greater than a certain, predetermined level
e.g. 70%),

b) Keiser criterion – it allows one to select components whose variance is
larger than 1,

9



Anna Justyna Milewska et al.

c) Criterion based on the scree plot – on a linear graph, which presents
the eigenvalues, there is a chosen and marked point to the right of
which a mild decrease in values occurs. According to this criterion, only
components whose variances are on the left of that point are taken into
consideration.

Interpretation of the principal components is possible by exploiting compo-
nent loadings (component coordinates). This parameter informs one about
the correlation between the analyzed variable and selected component. De-
pending on what matrix was used in PCA, the parameter is set up as follows:
a) for the covariance matrix

rXiZj
=

cov(Xi, Zj)

si

√
λi

=
λiaij

si

√
λi

=

√
λiaij

si

b) for the correlation matrix

rXiZj
=

√

λiaij

The coefficient of determination is used to establish what percentage of vari-
ability of some feature is explained by the chosen component. It is expressed
as a square of component coordinates. A parameter called communality is
obtained by summing coefficients of determination for all components in-
cluded in further analysis. In this way it is possible to define how much of
the variability of a feature is represented by the chosen set of components.
The analyzed data is projected into a space defined by the chosen prin-

cipal components to reveal their structure. It is also possible to include
components’ coordinates in this space to see the effect of studied character-
istics on the defined components. Figure 1 represents such an example.
Variables are represented by components’ coordinates. Each time they

are included into the unit circle of correlation. The length of the vector
that links a point with the beginning of the coordinate system provides
information about the communality of that characteristic. If the points are
close to each other, then the correlation between the variables is strong. If
the vectors are perpendicular, the characteristics are not correlated.
Principal Component Analysis is a tool that allows the size of enormous

databases to be reduced, while at the same time maintaining control over
loss of information. In addition, it enables visualization of observations. The
representation of a sample in the reduced space permits one to establish
relationships between variables. PCA is one of the data mining methods
that allows one to discover connections hidden in the data and better their
understanding. On the other hand, it can be used as a preliminary method
when the final statistical tests require analyzing independent variables. For
example, it is used as a first step in the analysis of regression.
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Figure 1. The representation of the components’ coordinates in the space
defined by the selected components

Application of PCA in Medical Science

Principal Component Analysis is primarily used to analyze high dimen-
sional data sets. In practice, many variables are strongly correlated. It is
sufficient to take into account only a small subset of variables to obtain a full
picture of the described phenomenon. When analyzing all of the variables,
it is usually impossible (or very difficult) to find all the relationships among
the data. PCA allows a huge amount of information enclosed in initially
correlated data to be transformed into a set of new orthogonal components.
Therefore, the main applications of this method are: detection of such data
structures, discovering concealed relationships, data visualization and object
classification within the newly defined dimensions. PCA is very often used to
obtain independent components in the preliminary preparation of the data.
To simplify subsequent calculations, dimensionality reduction is required.
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Such examples can be found in the modeling data by the neural networks
(Duch et al., 2000), grouping data (Daszykowski et al., 2001) and in some
methods of regression analysis (Martens et al., 1991; Næs et al., 2002).
The method is also applicable in biomedical studies. PCA usefulness has

been proven in cancer detection epidemiology studies (Giuliani et al., 2000).
The literature presents examples of PCA application: in genetic epidemiol-
ogy to construct quantitative phenotypes for alcoholism (Scholz et al., 1999),
in nutritional epidemiology to assess dietary patterns (Hoffmann et al., 2004;
Varraso et al., 2012), in cardiology to predict clinical cardiovascular events
(Agarwal et al., 2012), in radiology to compress magnetic resonance imaging
(Furman-Haran et al., 2014), and in pharmacology (Konieczna et al., 2008;
Nascimento et al., 2012).
There has been a lot of interest in applying this technique for gene

expression studies (Biffi et al., 2010; Patterson et al., 2006; Raychaud-
huri et al., 2000). In analyzing microarray experiment results, with thou-
sands of variables in the database, PCA is primarily used for dimension-
ality reduction. Classification methods of explored data are later used to
classify that data. Because the sample space of microarray data is probably
nonlinear in nature, a popular generalization of linear PCA is therefore ap-
plied very often – namely Kernel Principal Component Analysis (KPCA)
(Gastinel, 2012; Reverter et al., 2012). KPCA with radial basis kernel was
used among others in two databases: the leukemia data set and the lym-
phoma data set. Both of these databases contained a few thousand expressed
genes in three classes. The application of the KPCA with radial basis kernel
method in both cases allowed for detection of the group structure in reduced
dimension as well as full separation of studied classes (Reverter et al., 2012).
The described method found application in medical imaging processes.

PCA is used in digital image compression such as in the structural image of
the brain obtained during magnetic resonance treatment (Santo, 2012). The
way the number of main components affects the quality of the picture has
been shown (the fewer principal components used in the characteristics vec-
tor, the more degraded the quality of the image recovered). Moreover, it has
been observed that the compressed medical images maintain the principal
characteristics until they reach approximately one-fourth of their original
size. This can be exploited towards saving storage space of medical images.
PCA is also used in the analysis of tomographic PET and SPECT im-

ages of the brain. That method is primarily used to reduce high dimensional-
ity of the neuroimaging data (Stuhler et al., 2012). The effects of age related
changes in the brain were analyzed using the PCA method. Age was signif-
icantly correlated with the first two principal components (Zuendorf et al.,
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2003). Additionally, the PCA method allows for the selection of character-
istics in the magnetic resonance picture study of brain tumors (Pushpa
Rathi et al., 2012) or, in conjunction with the 3TP method, in breast
cancer diagnostics (Furman-Haran et al., 2014). The technique was used
for dimensionality reduction in diagnostics of atherosclerosis from Carotid
Artery Doppler Signals (Latifoglu et al., 2008) and in the analysis of elec-
trocardiogram (ECG) signals to diagnose cardiac arrhythmia (Martis et al.,
2013). The above method was also applied to demonstrate pathological voice
changes by reduction of the principal parameters number obtained from the
acoustic analysis of speech (Panek, 2014).
PCA is applicable in the analysis of regression (Agarwal et al., 2012;

Aguilera et al., 2006; Akinsola et al., 2014; Kaur et al., 2012; Ma, 2007)
when a multidimensional database has to be analyzed and it is impossible
to include all the variables in a statistical model because the data suffers
from multicollinearity. The way to exclude correlated variables is to replace
them with principal components.
As an example of PCA application in the analysis of regression, a study

was conducted to determine the effects of different factors on cancer diag-
nosis (Belasco et al., 2012). The first step of the study was the Health Care
Access Index (HCAI index) determination of many socio-economic compo-
nents using the PCA method. The results of the two first components of the
obtained index were then included into an analysis of regression. Performing
such an operation eliminated the problem of correlated variables, reduced
the degrees of freedom in the regression models and improved goodness-of-
fit. Models based on PCA were better fitted to the data than models that
contained all variables.

Application of PCA and Logistic Regression Analysis
in Pregnancy Prediction

More and more people struggle with infertility and for most of them
the IVF procedure is a chance to have a baby. The current IVF success
rate is approximately 40% and diminishes with age (Milewski et al., 2008,
2013a). Many factors affect IVF success and some of them are still unknown
(for example – idiopathic infertility). Many studies have been carried out
to improve the success rate in IVF (Milewski et al., 2009, 2013b). The aim
of our analysis was to create a statistical model that will be able to predict
pregnancy. The data (805 IVF cycles) for our analysis are from one of the
IVF clinics in the USA (Acacio Fertility Center, CA) (Table 1).
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Table 1. Different types of cycles in infertility treatment

Group IP n=610 The embryos of intendant parents were transferred to the
female/mother uterus.

Group IP-PGD n=84 The embryos of intendant parents after PGD testing were
transferred to the female/mother uterus.

Group D-IP n=68 An anonymous egg donor provided oocytes.

Group IP-GC n=22 The embryos of intendant parents were transferred to the
uterus of a gestational carrier.

Group D-IP-GC n=21 An anonymous egg donor provided oocytes and the embryos
of intendant parents were transferred to the uterus of
a gestational carrier.

Two groups of predictors were selected. The first group included the
quality and number of oocytes retrieved. The second group included the
quality and number of embryos obtained after fertilization (e.g. number
of oocytes inseminated with ICSI, number of different types of embryos)
and information about the embryo transfer (number of embryo transferred,
day of embryo transfer). There were strong correlations between the vari-
ables included in statistical analysis. Therefore, first the PCA method was
employed. The analyses were carried out for the each type of procedure
(Table 1). Table 2 presents a median for the ages in the groups.

Table 2. Age and percentage of pregnancy in compared groups

Age (median) pregnancy

Group GC – gestationalIP – mother D – egg donor n (%)carrier

IP 38 years – – n=215 (35%)

IP-PGD 37 years – – n=28 (33%)

D-IP 43 years 25 years – n=52 (76%)

IP-GC 37.5 years – 32 years n=11 (50%)

D-IP-GC 42 years 26 years 31 years n=15 (71%)

together GC 39 years 26 years 31 years n=26 (60.5%)

Principal Component Analysis was performed by Statistica Data Miner
+ QC 10.0 software (StatSoft). Logistic regression was performed by STATA
12.0 software. Statistical significance was determined at the p < 0.05 level.
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Statistically significant models were obtained in 6 cases: two in the
patients of the IP group (the oocytes and embryos of intendant parents
were transferred to the female/mother uterus), two in the D-IP group
(the oocytes were collected from an egg donor), one model in the IP-
PGD group (the embryos were subjected to genetic testing) and one in
the group where a gestational carrier was used. Comparing the groups ac-
cording to age, the oldest were mothers (median 37–43 years), followed by
gestational carriers (31–32 years), and the youngest were egg donors (me-
dian 25–26 years). The best pregnancy outcome was obtained when egg
donors were used (71% and 76 %) and the lowest percentages were observed
with mother/father IVF cycles (33–35%) – Table 2.
The first predictive model (I) for the IP group was created for the

variables of quality and number of oocytes. The 11 components were created
using the PCA method (selected components are shown in Table 3).

Table 3. Selected components obtained with the PCA method for the I and
III models

Model I Model III

Comp1 Comp2 Comp4 Comp6 Comp1

# follicles –0.37 –0.15 0.14 0.90 –0.41

# egg retrieved –0.41 –0.12 0.13 –0.21 –0.48

M2 after ER –0.35 –0.22 0.38 –0.25 –0.39

M1 after ER –0.29 0.10 –0.11 –0.06 –0.18

GV after ER –0.29 –0.11 –0.56 –0.06 –0.28

OTH after ER –0.21 0.64 0.08 –0.02 –0.19

M2 at ICSI –0.35 –0.22 0.38 –0.25 –0.39

M2* at ICSI –0.22 0.04 –0.06 –0.09 –0.11

M1 at ICSI –0.24 0.12 –0.15 0.01 –0.17

GV –0.29 –0.11 –0.56 –0.07 –0.28

OTH –0.20 0.64 0.09 0.02 –0.19

Next, the components were used as independent variables in the logistic
regression analysis. The dependent variable was pregnancy HB, where the
heart beat was detected during a scan of the uterus (USG). The predictive
model I showed components 1, 2, 4 and 6, which had a significant effect on
pregnancy (Table 4).
For that model – the percentage of pregnancies correctly classified

was 61%. Sensitivity was only 54% and specificity 65%. The area under the
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Table 4. Predictive models for pregnancy

ROC curve (ability of model to differentiate positive and negative results)
was AUC=0.67.
Model I can be expressed by the following formula:

ln
π(x)

1−π(x)
=−0.64 − 0.16 ·comp1−0.19 ·comp2+0.31 ·comp4+0.4 ·comp6

where π(x) means probability of pregnancy, and the components (1, 2, . . .)

are the linear combination of the standardized variables with the coefficients
shown in Table 3.
The second predictive model was also obtained for the IP group with

variables of quality and number of embryos. PCA created 12 uncorrelated
components (Table 5).
The logistic regression model (II) includes only two components (1

and 3) that affected pregnancy (Table 4). The ability of that model to
predict pregnancy was 64%. Sensitivity was 55% and specificity 69%. The
area under the ROC curve was AUC=0.68, similarly to model I.
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Table 5. Selected components obtained with PCA analysis for the models II,
IV, V and VI

Model II Model IV Model V Model VI

Comp1 Comp3 Comp1 Comp3 Comp6 Comp9 Comp11

# eggs ICSI 0.39 0.01 0.39 0.02 –0.02 0.05 0.53

2PN 0.39 0.12 0.41 0.06 0.19 0.12 0.36

NEF 2PB 0.03 –0.60 0.01 –0.26 –0.07 0.06 0.02

NEF 0.09 –0.37 0.13 –0.43 –0.20 –0.06 –0.05

1,3,>3PN 0.16 –0.03 0.06 –0.20 –0.33 –0.09 –0.11

Dead 0.15 0.18 0.05 0.77 –0.46 –0.17 –0.11

clvd day3 0.40 0.09 0.40 0.04 0.19 0.11 –0.75

≥7 cell day3 0.38 0.07 0.37 0.17 0.12 –0.50 –0.01

Blasts day5 0.36 –0.07 0.36 0.09 0.09 –0.27 –0.01

Blasts day6 0.36 –0.05 0.33 –0.12 0.25 0.65 0.00

#ET –0.00 0.65 –0.24 0.26 0.60 0.22 0.01

ET Day 0.29 –0.12 0.26 –0.05 –0.33 –0.36 0.01

Model II can be expressed by the following formula (components are
described in Table 5):

ln
π(x)

1 − π(x)
= −0.64 + 0.24 · comp1 + 0.19 · comp3

Model III was created for the variables of quality and number of oocytes
in the group (D-IP) with oocyte donation. The 7 components (Table 3) were
created using the PCA method. Only component 1 in model III significantly
affected pregnancy (Table 4). Correctness of classification was 63%, sensi-
tivity was 63%, specificity was 62% and the area under the ROC curve was
AUC=0.7.
Model III can be expressed by the following formula (component 1 is

described in Table 3):

ln
π(x)

1 − π(x)
= 1.36 − 0.42 · comp1

Model IV describes the effect of the quality of embryos on pregnancy
in the group (D-IP), where the oocytes were retrieved from an anonymous
egg donor. The PCA method created 12 uncorrelated components (Table 5).
Model IV included three components – 1, 3 and 6 – that significantly affected
pregnancy (Table 4). Correctness of classification for model IV was slightly
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higher than for previous models and was 69%, sensitivity and specificity
were 69%, and the area under the ROC curve was AUC=0.82.
Model IV can be expressed by the following formula (components de-

scribed in Table 5):

ln
π(x)

1 − π(x)
= 1.89 + 0.49 · comp1 + 1.16 · comp3 − 1.22 · comp6

Genetic testing of the embryo was performed in 84 cycles before the
embryo transfer in the group IP-PGD. The predictive model V was cre-
ated with the variables of embryo quality. The PCA method created 12
components (Table 5). In model V, only component 9 significantly affected
pregnancy (Table 4). Correctness of classification was 67%, sensitivity was
68%, specificity was 66% and the area under the ROC curve was AUC=0.68.
Model V can be expressed by the following formula (component 9 de-

scribed in Table 5):

ln
π(x)

1 − π(x)
= −0.75 − 1.29 · comp9

The last obtained model (VI), demonstrates presence of pregnancy
based on the quality of embryos in the group GC with the use of a ges-
tational carrier (in all cases). PCA created 12 components (Table 5). In
this model, component 11 and the Group variable (with the value of 1 for
the patients from group D-P-GC and the value of 2 for the patients from
group IP-GC – see Table 4) significantly affected pregnancy. It is the best
model among the created ones. Correctness of classification was 80%, sen-
sitivity was 83%, specificity was 75% and area under the ROC curve was
AUC=0.88.
Model VI can be expressed by the following formula (component 11

described in Table 5):

ln
π(x)

1 − π(x)
= 4.62 − 80.85 · comp11 − 2.49 · group

Conclusions

Application of the Principal Component Analysis method allowed mod-
els to predict pregnancy to be built. The basis for modeling was the linear
combination of the standardized variables describing the quality of the re-
trieved oocytes and embryos. Models I and III predicted pregnancy in 61%
and 63% of cases, respectively, based on the quality of oocytes. However,
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correctness of classification for models II, IV, V and VI, which predicted
pregnancy based on embryo quality, was higher: 64%, 69%, 67% and 80%,
respectively. The best prognostic results for pregnancy were obtained in the
gestational carrier group (80%) and in the group with egg donation (69%).
Our models demonstrate that good quality oocytes (retrieved from a young,
healthy donor) or healthy gestational carriers significantly increase the
chances for pregnancy. The PCA and logistic regression methods are the
appropriate methods to demonstrate this.
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