EFFECTS OF DIFFERENT PUFA SUPPLEMENTATION ON INFLAMMATORY RESPONSE MARKERS IN YOUNG SOCCER PLAYERS

Kristina Radoman1, Vesna Vucic2, Aleksandra Arsic2, Dejan Cubril6, Nevena Jeremic4, Jovana Jeremic4, Vladimir Jakovljevic5

1Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Serbia
2Faculty of Sport and Tourism, TIMS, EDUCONS University, Novi Sad
3Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
4Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia

EVALUACIJA EFEKATA RAZLICITIH REZIMA ISHRANE NA INFLAMATORNI ODGOVOR KOD MLADIH FUDBALERA

Kristina Radoman1, Vesna Vučić2, Aleksandra Arsić2, Dejan Čubrilo3, Nevena Jeremić4, Jovana Jeremić4, Vladimir Jakovljević5

1 Visa medicinska skola, Podgorica, Crna Gora
2 Centar izuzetnih vrednosti za istraživanja u oblasti ishrane i metabolizma, Institut za medicinska istraživanja, Univerzitet u Beogradu, Beograd, Srbija
3 Fakultet za sport i turizam, Tims, Educons Univerzitet, Novi Sad
4 Katedra za farmaciju, Fakultet medicinskih nauka, Univerzitet u Kragujevcu, Kragujevac, Srbija
5 Katedra za fizijologiju, Fakultet medicinskih nauka, Univerzitet u Kragujevcu, Kragujevac, Srbija

ABSTRACT

Considering the limited knowledge regarding the effects of n-3 and n-6 PUFA-Polyunsaturated Fatty Acids, cited ovog istraživanja bio je da se procene vrednosti pro- i anti-inflamatornih mediatora u miru i nakon maksimalnog testa opterećenja pre i nakon dvomesečnog trenažnog programa. U studiji je učestvovalo 75 mladih fudbalera omladinske fudbalske škole “Kragujevac”, starosti od 18 - 19 godina, koji su bili preračeni tokom dva meseca. Oni su bili podeljeni u tri grupe: 1. kontrolna grupa (standardna ishrana), 2. grupa koja je konzumirala riblje ulje (2500mg n-3 PUFA dnevno), 3. grupa koja je konzumirala sunčevodno ulje (2500mg n-6 PUFA dnevno). Venski uzori crvi za određivanje nivoa citokina (IL-6, TNF-α) uzimani su 4 puta: u miru i nakon testa opterećenja, pre i posle dvomesečnog trenažnog programa. Svakodnevna suplementacija riblijim uljem povezana je sa smanjenjim kolinjina IL-6 u odnosu na njegove potencijalne vrednosti. Upotreba različitih vrsta polyzasičenih mastnih kiselin je bitnije učinila na proizvodnju citokina, neposredno nakon akutnog nastupa sportske aktivnosti (testa opterećenja).

Key words: polyunsaturated fatty acids, cytokines, inflammation, young soccer players.

SAŽETAK

S obzirom na ograničeno znanje o efektnim polinezasićenim masnim kiselinama (n-3 i n-6 PUFA-Polyunsaturated Fatty Acids), cilj ovog istraživanja bio je da se procene vrednosti pro- i anti-inflamatornih mediatora u miru i nakon maksimalnog testa opterećenja pre i nakon dvomesečnog trenažnog programa. U studiji je učestvovalo 75 mladih fudbalera omladinske fudbalske škole “Kragujevac”, starosti od 18 - 19 godina, koji su bili preračeni tokom dva meseca. Oni su bili podeljeni u tri grupe: 1. kontrolna grupa (standardna ishrana), 2. grupa koja je konzumirala riblje ulje (2500mg n-3 PUFA dnevno), 3. grupa koja je konzumirala sunčevodno ulje (2500mg n-6 PUFA dnevno). Venski uzori crvi za određivanje nivoa citokina (IL-6, TNF-α) uzimani su 4 puta: u miru i nakon testa opterećenja, pre i posle dvomesečnog trenažnog programa. Svakodnevna suplementacija riblijim uljem povezana je sa smanjenjim vrednostima IL-6 u odnosu na njegove potencijalne vrednosti. Upotreba različitih vrsta polinezasičenih mastnih kiselin je bitnije učinila na proizvodnju citokina, neposredno nakon akutnog nastupa sportske aktivnosti (testa opterećenja).

Ključne reči: polinezasičene mastne kiseline, citokini, upala, mladi fudbaleri

ABBREVIATIONS

ALA - α-linolenic acid
EPA - eicosapentaenoic acid
DHA - docosahexaenoic acid
IL-6 - interleukin-6
LA - linoleic acid
PGE2 - prostaglandin E2
PEFA - polyunsaturated fatty acid
TNF-α - tumour necrosis factor alpha
TXB2 - thromboxane B2

DOI: 10.1515/SJECR-2015-0055

Corresponding author:
Professor Vladimir Lj. Jakovljevic, MD, PhD,
Phone: +381 34 342944, Fax: +381 34 306800/ext 112, E-mail: drvladakbg@yahoo.com

DE GRIYER OPEN
INTRODUCTION

Although physical activity has numerous beneficial effects on health and especially cardiovascular diseases (1, 2), in recent years, there has been growing concern about the molecular basis of its deleterious impact. Namely, intense and prolonged exercise has been associated with the onset of a condition known as “calm” inflammation, primarily of muscle tissue (3, 4). This finding is based on strenuous exercise provoking the inflammation of muscle fibres, leading to damage, fatigue and a reduction in muscle performance (3-5).

Most of the inflammatory reactions are mediated by inflammatory cytokines. Therefore, to assess muscle inflammation, the greatest attention has been paid to particularly two cytokines: interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α) (6). These cytokines produce mainly inflammatory cells, such as T lymphocytes and monocytes (6). The physiological roles of these cytokines are numerous. It has been shown that IL-6 is one of the most potent stimulators of prostaglandin E2 (PGE2) production, which is directly involved in the progress of inflammatory reactions (6). However, according to the latest findings, IL-6, depending on the situation, can act as both a pro- or as an anti-inflammatory cytokine (7). By contrast, TNF-α, possesses clear pro-inflammatory potential, promoting an inflammatory response that includes muscle damage (7).

Given that polyunsaturated fatty acids (PUFAs) are essential for the overall health of athletes. In the past decade, studies have investigated the effect of PUFAs on the degree of inflammation and muscle damage. There are two classes of polyunsaturated fatty acids (PUFAs), n-6 (omega 6 fatty acids) and n-3 (omega 3 fatty acids) (8). The main representative of the group of omega-6 PUFAs is linoleic acid (LA), and that of the group of omega-3 PUFAs is α-linolenic acid (ALA) (9). Although it is known that these two types of fatty acids have opposite effects in the body (10), data regarding the specific role of n-3 or n-6 inflammatory processes are poor and controversial.

There is evidence that fish oil, which contains a high concentration of EPA eicosapentaenoic acid (EPA, n-3) and docosahexaenoic acid (DHA, n-3), can be useful in preventing or mitigating the symptoms of muscle inflammation that often occur with intense physical activity (11). The literature data show that supplementation with n-3 fatty acids indicate arterial vasodilatation, whereas n-6 fatty acids do not lead to these effects (12). Investigations on animal models have shown that fish oil may reduce the initial production of cytokines after physical activities (13). Research in the human population have confirmed this hypothesis, pointing out that supplementation with n-3 fats leads to a reduced production of IL-6 and TNF-α in healthy volunteers (14).

Considering the limited knowledge regarding the effects of n-3 and n-6 PUFAs on the inflammatory response during physical activity, the aim of this study was to evaluate the level of pro- and anti-inflammatory cytokines in young athletes before and after a maximal physical load test at the beginning and end of a two-month training process.

MATERIALS AND METHODS

Subjects

The study included 75 young soccer players from Football School “Kragujevac”. All of the players were male, aged 18-19 years, well trained with a minimum sports experience of 5 years and 12 hours of training a week.

Study design

All of the participants were followed during the two-month training programme. Before the start of the study, all the players were subjected to a standard sports medical examination. The study involved only subjects who were absolutely healthy without a history of disease, any special eating habits or the use of any medications and supplements. Participants were not included in the study if routine laboratory analyses showed that they have indications of acute inflammatory processes (increased white cell counts, sedimentation, and C-reactive protein levels). The study was approved by the ethics committee of the Faculty of Medical Sciences, University of Kragujevac.

The subjects were divided into the following groups:

1. a group that, during the two-month training program, consumed a standard diet—the control group (n = 25),
2. a group that, during a two-month training program, consumed fish oil (2500 mg of n-3 PUFAs per day)—the n-3 PUFA group (n = 25),
3. a group that, during the two-month training program, consumed nutrient-rich, cold-pressed sunflower oil (2500 mg of n-6 PUFA daily)—the n-6 PUFA group (n = 25).

All of the subjects were informed about the nature, purpose, duration, expected effects and risks of research, and they and their parents provided written consent for participation in the study.

Protocol

Testing was carried out during the regular sports and medical health examination. Each participant was subjected to the measurement of body composition and the progressive, continuous maximum physical load test. The measurement of body composition was performed using an apparatus for bioelectrical impedance analysis, the Tanita BC-418 system (Tokyo, Japan), whose validity was previously confirmed (15). The maximal progressive exercise test was performed on a treadmill (treadmill ECG9230K; POWERJOG, Japan). The athletes were familiarized to the testing procedure. The test was performed according to the protocol by Ellestad (16) and lasted until
voluntary exhaustion. The athletes stated their subjective feeling of exhaustion using a Borg’s CR10 exhaustion scale of at least 8 (17). During the test, athletes breathed through a two-way mouthpiece (Hans Rudolph, Kansas City, USA). Maximal oxygen consumption (VO2max) and the heart rate were monitored by an automated cardiopulmonary exercise system (FitMate Pro, COSMED, Italy) whose validity, reliability, and accuracy were previously reported (18). We considered that VO2max was reached when the oxygen consumption reached its plateau (when an increase in the workload cannot induce an increase in oxygen consumption) (18).

At the same time, venous blood samples were drawn at rest and immediately after the load to analyse the parameters of inflammation such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). At the end of the two-month training programme and diet supplementation, all of the participants were subjected to an identical sports medical examination as the initial examination. The study was conducted during the competition mesocycle (Table 1).

Biochemical assays

Venous blood samples, for the analysis of biochemical parameters, were drawn before and immediately after the test load. The venous blood samples (9 ml) were drawn 4 times: before and after the exercise load test before the two-month training programme (initial measurement) and immediately before and after the exercise load test after the two-month training programme (control measurement). Blood samples were drawn from antecubital veins into Vacutainer test tubes containing sodium citrate anticoagulant. The blood samples were processed and stored immediately. Blood was centrifuged to separate plasma and red blood cells (RBCs).

Measurement of the serum levels of cytokines (TNF-α and IL-6)

The cytokine concentrations in the serum were determined using ELISA assays specific for human cytokines (Human IL-6 DUOSET ELISA Development kit, R & D Systems, USA; Human TNF-α/TNFSF1A DUOSET ELISA Development kit, R & D Systems, USA) (19, 20).

<table>
<thead>
<tr>
<th>Day</th>
<th>Training</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>REST DAY</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>High-Intensity Training</td>
<td>90 min</td>
</tr>
<tr>
<td>Wednesday</td>
<td>High-Intensity Training</td>
<td>90 min</td>
</tr>
<tr>
<td>Thursday</td>
<td>Medium-Intensity Training</td>
<td>75 min</td>
</tr>
<tr>
<td>Friday</td>
<td>Medium-Intensity Training</td>
<td>60 min</td>
</tr>
<tr>
<td>Saturday</td>
<td>MATCH</td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>Players who played: Regeneration Training</td>
<td>45 min</td>
</tr>
<tr>
<td></td>
<td>Players who did not play: High-Intensity Training</td>
<td>75-90 min</td>
</tr>
</tbody>
</table>

The standards were dissolved before use in phosphate-buffered saline (PBS) (pH 7.2) until an initial concentration of 2,000 pg/ml. Stock solutions were serially diluted 7 times in a solvent twice (Eng. Reagent Diluent-in (1% BSA in PBS) to obtain a standard curve of 7 points. Next, 100 μl of capture antibody was added to the wells of microtiter plates (MTPs). The plates were taped with ELISA plate sealers and left overnight at room temperature, after which the wells were washed with wash buffer in an automatic washing machine for MTP. In all of the wells, block buffer was added to a final volume of 300 μl, and the MTPs were incubated for a minimum of 1 hour at room temperature. Then, the MTPs were washed with wash buffer. All of the samples were previously diluted 10 times in deionized water. The diluted samples and standards were added to the wells of the MTPs, which were covered with plate sealers and allowed to incubate for 2 hours at room temperature. After the incubation and washing of the MTPs, 100 μl of detection antibody was added to each well, and the plates were again covered with plate sealers and incubated for 2 hours at room temperature. MTPs were washed again, and 100 μl of streptavidin horseradish peroxidase was added to all of the wells. Incubation at room temperature was stopped after 20 min by washing the MTPs. In the next step, 100 μl of substrate solution (Colour reagent A + Colour reagent B, 1:1) was added. After 20 min, 50 ml of stop solution (2 N H2SO4) was added, and the optical density was directly measured in each well using a Microplate Reader (ZENYTH, Anthos, UK) set at 450 nm (19, 20).

All of the measured values were reduced for the absorbance values of the blanks (deionized water). A standard curve was made based on the measured values of the standards, and it was calculated as values for each individual sample. All of the samples were measured in triplicate.

Biochemical analyses of cytokine concentrations were carried out at the Laboratory of Immunology, Faculty of Medical Sciences in Kragujevac. The measurements were performed on the apparatus ZENYTH, Anthos, United Kingdom.

Statistical Analysis

Statistical analysis was performed using SPSS 20.0 for Windows. The results are expressed as the means ± standard deviation of the mean (SD). Data distribution was checked using the Kolmogorov-Smirnov or Shapiro-Wilk test and, depending on the results, the appropriate parametric or nonparametric test was used. The differences between the values of the means from two related samples were assessed by paired t-test or Wilcoxon’s test. The alpha level for significance was set at P<0.05.

RESULTS

The levels of IL-6 in the blood of the subjects from different experimental groups at the initial (before two-
DISCUSSION

The concept of “silent inflammation” in sports has been established to note the potential dangers of an incorrectly dosed training process and overtraining that could lead to muscle damage and reduction in sports performance (21, 22). A key role in intercellular communication during the development and progression of inflammation is attributed to cytokines (23). Although some studies have suggested that TNF-α and IL-6 have pro-inflammatory effects (24, 25), others have emphasized their opposite character (26). There are several possible explanations for the different actions of these cytokines during physical activity (27).

First, the type of physical activity, as well as the intensity and duration of exercise, can extremely affect the cytokine profile. Northoff and Berg were the first who noticed that IL-6 might be involved in the acute phase of inflammation after exercise (28-30).

On the other hand, the number of studies that have examined the impact of physical activity on the production of cytokines (inflammation) in young athletes-adolescents is negligible. Most children with a sports experience duration of more than five years may represent a potential critical group for the development of inflammation and its consequences for health.

The levels of TNF-α in the blood of the subjects from different experimental groups at the initial and control measurements are shown in Figure 2. None of the groups differed in the levels of this cytokine after the two-month follow-up period.

Changes in the levels of IL-6 in the blood of subjects from different experimental groups induced by physical load test (PLT) are presented in Figure 3. The levels of this inflammatory factor were not statistically changed in any group, after the physical load test, at the initial or control measurement (Fig 3).

Changes in the levels of TNF-α in the blood of subjects from different experimental groups as measured by the physical load test (PLT) are presented in Figure 4. The values of TNF-α were significantly increased after the physical load test in the control measurement in subjects who consumed sunflower oil (p<0.05) (Fig 4).
Additionally, supplementation of omega-3 and omega-6 fatty acids has become a trend only in recent years, and there are almost no studies on the effect of fish or sunflower oil on the production of inflammatory molecules. Because of this, the leading hypothesis of the present study was related to the potential mutual positive effect of a properly dosed training process and PUFA supplementation on the markers of inflammation in young athletes.

Indeed, after a two-month experimental period, the group that consumed fish oil had a significantly reduced level of IL-6 (Fig 1) compared with the initial measurement. Although, in the control group, we also found a decrease in the values of these cytokines, the decrease was greater in the athletes on fish oil supplementation (Fig 1). By contrast, the levels of TNF-α were not significantly changed between the groups (Fig 2). These results are in correlation with previous studies (28–30) and also show that IL-6 is probably the most sensitive marker of silent inflammation in athletes. These results also suggest that fish oil presumably has positive effects on inflammation by decreasing the levels of IL-6.

Only a few studies have examined the effects of PUFAs (mainly fish oil) on the production of cytokines. Using an animal model in rats, Robinson and Field noted that n-3 PUFAs have no significant effect on the activity of inflammatory cells in rats subjected to physical exercise (31). Tartibian and coworkers recorded that fish oil supplementation in recreational athletes prevented the occurrence of muscle fatigue and muscle damage probably by reducing the production of inflammatory cytokines (32). Mickleborough and colleagues have shown that n-3 PUFAs may reduce bronchoconstriction, which often occurs as a result of hard training in elite athletes (marathoners, triathletes), because of the increased generation of cytokines (33).

Supplementation with n-3 PUFAs (EPA and DHA), which are found in fish oils, leads to an increase in the concentration of these fatty acids in lipid membranes of inflammatory cells, thereby replacing part of the AA (34). Less substrate for the synthesis of eicosanoids from AA can result from the impaired production of its pro-inflammatory molecules: prostaglandins (PGE2) (35), thromboxane B2 (TXB2) (36), and leukotrienes (LTE4) (37). Fish oil reduces the production of cytokines from monocytes or endothelial cells also. (38). Because PGE2 and LTE4 are involved in the control of cytokine synthesis (IL-6 and TNF-α), it is assumed that one possible mechanism by which EPA and DHA reduce the production of IL-6 is related to the potential interactions of n-3 PUFAs with PGE2 and leukotrienes (39).

In our study, only the group of subjects that consumed sunflower oil experienced a significant increase in the level of TNF-α after the physical load test (Figure 4). The other experimental groups did not differ in the levels of cytokines before or after exercise load, even at the initial or control measurement (Figs 3, 4). Based on these findings, it seems that the effects of PUFAs on cytokine production after an acute bout of exercise depend on the PUFA type. Although n-3 PUFAs did not significantly affect the dynamics of the estimated inflammatory markers, n-6 PUFAs slightly stimulated it (Fig 4). On the other hand, as noted earlier, the length and type of physical activity can strongly affect the level of cytokines. Therefore, studies with protocols in which the length of the exercise test lasted longer than in our study have recorded an increase in the value of this cytokine (40, 41).

Previous studies have shown that an acute bout of strenuous exercise may lead to increased production of IL-6, which, in turn, intensifies the damage of muscle fibres (the release of creatine kinase (CK)) (40). Tofta et al and associates examined the impact of supplementation with fish oil on the cytokine synthesis in athletes for 6 weeks (42). The study was performed on marathon runners, and blood samples from the antecubital vein were collected the week before and immediately after the end of the marathon race. The results showed that the use of fish oil during this period did not induce significant changes in the production of IL-6 and TNF-α in response to the acute stress test.

Most of the research regarding the effects of n-6 fatty acids on inflammation markers were conducted in animals. For twelve weeks, Bhattacharya and colleagues treated mice with corn oil and safflower oil, which (similar to sunflower oil) contains a high proportion of LA. During the same experimental period, the animals were subjected to the treadmill test and determination of TNF-α. The results showed that the group treated with safflower oil had increased levels of TNF-α in response to the stress test (43).

One of the possible explanations for this result is that n-6 fatty acid chains, in response to the rapid onset of exercise load, can enter into potential interactions with the lipid membranes of macrophages, which normally generate TNF-α, thus potentiating its increased production (44). Nevertheless, to confirm these assumptions, more complex studies are needed that could combine the functional, histological and immunohistochemical analyses of muscles and other tissues.

CONCLUSION

Supplementation with fish oil (n-3) has been associated with reduced levels of IL-6 compared with the initial values. This oil can have a beneficial effect in preventing the acute phase of inflammation that occurs in young athletes. In this study design, the effects of PUFAs on cytokine production after an acute bout of exercise depend on the PUFA type. Although n-3 PUFAs did not have a significant effect on inflammatory marker dynamics, n-6 PUFAs slightly stimulated the production of TNF-α. This result could be of interest in determining an algorithm of PUFA supplementation in athletes in the training process or during the competitive season.
Acknowledgements

This work was supported by Junior Project No. 09/11 from the Faculty of Medical Sciences, University of Krugujevac, Serbia.

Conflict of Interest

All of the authors declare no conflict of interest.

REFERENCES

