CYP3A5 POLYMORPHISM IN SERBIAN PAEDIATRIC EPILEPTIC PATIENTS ON CARBAMAZEPINE TREATMENT

Dragana Dragaš Milovanović1, Ivan Radosavljević2, Marija Radovanović3, Jasmina R. Milovanović1, Slobodan Obradović3, Slobodan Janković1, Dragan Milovanović1 and Nataša Đorđević1
1 Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Serbia;
2 Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Serbia;
3 Department of Paediatrics, Faculty of Medical Sciences, University of Kragujevac, Serbia

POLIMORFIZAM CYP3A5 KOD DECE SA EPILEPSIJOM LEČENE KARBAMAZEPINOM U SRBIJI

Dragana Dragaš Milovanović1, Ivan Radosavljević2, Marija Radovanović3, Jasmina R. Milovanović1, Slobodan Obradović3, Slobodan Janković1, Dragan Milovanović1 i Nataša Đorđević1
1 Katedra za farmakologiju i toksikologiju, Fakultet medicinskih nauka, Univerzitet u Kragujevcu, Srbija
2 Katedra za hirurgiju, Fakultet medicinskih nauka, Univerzitet u Kragujevcu, Srbija
3 Katedra za pedijatriju, Fakultet medicinskih nauka, Univerzitet u Kragujevcu, Srbija

ABSTRACT

Carbamazepine exhibits significant inter-individual variability in its efficacy and safety, which leads to unpredictable therapy outcomes for the majority of patients. Although its complex biotransformation depends on CYP3A5 activity, evidence of association between carbamazepine treatment outcomes and CYP3A5 functional variations remains inconclusive. The aim of the present study was to investigate the distribution of two of the functionally important CYP3A5 variants *2 and *3 as well as their effects on carbamazepine dose requirements, plasma concentrations and clearance in a Serbian population. The study involved 40 paediatric epileptic patients on steady-state carbamazepine treatment. Genotyping was conducted using the PCR-RFLP method, and carbamazepine plasma concentrations were determined using the HPLC method. CYP3A5*2 and *3 polymorphisms were found at frequencies of 0.0% and 97.5%, respectively, which corresponds well to previously published data for Caucasians. No differences in CYP3A5*3 allele frequencies were detected among epileptic patients in comparison to healthy volunteers within similar ethnic populations (p>0.08), indicating that CYP3A5 polymorphism does not represent a risk factor for epilepsy development. There was an observed tendency towards lower dosage requirements (mean±SD: 15.06±4.45 mg/kg vs. 18.74±5.55 mg/kg; p=0.26), higher plasma concentrations (mean±SD: 0.45±0.13 mg/kg vs. 0.38±0.03 mg/kg; p=0.47) and lower clearance (mean±SD: 0.14±0.05 mg/kg vs. 0.15±0.01 mg/kg; p=0.79) of carbamazepine in homozygous carriers of CYP3A5*3/*3 compared to heterozygous CYP3A5*1A/*3 Serbians. Because these genotype groups did not differ significantly in terms of their carbamazepine pharmacokinetics parameters, the proposed effects of CYP3A5*3 on carbamazepine metabolism could not be confirmed.

Key words: CYP3A5 polymorphism, Serbian, epilepsy, carbamazepine

SAŽETAK

Karbamazepin odlikuje značajnu inter-individualnu varijabilnost u efikasnosti i bezbednosti, zbog koje je ishod terapije kod većine pacijenata neizvestan. Iako njegova složena biotransformacija zavisi od aktivnosti CYP3A5 enzima, definitivni dokazi o povezanosti ishoda lečenja karbamazepinem i funkcionalnih varijacija CYP3A5 gena još uvek ne postoje. Cilj ove studije bio je da ispita distribuciju dve funkcionalno značajne varijacije CYP3A5 gena *2 i *3, kao i njihov uticaj na potrebnu dozu, plasma koncentraciju i klirens karbamazepina, u srpskoj populaciji. Studija je uključila 40 pedijatrijskih pacijenata sa epilepsijom lečenih karbamazepinom, nakon postignutog ravnotežnog stanja. Genotipizacija je sprovedena PCR-RFLP, a plazma koncentracija karbamazepina izmerena HPLC metodom. Učestalost CYP3A5*2 i *3 polimorfizama bila je 0.0% i 97.5%, što odgovara prethodno publikovanim podacima za belu populaciju. Nije bilo razlike u učestalosti CYP3A5*3 alela kod pacijenata sa epilepsijom u poređenju sa zdravim ispitanimima iz istih populacija (p>0.08), što ukazuje da CYP3A5 polimorfizam nije faktor rizika za razvoj epilepsije. Loša je tendencija ka nižim potrebnim dozama (mean±SD: 15.06±4.45 mg/kg naspram 18.74±5.55 mg/kg; p=0.26), višim plazma koncentracijama (mean±SD: 0.45±0.13 mg/kg vs. 0.38±0.03 mg/kg; p=0.47) i nižem klirensu (mean±SD: 0.14±0.05 mg/kg vs. 0.15±0.01 mg/kg; p=0.79) karbamaze- pina kod homozigotnih CYP3A5*3/*3 u poređenju sa heterozigotnim CYP3A5*1A/*3 genotipovima kod Srba. Ob- zirovno da nije bilo značajne razlike u farmakokinetičkim parametrima karbamazepina među različitim grupama genotipa, predloženi efekat CYP3A5*3 na metabolizam karbamazepina nije mogao biti potvrden.

Ključne reči: CYP3A5 polimorfizam, srpski, epilepsija, karbamazepin

DOI: DOI: 10.1515/SJECR-2015-0012
Corresponding author: Nataša Đorđević, MD, PhD, Associate Professor, Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34 000 Kragujevac, Serbia Tel: +381 34 306 800, ext 223; E-mail: natashadj2002@yahoo.com
INTRODUCTION

Epilepsy is a common, widely distributed, neurological disorder, known for its frequent resistance to and serious adverse reactions during treatment (1, 2). Since the introduction of potassium chloride in the 19th century, numerous anticonvulsant drugs have been used in therapy for epilepsy (3). Unfortunately, all of these anticonvulsants have exhibited significant inter-individual variability in their efficacy and safety, which leads to an unpredictable therapy outcome in the majority of patients (4, 5). This can be a consequence of many different factors, including variations in the genes coding for drug metabolizing enzymes, transporters and receptors (6). Nevertheless, the pharmacogenetics of epilepsy are still largely unknown (6).

Carbamazepine is a well-known anticonvulsant, frequently used as the first line therapy in several forms of both adult and childhood epilepsy (7, 8). It undergoes a complex biotransformation that involves several drug metabolizing enzymes, with major routes depending primarily upon CYP2C8 and members of the CYP3A family CYP3A4 and CYP3A5 (7, 9). In contrast with CYP3A4, which contributes to variable drug responses through inducibility rather than polymorphism, CYP3A5 exhibits high genetic variability dependent upon ethnicity, as well as strong associations between its genetic background and drug metabolizing activity (10, 11). The clinical significance of CYP3A5 polymorphism has been reported for several CYP3A5 substrates, including verapamil, tacrolimus and saquinavir (12-14). However, due to conflicting reports, the evidence of association between carbamazepine treatment outcomes and CYP3A5 functional variations remains inconclusive. As an example, although CYP3A5 genotype affected serum concentration of carbamazepine in Koreans (15), Chinese (16), and Japanese (17), as well as drug half-life in African-Americans (18), no influence of carbamazepine pharmacokinetics parameters were observed in Caucasian epileptic patients (18). The apparent underlying cause of this discrepancy might be interethnic variability, which represents a multidimensional determinant that comprises both genetic heritage and environment (19, 20). Thus, additional studies on other ethnic populations could contribute to a better understanding of inter-individual differences in carbamazepine response. To our knowledge, no similar investigation has been conducted in Serbian epileptic patients to date.

With an aim to explore the potential role of CYP3A5 genetic polymorphisms in carbamazepine metabolism, we investigated the distribution of two of the functionally important CYP3A5 variants and their effects on drug dosage requirements, plasma concentrations and clearance in Serbian epileptic patients undergoing carbamazepine treatment. As the relative risk of adverse drug reactions in children is known to be several-folds higher than in adults (21), only a paediatric population was included in the study.

MATERIALS AND METHODS

Study subjects

The study involved 40 Serbian epileptic patients on steady-state carbamazepine treatment (Table 1). The subjects were recruited from the paediatric department of the Clinical Centre, Kragujevac, Serbia. To be enrolled in the study, all patients had to meet the following inclusion criteria: 1) age between 2 and 20 years, 2) diagnosed partial or generalized tonic-clonic seizures, 3) ongoing carbamazepine treatment, and 4) Serbian origin. The exclusion criteria were as follows: 1) presence of known contraindications for carbamazepine; 2) use of grapefruit juice; 3) presence of atrioventricular block, suppression of bone marrow or porphyria; 4) diagnosed absence or myoclonic epilepsy; 5) presence of increased intraocular pressure; and 6) pregnancy or breastfeeding. Of the 40 enrolled patients, four were co-treated with valproate, whereas others were on carbamazepine monotherapy. Written informed consent was obtained from all patients and their parents, and the study was approved by the ethics committee at the Clinical Centre, Kragujevac, Serbia. The study was conducted in accordance with the Declaration of Helsinki and its subsequent revisions.

<table>
<thead>
<tr>
<th>Table 1: Patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
</tr>
<tr>
<td>Gender (male/female)</td>
</tr>
<tr>
<td>Total body weight (kg)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Epilepsy (idiopathic/symptomatic)</td>
</tr>
</tbody>
</table>
Genotyping and drug analysis

DNA was extracted from whole-blood samples with EDTA using the PurelinkTM genomic DNA kit (Invitrogen, Carlsbad, CA). DNA concentration was measured using a Qubit® 2.0 Fluorometer and Qubit™ dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA).

CYP3A5*2 (27289C>A, rs28365083) was genotyped using the PCR-RFLP method described by van Schaik et al. (22), with minor modifications. In brief, a 269-bp-long CYP3A5 region of interest was amplified in 20 μl PCR of reaction mixture, consisting of ~20 ng of DNA, 0.2 μM dNTP Mix (Thermo Scientific, Waltham, MA), 1.7 mM MgCl2, 0.2 μl of primers 5’-CTGTTTCTTTCTTCCAGGC-3’ and 5’-CTCCATTTCCCTGGAGACTTG-3’ (Invitrogen, Carlsbad, CA) and 0.5 U DreamTaqDNA Polymerase (Thermo Scientific, Waltham, MA), in 1XPCR buffer (Qiagen, Hilden, Germany). The amplification was conducted under the following conditions: initial denaturation at 94°C for 7 min; 35 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min, extension at 70°C for 1 min; and final extension at 72°C for 7 min. PCR products were subjected to the restriction enzyme FastDigest® Tsp509I (Thermo Scientific, Waltham, MA), which cuts only variant-type alleles to fragments of 182 bp and 87 bp (Fig. 1).

Genotyping for CYP3A5*3 (6986A>G, rs776746) was performed according to King et al. (23). Namely, PCR yielded 196-bp-long amplicons in a 15 μl mixture containing ~20 ng of DNA, 1XPCR buffer (Qiagen, Hilden, Germany), 0.2 μM dNTP Mix (Thermo Scientific, Waltham, MA), 2.5 mM MgCl2, 0.2 μl of primers 5’-CTGTTTCTTTCTTCCAGGC-3’ and 5’-CTCCATTTCCCTGGAGACTTG-3’ (Invitrogen, Carlsbad, CA) and 0.5 U DreamTaqDNA Polymerase (Thermo Scientific, Waltham, MA). The conditions of the PCR reaction were as follows: initial denaturation at 94°C for 2 min; 35 cycles of denaturation at 94°C for 1 min, annealing at 61°C for 1 min, extension at 70°C for 1 min; and final extension at 72°C for 7 min. Restriction digestion at 37°C with FastDigest® Rsal enzyme (Thermo Scientific, Waltham, MA) resulted in cutting wild type alleles to 102-bp, 94-bp, 74-bp and 20-bp fragments, and variant type alleles to 102-bp, 74-bp and 20-bp fragments (Fig. 2).

Statistical analysis

Genotype data were presented as haplotype and genotype frequencies, and the 95% confidence interval calculations were calculated according to the modified Wald method. Chi-squared tests were used to compare the observed and expected allele frequencies (Hardy-Weinberg equilibrium) as well as the values obtained from previously reported allele frequencies from other populations. The effects of genotype on carbamazepine dosage requirements, plasma concentrations and clearance were examined by Student’s t-tests for independent groups. Carbamazepine clearance was estimated based on the assumed 12-h half-life of carbamazepine in children (24). Statistical analyses were performed with Statistica, version 7.1 (StatSoft, Tulsa, OK, USA). P<0.05 was considered statistically significant.
RESULTS

Genotyping for CYP3A5*2 and CYP3A5*3 was performed on 40 Serbian paediatric epileptic patients on carbamazepine treatment, and the nucleotide change, haplotype and genotype distributions are presented in Table 2. All CYP3A5 genotype frequencies were in accordance with Hardy-Weinberg equilibrium ($\chi^2<0.026$, $p=0.05$).

CYP3A5*2 was not found. All valproate users were homozygous carriers of CYP3A5 wild type alleles 27289C and 6986A.

Comparisons with the CYP3A5 variant allele frequencies observed earlier in other Caucasian populations (Table 3) revealed no significant differences between our results and previously published data in terms of both CYP3A5*3 (χ²<3.20, df=1, p>0.05) and CYP3A5*2 (χ²=0.81, df=1, p=0.37). Similarly, no differences in CYP3A5*3 allele frequencies were observed among epileptic patients in comparison to healthy volunteers within different ethnic populations (Table 4, χ²<3.00, df=1, p>0.08).

DISCUSSION

In the present study, we investigated the distribution of CYP3A5*2 and CYP3A5*3 variants as well as their effects on carbamazepine metabolism in Serbian paediatric epileptic patients. To the best of our knowledge, this is the first study of CYP3A5 genetic polymorphism in relation to carbamazepine in Serbs. Our results indicate similar frequencies of CYP3A5 alleles in our Serbian population to those found in other Caucasians and in epileptic patients compared to healthy populations of the same ethnic background. Based on our findings, the proposed effects of CYP3A5*3 on carbamazepine metabolism in Serbian epileptic patients seem to be possible, but due to the extremely high frequency of CYP3A5*3 and the small sample size, the effects could not be confirmed.

CYP3A5 is located on chromosome 7q21-q22.1, in a 231-kb cluster with other five members of the CYP3A subfamily:

<table>
<thead>
<tr>
<th>Population</th>
<th>CYP3A5*2 allele frequency</th>
<th>CYP3A5*3 allele frequency</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbian</td>
<td>0.00 (0/80)</td>
<td>0.98 (78/80)</td>
<td>present study</td>
</tr>
<tr>
<td>Bosnian</td>
<td>0.93 (259/278)</td>
<td></td>
<td>(48)</td>
</tr>
<tr>
<td>Macedonian</td>
<td>0.92 (320/348)</td>
<td></td>
<td>(49)</td>
</tr>
<tr>
<td>Greek</td>
<td>0.94 (532/566)</td>
<td></td>
<td>(35)</td>
</tr>
<tr>
<td>Italian</td>
<td>0.93 (93/100)</td>
<td></td>
<td>(50)</td>
</tr>
<tr>
<td>Polish</td>
<td>0.94 (376/400)</td>
<td></td>
<td>(51)</td>
</tr>
<tr>
<td>British</td>
<td>0.94 (188/200)</td>
<td></td>
<td>(23)</td>
</tr>
<tr>
<td>Dutch</td>
<td>0.01 (10/1000)</td>
<td>0.92 (920/1000)</td>
<td>(22)</td>
</tr>
<tr>
<td></td>
<td>0.01 (2/200)</td>
<td>0.94 (188/200)</td>
<td>(52)</td>
</tr>
<tr>
<td>Finish</td>
<td>0.92 (826/898)</td>
<td></td>
<td>(36)</td>
</tr>
<tr>
<td>Russian</td>
<td>0.94 (368/392)</td>
<td></td>
<td>(53)</td>
</tr>
<tr>
<td>Australian</td>
<td>0.95 (110/116)</td>
<td></td>
<td>(54)</td>
</tr>
</tbody>
</table>

Table 3. CYP3A5*2 and CYP3A5*3 distribution in Caucasian populations

<table>
<thead>
<tr>
<th>Population</th>
<th>Epileptic patients</th>
<th>Healthy volunteers</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbian</td>
<td>0.98 (78/80)</td>
<td></td>
<td>present study</td>
</tr>
<tr>
<td></td>
<td>0.92 (252/274)</td>
<td>0.94 (113/120)</td>
<td>(55)</td>
</tr>
<tr>
<td>Polish</td>
<td>0.88 (130/148)</td>
<td>0.85 (120/142)</td>
<td>(47)</td>
</tr>
<tr>
<td>Korean</td>
<td>0.77 (54/70)</td>
<td>0.70 (70/100)</td>
<td>(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.70 (70/100)</td>
<td>(30)</td>
</tr>
<tr>
<td>Chinese</td>
<td>0.79 (133/168)</td>
<td>0.78 (471/604)</td>
<td>(16)</td>
</tr>
<tr>
<td></td>
<td>0.78 (471/604)</td>
<td>0.78 (471/604)</td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>0.76 (164/216)</td>
<td>0.76 (164/216)</td>
<td>(57)</td>
</tr>
<tr>
<td></td>
<td>0.73 (658/902)</td>
<td>0.73 (658/902)</td>
<td>(58)</td>
</tr>
<tr>
<td>Japanese</td>
<td>0.73 (210/288)</td>
<td>0.76 (284/374)</td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>0.76 (284/374)</td>
<td>0.76 (284/374)</td>
<td>(34)</td>
</tr>
<tr>
<td>African–American</td>
<td>0.36 (22/60)</td>
<td></td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>0.30 (53/178)</td>
<td>0.30 (53/178)</td>
<td>(31)</td>
</tr>
<tr>
<td></td>
<td>0.27 (80/292)</td>
<td>0.27 (80/292)</td>
<td>(32)</td>
</tr>
</tbody>
</table>

Table 4. CYP3A5*3 allelic distribution in epileptic patients compared to healthy volunteers within different populations
three genes (CYP3A4, CYP3A7 and CYP3A43) and two pseudogenes (CYP3A5P1 and CYP3A5P2) (25, 26). The gene is highly polymorphic, with more than 25 alleles (http://www.cypalleles.ki.se/cyp3a5.htm) identified to date. It has been shown that the expression of the enzyme is possible only in carriers of at least one wild type CYP3A5*1A allele and that the most of the variant alleles are functionally defective (27, 28). The first genetic variant, CYP3A5*2, represents a non-synonymous substitution in exon 11 (27289C>A) that leads to an amino acid change at residue 398 (T398N), causing decreased stability and reduced hepatic content of the CYP3A5 protein (27). CYP3A5*2 is found to be rare in all populations, ranging from 0% in Asians and Blacks (29, 30) to 1% in Caucasians (22). On the other hand, the most frequent and functionally important CYP3A5 variation, CYP3A5*3, is intronic, and consists of a 6986A>G substitution that generates a cryptic splice site and exon 3B, introducing a stop codon and premature termination of a protein translation (28). CYP3A5*3 represents the most common cause of CYP3A5 loss of expression, found in approximately 30% of African–Americans (31, 32), 75% Asians (33, 34) and more than 90% of Caucasians (22, 35, 36). In the present study, we did not observe carriers of CYP3A5*2 among Serbs, whereas all of the participants were carriers of at least one *3 allele. The results obtained correspond well to the previously published data for Caucasians.

The CYP3A5 enzyme is primarily extrahepatic (10), suggesting that it might play a role in other biological processes in addition to metabolism (28). It has been observed that its level and activity correlates with the risk of developing several diseases, including hypertension (31), acute lymphoblastic leukaemia (37), chronic myeloid leukaemia (38), or breast cancer (39). Epilepsy has a strong hereditary background that involves mutations in multiple genes (40, 41), thus genetic variability in metabolism might potentially contribute to the aetiology of this disease as well. However, based on our results and previously published data, frequency distributions of the most important CYP3A5 variant do not differ between epileptic and non-epileptic subjects within the same populations. Therefore, it is highly unlikely that CYP3A5 polymorphism represents a risk factor for epilepsy development.

It is well known that metabolism of many drugs, including carbamazepine, largely depends on CYP3A activity (7, 9). Although CYP3A4 plays the leading role, CYP3A5 could contribute substantially, depending on its expression (11). Yet, previous investigations dealing with the influence of CYP3A5 genotype on drug disposition seem to be conflicting, reporting significant effects in some (12-14, 42, 43) but not all (44-46) CYP3A substrates. Studies on carbamazepine also yielded contradictory results, most probably due to the different ethnic origins of the participants. Namely, the effects of CYP3A5 genotype on carbamazepine serum concentrations or half-life were observed in Asians and Blacks (15-18) but not in a Caucasian population (18). Similarly, no association between CYP3A5 polymorphism and carbamazepine resistance was detected in Caucasians (47). In the present study, comparisons between carriers and non-carriers of the non-functional CYP3A5*3 allele in terms of carbamazepine-pharmacokinetics parameters did not show significant differences. However, a tendency towards lower dosage requirements, higher plasma concentrations and lower clearance of carbamazepine was observed in subjects having the non-functional CYP3A5 genotype. The lack of statistical significance could be explained by the extremely high frequency of CYP3A5*3/*3 carriers (95%) but also by the small sample size, caused by a low number of available subjects that met the inclusion criteria for the study. Additional investigations would be necessary to determine the importance of CYP3A5 genotyping in Caucasian epileptic patients undergoing carbamazepine treatment.

In conclusion, the frequency distribution of CYP3A5*2 and CYP3A5*3 alleles in Serbian epileptic patients corresponds well to previously published data for Caucasians. CYP3A5 polymorphism does not seem to represent a risk factor for epilepsy development. The proposed effects of CYP3A5*3 on carbamazepine metabolism, although possible, could not be confirmed.

ACKNOWLEDGEMENTS

The study was financially supported by the Faculty of Medical Sciences, University of Kragujevac, Serbia, JP 07/11, and the Ministry of Science and Technology of the Republic of Serbia, grants No. 175007 and 175056.

REFERENCES

