REGRESSION ANALYSIS OF SMALL STRAIN SHEAR AND CONSTRAINED MODULUS MEASUREMENTS ON SANDS WITH FINES: EFFECT OF DIFFERENT VOID RATIO FUNCTIONS USED

Jakub PANUŠKA¹*, Jana FRANKOVSKÁ¹

Abstract

The article is focused on a regression analysis of small strain shear and constrained modulus measurements of 15 different natural sands with plastic fines from the Pannonian basin. Measurements done within this work are supported by additional data on sands with plastic and non-plastic fines gathered from the literature in order to demonstrate the versatility of the approaches used and behavior observed. Bender / extender element techniques are used in this study for measuring the small strain shear and constrained modulus of sands with fines. Three void ratio functions, which are commonly used in predictive empirical equations for predicting small strain stiffness, with corresponding fitted parameters are presented, and their effect on the accuracy of the regression procedure is studied. It is assumed that all the void ratio functions tested provide nearly the same degree of accuracy and that the fitted models are able to predict the values of the parameters measured within an acceptable range of errors. Finally, proposed constant regression constants for sands with plastic fines are given.

Key words

● Small strain stiffness,
● Accuracy of empirical prediction,
● Effect of void ratio function,
● Regression analysis,
● Plastic fines.

1 INTRODUCTION

1.1 Importance of small strain stiffness

Despite the nonlinear nature of soil behavior in general, the importance of soil stiffness in the range of small and very small shear strains ($\gamma = 10^{-6} - 10^{-5}$) has recently attracted increasing interest. Conventional laboratory tests (i.e., oedometer tests, triaxial tests) measure stiffness only in a range of intermediate to large strains (Atkinson & Sallftors, 1991). Such strains occur solely in the vicinity of structures (i.e., foundations, tunnels, retaining structures) when loaded. Thus, the stiffness of soil is grossly underestimated outside zones of large strains. Although engineers usually consider increases in stiffness with depths, the dependence of stiffness on imposed strain levels is somewhat overlooked. Strain - dependent stiffness models are quite widely recognized (Oztoprak & Bolton, 2013), (Hardin & Drnevich, 1972), (Ishibashi & Zhang, 1993). These models are able to predict the degradation of stiffness relatively well with acceptable differences, while the prediction of small strain stiffness (one of the basic inputs to strain - dependent stiffness models) is still quite challenging and studied intensively (Hardin & Richart, 1963), (Iwasaki & Tatsuoka, 1977), (Payan, et al., 2016a), (Senetakis, et al., 2012), (Wichmann, et al., 2015). As natural soils are quite complex materials, there has recently been an increased effort to describe the behavior of mixtures of coarse and fine - grained soils. While the small strain stiffness of mixtures of sands with non-plastic fines are captured quite well (Goudrazy, et al., 2016), (Salgado, et al., 2000), (Wichmann, et al., 2015), (Yang & Liu, 2016), the effect of plastic fines has not been studied so intensively, though significant differences between these two types of fines have been found (Carraro, et al., 2009).
1.2 Empirical formulation of small strain shear and constrained modulus

A well-recognized and widely used empirical relationship for the small strain shear modulus, \( G_{\text{max}} \), of sand can be written as (\( p' \), patm and \( G_{\text{max}} \) in kPa) (Harden & Richart, 1963):

\[
G_{\text{max}} = A F(e) \left( \frac{p'}{p_{\text{atm}}} \right)^n p_{\text{atm}}
\]

(1)

where \( A \) is a material constant; \( F(e) \) is a void ratio function; \( n \) is a stress exponent accounting for the dependency of \( G_{\text{max}} \) on the mean effective stress \( p' \); and \( p_{\text{atm}} \) is the normalizing pressure usually assumed to be atmospheric pressure, i.e., 100 kPa. The same form of equation (1) was used for a prediction of a small strain constrained modulus \( M_{\text{max}} \) in (Wichtmann & Triantafyllidis, 2010), (Senetakis, et al., 2017):

\[
M_{\text{max}} = A F(e) \left( \frac{p'}{p_{\text{atm}}} \right)^n p_{\text{atm}}
\]

(2)

where the meaning of the parameters remains the same as in equation (1). The void ratio function \( F(e) \) is an important parameter as it captures the dependency of both \( M_{\text{max}} \) and \( G_{\text{max}} \) on the void ratio, i.e., as the void ratio decreases, the small strain stiffness increases and vice versa. Three types of void ratio functions are studied here, i.e.: the void ratio function proposed by Hardin and Richart (Harden & Richart, 1963),

\[
F(e) = \frac{(a_J p')^\alpha}{1+e}
\]

(3)

the void ratio function proposed by Jamiołkowski et al. (Jamiołkowski, et al., 1991),

\[
F(e) = e^{-a_J e}
\]

(4)

And the void ratio function proposed by Shibuya et al. (Shibuya, et al., 1997).

\[
F(e) = (1+e)^{-a_J}
\]

(5)

1.3 Aim of the study

The proposed article studies the effect of different void ratio functions, defined by equations (3), (4) and (5) on the predictive accuracy of the results of the small strain shear and the constrained modulus measured for sand with plastic fines for samples as predicted by empirical equations (1) and (2) (note that the predictions and measurements are going to be compared in a normalized form, i.e., the shear and constrained modulus normalized by the void ratio function). The analysis is focused on cases with void ratio functions with a variable parameter \( a \) (i.e., \( a \) varies in order to find the least squared residual error) and cases with parameter \( a \) estimated as mean (or the best fit with the lowest squared error for \( M_{\text{max}} \)) of all the regressed values, while the values outside the ± 1 x standard deviation are not considered in the estimation of the mean. Data gathered from the literature for sand with plastic and non-plastic fines are used to support the measurements from this study and complete the whole picture of this problem.

2 MATERIALS AND METHODS

2.1 Material tested, preparation of samples, and testing procedure

The material tested consist of 15 different natural sands, while one sand was tested with and without gravely particles (the gravel
Grain size curves of the natural sands tested are shown in Fig. 1. The sands were exposed to the atmosphere on the surface. The grain size as fluvial sands, but were also partially transported by wind when the Danube and flooding in its vicinity. Thus, the sands are characterized to (Szilvágyi, 2018), are typical Danubian sands formed by the river (G), Budapest (B1, B1gr, B2), and Paks (P1 – P8) sands, according of a sea. Two sands were sampled from an exposed wall. The Győr Neogene sands deposited on a former Neogene beach on the edge an open pit. The samples from the locality of Sandberg (S1, S2) are with round grains. A sample was taken directly from the surface near basin. The sand from Plavecký Štvrtok (PS) is an aeolic type of sand sand tested comes from the geographical location of the Pannonian (only three sands contained around 1 % or less fines). All the natural created by 15 samples of natural sand with different contents of fines (was presented as 15 % of the overall mass). A testing matrix was presented in (Wichtmann, et al., 2015) were provided by Prof. Wicht- are the minimum and maximum void ratios; $\rho$ is the specific gravity; $C_u$ is the uniformity coefficient; $FC$ is the content of the fines; $e_{max}$ and $e_{min}$ are the minimum and maximum void ratios; $\rho_s$ is the specific gravity of the particles; $w_L$ is the liquid limit; $w_p$ is the plasticity limit; and $I_p$ is the plasticity index. Clean sand, i.e., the sand matrix if the fines are extracted, is characterized as sand with quite similar gradations. The uniformity of clean sand varies between the values of 1.68 – 2.76; thus sands with a similar uniformity were tested. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The sands were characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to the atmosphere on the surface. The grain size and physical properties of the sands tested are shown in Tab. 2. The fines are characterized as fluvial sands, but were also partially transported by wind when the sands were exposed to

<table>
<thead>
<tr>
<th>Sample</th>
<th>$d_{60}$ (mm)</th>
<th>$d_{50}$ (mm)</th>
<th>$d_{30}$ (mm)</th>
<th>$d_{10}$ (mm)</th>
<th>$C_u$ (-)</th>
<th>FC (%)</th>
<th>$e_{max}$ (-)</th>
<th>$e_{min}$ (-)</th>
<th>$\rho_s$ (g/cm$^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.284</td>
<td>0.243</td>
<td>0.180</td>
<td>0.130</td>
<td>2.18</td>
<td>5.69</td>
<td>0.788</td>
<td>0.516</td>
<td>2.680</td>
</tr>
<tr>
<td>P2</td>
<td>0.459</td>
<td>0.424</td>
<td>0.311</td>
<td>0.193</td>
<td>2.38</td>
<td>1.32</td>
<td>0.699</td>
<td>0.468</td>
<td>2.659</td>
</tr>
<tr>
<td>P3</td>
<td>0.439</td>
<td>0.365</td>
<td>0.244</td>
<td>0.160</td>
<td>2.74</td>
<td>0.25</td>
<td>0.668</td>
<td>0.453</td>
<td>2.660</td>
</tr>
<tr>
<td>P4</td>
<td>0.207</td>
<td>0.179</td>
<td>0.121</td>
<td>0.100</td>
<td>20.70</td>
<td>16.75</td>
<td>0.854</td>
<td>0.480</td>
<td>2.678</td>
</tr>
<tr>
<td>P5</td>
<td>0.377</td>
<td>0.322</td>
<td>0.230</td>
<td>0.151</td>
<td>2.50</td>
<td>3.26</td>
<td>0.762</td>
<td>0.488</td>
<td>2.664</td>
</tr>
<tr>
<td>P6</td>
<td>0.225</td>
<td>0.211</td>
<td>0.172</td>
<td>0.109</td>
<td>2.06</td>
<td>7.56</td>
<td>0.790</td>
<td>0.494</td>
<td>2.674</td>
</tr>
<tr>
<td>P7</td>
<td>0.128</td>
<td>0.107</td>
<td>0.074</td>
<td>0.013</td>
<td>9.85</td>
<td>21.11</td>
<td>0.949</td>
<td>0.524</td>
<td>2.708</td>
</tr>
<tr>
<td>P8</td>
<td>0.149</td>
<td>0.129</td>
<td>0.091</td>
<td>0.022</td>
<td>6.77</td>
<td>20.20</td>
<td>1.241</td>
<td>0.702</td>
<td>2.722</td>
</tr>
<tr>
<td>B1</td>
<td>0.216</td>
<td>0.191</td>
<td>0.123</td>
<td>0.007</td>
<td>30.86</td>
<td>18.84</td>
<td>0.901</td>
<td>0.424</td>
<td>2.689</td>
</tr>
<tr>
<td>B1gr</td>
<td>0.233</td>
<td>0.211</td>
<td>0.136</td>
<td>0.011</td>
<td>21.18</td>
<td>16.48</td>
<td>0.716</td>
<td>0.380</td>
<td>2.689</td>
</tr>
<tr>
<td>B2</td>
<td>0.237</td>
<td>0.218</td>
<td>0.170</td>
<td>0.109</td>
<td>2.17</td>
<td>3.05</td>
<td>0.757</td>
<td>0.496</td>
<td>2.654</td>
</tr>
<tr>
<td>PS</td>
<td>0.488</td>
<td>0.435</td>
<td>0.287</td>
<td>0.177</td>
<td>2.76</td>
<td>1.14</td>
<td>0.596</td>
<td>0.426</td>
<td>2.642</td>
</tr>
<tr>
<td>S1</td>
<td>0.256</td>
<td>0.236</td>
<td>0.193</td>
<td>0.114</td>
<td>2.25</td>
<td>7.00</td>
<td>1.189</td>
<td>0.754</td>
<td>2.675</td>
</tr>
<tr>
<td>S2</td>
<td>0.404</td>
<td>0.329</td>
<td>0.210</td>
<td>0.028</td>
<td>14.43</td>
<td>12.91</td>
<td>0.967</td>
<td>0.563</td>
<td>2.662</td>
</tr>
</tbody>
</table>
the first stress level of the testing, and at least 7 stress levels were applied up to 400 kPa with steps of 50 kPa. Bender / extender tests were performed at each stress level. All the tests were performed in an isotropic state of stress, i.e., \( q = 0 \) kPa. This study generated 418 measurements of \( G_{max} \) and 416 measurements of \( M_{max} \) at the different void ratios and confinement levels.

Changes in the volume of the dry sands under such conditions were assumed according to an isotropic deformation, i.e., \( 3\varepsilon_v = \varepsilon_s \) (Gu, et al., 2015); \( \varepsilon_v \) is the axial, and \( \varepsilon_s \) is the volumetric strain. Thus only the axial deformation had to be measured. The load at the top cap was kept constant at a value of 0.01 kN (\( q = 5 \) kPa); thus when the next level of confinement was applied, the lower chamber of the Bishop and Wesley triaxial system had to move up to maintain the load, and the LVDT measured the axial deformation.

### 2.2 Evaluation of the bender / extender elements tests

The point of interest of this study is the measurement of small strain shear \( G_{max} \) and constrained \( M_{max} \) modulus. These are estimated through the values of shear \( v_s \) and compressional \( v_p \) wave velocities propagating along a sample’s axis when the density \( \rho \) of the samples is known as:

\[
G_{max} = v_s^2 \rho \\
M_{max} = v_p^2 \rho
\]

The bender / extender elements (BEE) installed in the top cap and bottom pedestal of the Bishop and Wesley triaxial cell manufactured by GDS Instruments were used to measure the \( v_s \) and compressional \( v_p \) in the soil specimens. The bender / extender elements are plate piezoceramic elements. One of the first applications of piezo transducers in soil mechanics and geotechnical engineering was presented in (Shirley & Hampton, 1978). Later on (Schultheiss, 1981) measured the shear wave velocity \( v_s \), and, in addition, the compression wave velocity \( v_p \) with two decoupled piezo transducers were used for the introduction of shear and compression waves into soil.

Shear and compression waves have to somehow be introduced into soil. Plate elements act as a cantilever beam which, when voltage is applied, can perform shear - like movements (i.e., move from side to side) or elongations (the movement depends on the polarization and wiring of the elements). It was quite common to use two decoupled elements for the production of P and S waves until Lings and Greening (Lings & Greening, 2001) came up with the idea of a coupled transducer, which could produce both S and P waves in a single transducer, and, in addition, the compression wave velocities \( v_p \) which is usually caused by the reflected waves. In general, the CC method of \( v_p \) may be seen as a better substitute for \( v_s \), as the CC usually indicates the start of the input signal waveform in a measured output waveform (Fig. 2). The resulting cross correlation coefficient reaches a maximum when the input and output signals match the best at a given position on the time axis. Note that once again the significant peak of CC was assumed to be a peak with 30–50% magnitude of the maximum amplitude measured on the output (see, e.g., (Yamashita, et al., 2009)). This rule of thumb is incorporated due to the probable occurrence of higher peaks at a later travel time, which is usually caused by the reflected waves. In general, the CC method of \( v_s \) may be seen as a better substitute for \( S_s \), as the CC usually indicates the start of the input signal waveform in a measured output waveform (Fig. 2). The resulting cross correlation coefficient reaches a maximum when the input and output signals match the best at a given position on the time axis. Note that once again the significant peak of CC was assumed to be a peak with 30–50% magnitude of the maximum amplitude measured on the output (see, e.g., (Yamashita, et al., 2009)). This rule of thumb is incorporated due to the probable occurrence of higher peaks at a later travel time, which is usually caused by the reflected waves. In general, the CC method of \( v_s \) may be seen as a better substitute for \( S_s \), as the CC usually indicates the start of the input signal waveform in a measured output waveform (Fig. 2).

### Tab. 3 Input signals and evaluation methods used in the BEE testing

<table>
<thead>
<tr>
<th>Input signal</th>
<th>Evaluation method</th>
<th>Frequency of signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x sine wave</td>
<td>PtP (S-wave)/StS(P-wave)</td>
<td>3.3; 5; 9; 17 kHz</td>
</tr>
<tr>
<td>4 x sine wave</td>
<td>PtP (S-wave)/StS(P-wave)</td>
<td>5 – 10 kHz 3 ms duration</td>
</tr>
<tr>
<td>Sine sweep</td>
<td>PtP (S-wave)/StS(P-wave)</td>
<td>5 – 50 kHz 1 ms duration</td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td>5 – 100 kHz 0.5 ms duration</td>
</tr>
</tbody>
</table>

Several methods of interpreting measurements, i.e., estimating the shear \( t_s \) and compression \( t_p \) wave travel time can be used. The Start-to-Start (SS), Peak-to-Peak (PpP), Cross-Correlation (CC), and frequency domain (FD) approaches were used to estimate the corresponding travel time. \( S_s \), \( P_p \) and \( C_c \) were applied to estimate \( t_s \), \( P_p \); \( C_c \) and \( F_d \) were applied to estimate \( t_p \). These methods were incorporated in a MatLab (MathWorks Inc., 2017) code (Panũška, 2018). The peak-to-peak estimation of the shear wave’s travel time is based on the measurement of the time delay between the first peaks of the sent and received signals (Fig. 2). The first significant peak of the received signal was assumed to be a signal with a 30–50% magnitude of the maximum amplitude measured on the output (see, e.g., (Yamashita, et al., 2009)). This rule of thumb is incorporated due to the probable occurrence of higher peaks at a later travel time, which is usually caused by the reflected waves. In general, the CC method of \( t_s \) may be seen as a better substitute for \( S_s \), as the CC usually indicates the start of the input signal waveform in a measured output waveform (Fig. 2). The resulting cross correlation coefficient reaches a maximum when the input and output signals match the best at a given position on the time axis. Note that once again the significant peak of CC was assumed to be a peak with 30–50% magnitude of the maximum amplitude measured on the output (see, e.g., (Yamashita, et al., 2009)). This rule of thumb is incorporated due to the probable occurrence of higher peaks at a later travel time, which is usually caused by the reflected waves. In general, the CC method of \( t_s \) may be seen as a better substitute for \( S_s \), as the CC usually indicates the start of the input signal waveform in a measured output waveform (Fig. 2). The resulting cross correlation coefficient reaches a maximum when the input and output signals match the best at a given position on the time axis. Note that once again the significant peak of CC was assumed to be a peak with 30–50% magnitude of the maximum amplitude measured on the output (see, e.g., (Yamashita, et al., 2009)). This rule of thumb is incorporated due to the probable occurrence of higher peaks at a later travel time, which is usually caused by the reflected waves. In general, the CC method of \( t_s \) may be seen as a better substitute for \( S_s \), as the CC usually indicates the start of the input signal waveform in a measured output waveform (Fig. 2).
the results of \( v \) within a range of ±5 m/s. This range was found by inspecting the results of all three evaluation methods as the most probable interval of the correct shear wave’s arrival time. This procedure was verified by independent sets of measurements with the Resonant Column (RC) device (Szilvágyi, 2018), (Panuška, 2018). The values of \( G_{\text{max}} \) measured by RC and BEE fall within the range of a ±15% difference, which was also found in the literature (e.g., Toyoura sand (Yamashita, et al., 2009)). The estimation of \( t_{\text{tp}} \) by PtP (Senetakis, et al., 2017) and CC completely follows the ideas applied to \( t_{\text{tv}} \). Additionally, the StS method was employed to estimate \( t_{\text{tv}} \) because it is easier to observe the first direct arrival of the P-wave with a comparison of the S-wave (no near field effects in P-wave measurements and minimization effect of influence of the reflected waves).

The first arrival (i.e., \( t_{\text{tv}} \)) is assumed to be at the point of the first steep increase in an output signal (Wichtmann & Triantafyllidis, 2010), (Senetakis, et al., 2017). The procedure for averaging and obtaining the final values of \( v_p \) and \( M_{\text{max}} \) is the same as for \( v \) and \( G_{\text{max}} \).

### 2.3 Normalization of the results and regression analysis employed

The normalization of the small strain stiffness with respect to the void ratio enables one to compare samples with different void ratios and observe the dependency of the small strain stiffness solely on the confinement level. On the other hand, normalization with respect to the confinement level enables one to observe the dependency of the small strain stiffness on the void ratio. A normalization procedure of this kind may be found, e.g., in (Gu, et al., 2013). The results from the three tests with different void ratios are depicted in Fig. 4. Normalization was done with respect to Eq. 1 with the void ratio function presented by Eq. 3 and \( a_H = 2.17 \). The equations in Fig. 4b and 4c represent Eq. 1 after some minor rearrangements. Figure 4b represents the shear modulus normalized by the void ratio function (note that all three different void ratios fall onto one line after normalization); the right side contains coefficients \( A \) and \( n \) from Eq. 1, i.e., the form of the equations represents general power equations. Parameters \( A \) and \( n \) are regressed through the least squares method in order to minimize the residual sum of the squares between the predicted and measured values to obtain the best fit. Additionally, Figure 4c represents the shear modulus normalized by confinement, and the equation in this figure is rearranged in this way. Thus, only parameters \( A \) and \( F(e) \), in this case with \( a_H = 2.17 \), remain on the right side, and these will be regressed. Note that \( a_H \) (or \( a \) in general) may be set as a variable and may be regressed as well. It must be highlighted that these two plots are inter-related. Parameter \( A \) is presented in both plots on the right side; additionally, parameters \( F(e) \) (thus also \( a \)) and \( n \) are presented once in the regression procedure and the second time as a normalization factor. Due to this inter-relation, it was decided to regress both forms of Eq. 1 presented in Fig. 4b.
and 4c simultaneously, i.e., a summation of the residual squared errors was computed, and this was minimized rather than obtaining a single sum of the residual squared errors for each form separately. The modulus normalized by the void ratio function and by confinement may differ in magnitude; thus, they were scaled to be equal in magnitude. The scaling factor was calculated with respect to the modulus normalized by the void ratio. The Excel solver add-in was used for this multivariate optimization to find the minimum value of the sum of the squared residuals. The coefficient of determination \( R^2 \) was estimated for each single regression analysis; however, this parameter only evaluates the goodness of fit qualitatively. Thus the Root-Mean-Square-Deviation (RMSD) is used as a quantitative measure of accuracy as this parameter represents the standard deviation of the prediction with respect to measurement. The RMSD was used for a similar purpose, e.g., in (Goudrazy, et al., 2016) and is defined as:

\[
\text{RMSD} = \sqrt{\frac{\sum_{i=1}^{N} (y_{\text{measured}} - y_{\text{predicted}})^2}{N}}
\]

where \( y_{\text{measured}} \) is the measured value; \( y_{\text{predicted}} \) is the predicted value; and \( N \) is the number of samples.

### 3 RESULTS AND DISCUSSION

The first analysis was performed with the void ratio function’s parameter \( a \) included in the regression procedure in order to obtain a set of best fit parameters for the single samples. The predictive model based on the correlation of \( A, n \) and \( a \) on the grainsize properties of sands with fines was developed in (Panuška, 2018). Such a model is not discussed here as it is beyond the scope of this article. The results of the regression for the fitted parameter \( a \) are plotted in Fig. 5. Note that the mean grain size was chosen to be plotted on a horizontal axis in order to distinguish the different samples. The mean grain size was also chosen because it is a parameter which has been said to have no influence on \( G_{\text{max}} \) (Iwasaki & Tatsuoka, 1977) (Wichmann & Triantafyllidis, 2005), and \( M_{\text{max}} \) (Wichmann & Triantafyllidis, 2010). There are no doubts about this fact as it was extensively experimentally observed. However \( d_{50} \) may influence some parameters of Eq. 1 or parameters of the different void ratio functions rather than the small strain stiffness itself. This fact can be observed in Fig. 5, where, for both \( G_{\text{max}} \) and \( M_{\text{max}} \), the significant dependency of \( a_H \) (used in Eq. 3) on \( d_{50} \) is found, while such behavior seems to be lost if Eqs. 4 or 5 are used in the regression. Additionally, Fig. 5 revealed that the commonly used void ratio function parameters \( a_H = 2.17 \) (Hardin & Richart, 1963) and \( a_J = 1.3 \) (Jamiolkowski, et al., 1991) were found to represent the mean of the regressed values (\( a_H \) does not, but is very close to the mean; however, it gave the best results in the predictive model) for sands with fines in the case of \( G_{\text{max}} \), while the value of \( a_J = 3.57 \) is higher than presented in (Shibuya, et al., 1997) or (Oztoprak & Bolton, 2013). Subsequently, the value of \( a_H = 2.17 \) seems to fit well for the regressed data; in addition, it gives the best prediction of the measured values for \( M_{\text{max}} \) measurements. The value of parameter \( a_J = 1.3 \) for \( G_{\text{max}} \) and \( a_J = 1.00 \) for \( M_{\text{max}} \) is slightly lower than presented in (Shibuya, et al., 1997) or (Oztoprak & Bolton, 2013) but is not significantly different.

Fig. 5 Regressed and mean/best fit values of \( a_H \), \( a_J \), and \( a_S \) for the different void ratios functions a) for \( G_{\text{max}} \); b) for \( M_{\text{max}} \).
$\alpha$ is up to 3 for sample P4 if Eq. 5 is used. Note that only half of the samples are shown due to the lack of space and that the second group only showed small differences. The second group of samples were used for a comparison for $M_{\text{max}}$, and a similar trend can be observed. However, the RMSD is around 4 – 5 times higher, but the $M_{\text{max}}$ in general is 4 times higher than $G_{\text{max}}$; thus the relative error remained approximately the same. The greatest difference in RMSD (up to 10) may be found for sample B1 if Eq. 5 is used. Additionally, according to Fig. 6b, the stress exponent $n$ is independent of the different void ratio functions used in the regression analysis performed.

The constant values of $a$ discussed above were used in the second round of the regression where only the parameters $A$ and $n$ were regressed in order to minimize the sum of the squared errors of the normalized modulus. A comparison of RMSD for the void ratio’s normalized modulus in the case of the constant and regressed $a$ employed is presented in Fig. 6a. Despite the higher value of RMSD in the case of the constant $a$ employed, the resulting degree of accuracy did not suffer a significant loss as the maximum RMSD difference for the constant and regressed void ratio parameter $a$ is up to 3 for sample P4 if Eq. 5 is used. Note that only half of the samples are shown due to the lack of space and that the second group only showed small differences. The second group of samples were used for a comparison for $M_{\text{max}}$, and a similar trend can be observed. However, the RMSD is around 4 – 5 times higher, but the $M_{\text{max}}$ in general is 4 times higher than $G_{\text{max}}$; thus the relative error remained approximately the same. The greatest difference in RMSD (up to 10) may be found for sample B1 if Eq. 5 is used. Additionally, according to Fig. 6b, the stress exponent $n$ is independent of the different void ratio functions used in the regression analysis performed.

**Fig. 6** Results of regression analysis for different void ratio functions employed: a) RMSD for the void ratio normalized $G_{\text{max}}$; b) variation of the stress exponent $n$; c) RMSD for the void ratio normalized $M_{\text{max}}$.

**Fig. 7** Prediction of the confinement normalized modulus based on the different void ratio functions a) confinement normalized small strain shear stiffness $G_{\text{conf}}$; b) confinement normalized small strain constrained stiffness $M_{\text{conf}}$.

<table>
<thead>
<tr>
<th>Regression coefficients</th>
<th>Percentage of samples in error range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$ $a$ $n$</td>
<td>$\pm 10%$ $\pm 20%$ $\pm 30%$</td>
</tr>
<tr>
<td>Eq. 1</td>
<td></td>
</tr>
<tr>
<td>Eq. 3</td>
<td>594.08 $2.17$ $0.55$</td>
</tr>
<tr>
<td>Eq. 4</td>
<td>462.26 $1.30$ $0.49$</td>
</tr>
<tr>
<td>Eq. 5</td>
<td>4911.44 $3.57$ $0.49$</td>
</tr>
<tr>
<td>Eq. 2</td>
<td></td>
</tr>
<tr>
<td>Eq. 3</td>
<td>2193.51 $2.17$ $0.49$</td>
</tr>
<tr>
<td>Eq. 4</td>
<td>1918.00 $1.00$ $0.49$</td>
</tr>
<tr>
<td>Eq. 5</td>
<td>11363.10 $2.80$ $0.49$</td>
</tr>
</tbody>
</table>
and is also independent of the void ratio function parameter $a$, i.e., if it is regressed or set constant. The proposed regression coefficients for Eqs. 1 and 2 are shown in Tab. 4. Note that while parameter $a$ is based on the regression of the entire dataset, including data from the literature, parameters $A$ and $n$ are based on the average of the values regressed only for the single sand tested in this study. Thus the regression coefficients proposed in Tab. 4 are applicable only for sands with plastic fines. The error among the different approaches is less than 5 % for $G_{\text{max}}$ and 10 % for $M_{\text{max}}$.

This study analyzed the effect of different void ratio functions on the accuracy of the empirical equations used for predicting the small strain shear and constrained modulus. The void ratio function parameter $a$ was set for each void ratio function as a constant value based on the mean of the regressed values for sands with plastic and non-plastic fines from this study and gathered from the literature. The regression analysis has shown that there is a very small or negligible influence on predictions of small strain stiffness, whether the void ratio parameter $a(a_0, a_1, a_2)$ is included in the regression or set constant as proposed in this study. Additionally, the different void ratio functions employed in the regression procedure produced only minor deviations among their predictions of the measured $G_{\text{max}}$ and $M_{\text{max}}$ in this study. Two void ratio function parameters were found to fit the proposals of the original authors very well, i.e., $a_0 = 2.17; a_1 = 1.30$ in the case of $G_{\text{max}}$ measurements. The rest of the parameters obtained through the regression analysis performed in this study are shown in Tab. 4. This table includes newly - proposed parameters $A$ and $n$, for predicting the $M_{\text{max}}$ of sands with plastic fines. The values of $a$ were set independently of the plasticity of the fines, as this produces only minor differences. However, parameters $A$ and $n$ were set as a mean of the single regressed values only for the sands tested in this study. Thus, the proposed values are recommended only for predicting the small strain stiffness of normally consolidated sands with plastic fines in a void ratio range of 0.4 – 1.0. Sand matrices with a uniformity in a range of 1.68 – 2.76 were tested; thus, the proposed coefficients should be considered with care if different sand matrices are going to be predicted.

4 CONCLUSIONS

This study analyzed the effect of different void ratio functions on the accuracy of the empirical equations used for predicting the small strain shear and constrained modulus. The void ratio function parameter $a$ was set for each void ratio function as a constant value based on the mean of the regressed values for sands with plastic and non-plastic fines from this study and gathered from the literature. The regression analysis has shown that there is a very small or negligible influence on predictions of small strain stiffness, whether the void ratio parameter $a(a_0, a_1, a_2)$ is included in the regression or set constant as proposed in this study. Additionally, the different void ratio functions employed in the regression procedure produced only minor deviations among their predictions of the measured $G_{\text{max}}$ and $M_{\text{max}}$ in this study. Two void ratio function parameters were found to fit the proposals of the original authors very well, i.e., $a_0 = 2.17; a_1 = 1.30$ in the case of $G_{\text{max}}$ measurements. The rest of the parameters obtained through the regression analysis performed in this study are shown in Tab. 4. This table includes newly - proposed parameters $A$ and $n$, for predicting the $M_{\text{max}}$ of sands with plastic fines. The values of $a$ were set independently of the plasticity of the fines, as this produces only minor differences. However, parameters $A$ and $n$ were set as a mean of the single regressed values only for the sands tested in this study. Thus, the proposed values are recommended only for predicting the small strain stiffness of normally consolidated sands with plastic fines in a void ratio range of 0.4 – 1.0. Sand matrices with a uniformity in a range of 1.68 – 2.76 were tested; thus, the proposed coefficients should be considered with care if different sand matrices are going to be predicted.

REFERENCES


