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ABSTRACT

The Muskingum method is a hydrological flow routing model with lumped parameters, which 
describes the transformation of discharge waves in a river bed using two equations. The first 
one is the continuity equation (conservation of mass) and the second equation is the 
relationship between the storage, inflow, and outflow of the reach (the discharge storage 
equation). These equations are applied within a river reach between two cross sections of 
a river. The parameters of the model can be estimated by several methods. Here the classical 
graphic method is compared with two new methods where a genetic algorithm and harmony 
search was used for optimization. The discrete state space formulation of the Muskingum 
method was applied on the lower Morava reach between Moravský Svätý Ján and Záhorská 
Ves. The results showed a good degree of accuracy of all three methods, which were assessed 
by the Nash-Sutcliffe efficiency coefficient.
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Introduction

Many methods have been sought for predicting the characteristic 
features of the movement of a flood wave along a river in order to 
determine the actions necessary for protecting life and property 
from the effects of flooding and to improve the management of 
water related systems along natural or manmade watercourses. The 
literature abounds with a wide spectrum of flow routing models (e.g. 
Fread, 1985; Liggett, Cunge, 1975; Linsley, Kohler, Paulhus, 1986) 
which are sufficiently accurate when used within the bounds of their 
limitations.
Flow routing may be classified as either lumped or distributed. In 
lumped flow routing or hydrologic routing, the flow is computed 
as a function of time at one location along a watercourse, but in 

distributed flow routing or hydraulic routing, the flow is computed 
as a function of time simultaneously at several cross sections along 
a watercourse (Maidment, Fread, 1993).
Distributed routing models are mostly based on the numerical 
solution of the Saint-Venant equations. According to Maidment 
and Fread (1993), dynamic routing models are required for (1) 
slowly rising flood waves in mild sloping channels, i.e., slopes 
roughly less than 0.10 percent; (2) situations where backwater 
effects are important owing to tides, significant tributary inflows, 
natural constrictions, dams, and/or bridges; and (3) situations where 
waves propagate upstream from large tides, storm surges or very 
large tributary inflows (Maidment, Fread, 1993). As the trend in 
increased computational speed for computers and storage capabilities 
with decreasing costs continues, the economic feasibility of using 
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dynamic routing models for a wider range of applications will 
steadily increase, since dynamic models have the capability to 
correctly simulate the widest spectrum of wave types and waterway 
characteristics. 
However, due to the moderate data requirements and operational 
costs, in several practical applications (e.g. flood forecasting), 
hydrological routing models will still be in use. To translate 
and attenuate an upstream runoff hydrograph into a downstream 
hydrograph in lumped routing, the continuity of a mass can be 
expressed as

	 (1)

in which I and O are the inflow and outflow, respectively, during the 
incremental time dt (or ∆t), and S is the storage. 

For the hydrograph shown in Figure 1, the approximation of 
continuity equation can be expressed in terms of the average inflow 
(upstream) and average outflow (downstream) between times t1 and 
t2, (during the interval ∆t= t1 – t2). Expressing the equation in terms 
of the average inflow and average outflow, at times t1 and t2 the 
change of storage in the reach can be expressed as 

 	 (2)

In hydrologic routing Equation 1 is accompanied by the lumped 
storage-outflow relationship for Q(t). Both graphic and mathematical 
techniques can be used to solve this system of two in general 
nonlinear equations. The attractiveness of lumped flow routing is 
its relative simplicity when compared with distributed flow routing. 
However, lumped flow routing methods for rivers ignores backwater 

effects and are not accurate for rapidly rising hydrographs routed 
through mild-to-flat sloping rivers. They are also inaccurate for 
rapidly rising hydrographs in long reservoirs.

Muskingum method

The Muskingum method, which was developed by McCarthy (1938), 
is a popular lumped flow routing technique. The Muskingum 
Method is an alternative for routing hydrographs through stream 
reaches, which is well established in the hydrological literature (e.g. 
McCarthy, 1938; Ponce and Yevjevich, 1978; Ponce and Theurer, 
1982; Perumal, 1992; Ponce and Chaganti, 1994; Tang, et al., 1999; 
Birkhead, James, 2002; Al-Humoud and Esen, 2006) and its modest 
data requirements make it attractive for practical use. The Muskingum 
method sometimes produces unrealistic initial negative dips in the 
computed hydrograph. However, it provides reasonably accurate 
results for moderate-to-slow rising floods propagating through mild-
to-steep sloping watercourses (Maidment, Fread, 1993).
Muskingum routing is based on an assumed linear relationship 
between a channel’s storage and inflow and outflow discharge; and 
consequently, it accounts for prism and wedge storage. The storage 
under a line parallel to the streambed is called prism storage; the water 
located between this line and the actual profile is wedge storage. The 
routing parameters in the models are usually derived by calibration 
using measured discharge hydrographs (Birkhead, James, 2002). 
In the Muskingum method the storage S in the routing reach is 
represented by the following discharge‑storage equation: 

S= K [X I + (1 —X) Q] 	 (3)

in which the rism storage in the reach is KQ, where K is a proportionality 
coefficient, and the volume of the wedge storage is equal to KX 
(I – Q), where X is a weighting factor having a range of 0 ≤ X ≤ 0,5 
(most streams (Maidment, Fread, 1993) have X values between 
0,1 and 0,3). A general rule of thumb is that K can be estimated 
by the travel time through a reach, and a value of 0,2 (McCuen, 
2004) can be used for X. A value of 0,5 for X is usually considered 
to be the upper limit of rationality. Another recommendation to be 
followed in practice is that the ratio ∆t/K should be approximately 
1 (McCuen, 2004).
The time rate of the change of storage dS/dt in Equation 3 is 
represented substituting Equation 3 into Equation 2 as follows:

 	 (4)

where the superscripts j and j+1 denote the times separated by the 
interval ∆t j. 

Fig. 1 Schematic diagram of upstream (I) and downstream (O) flood 
hydrograph
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For the outflow of the reach we subsequently get this relationship:

Q j+1 =C1 I 
j+1 + C2 I 

j +C3
 Q j  	 (5)

which is the classical Muskingum flow routing equation, where

 	 (6)

 	 (7)

 	 (8)

and where C1+C2+C3=1, and K/3 ≤ ∆t ≤ K is usually the range for ∆t.
The values for K and X can be determined from the observed inflow 
and outflow hydrographs (McCarthy, 1938; Linsley, et al. 1986; 
Morris, Wiggert, 1972; Chow, 1964). Using Equation 4 and the left 
side of Equation 3, K can be expressed as (Maidment, Fread, 1993):

 	 (9)

If, at each time interval, the values of the numerator are plotted 
against those of the denominator, a loop by the data is formed. 
Iteratively, varying X will tend to close the loop and that value of X 
which causes the plot to be closest to a single line is the engineering 
estimate value for the reach. Then K may be computed from the 
average value determined from Equation 9 for the correct value 
of X. Lateral inflows can also be included in the calibration of the 
Muskingum method (O’Donnell, Pearson, Woods, 1988). 
The Muskingum method can also formulated within the state space 
framework, which enables us to more flexibly change conditions of 
the system’s dynamics (see, for example, Szolgay, 1982). For the 
discrete state space equations the Muskingum equation is defined 
as:

	 (10)

where S is the storage, K is the time proportionality coefficient, X is 
a weighting factor (having the range 0 ≤ X ≤ 0,5), O is the outflow 
discharge from the river reach and I is the inflow discharge to the 
river reach. In combination with a continuity equation:

	 (11)

we obtain the following ordinary differential equation

	 (12)

which describes the instantaneous change of storage in the river 
reach. In addition, the output from the reach can be calculated as

	 (13)

The last two equations describe the continuous state space 
representation of the Muskingum method where S is the system 
state variable. The general solution is:

	 (14)

Under the assumption that inputs to the model are considered 
constant during sampling interval of the length T between a and 
a+1, the state transition will have the form

.	 (15)
 
and the transition of the input will be 

	 (16)

The discreet state equations then have the form:

	 (17)

	 (18)

The model calibration approach proposed 
for river reach of the Morava River

One of the most important parameters in flood routing is the 
wave speed (or alternatively the travel time) at which the flood 
wave travels along the river reach downstream. Strictly speaking, 
this wave speed (celerity) is the speed at which the flood wave 
moves downstream. This speed can be readily approximated from 
characteristic points on the recorded hydrographs at either end of 
a reach (Weinmann a Laurenson, 1979), or it may be estimated 
from the rating curve at a particular cross-section (Wang, et al., 
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2006). Here it is proposed to use the such an estimate of the 
travel time in the parameterisation of the Muskingum routing 
method.
We have analyzed the relationship between the discharge and travel 
time of characteristic points from a set of flood waves for a reach 
of the Morava River. The reach between the gauging stations at 
Moravský Svätý Ján and Záhorská Ves, with a length of 34.76 km 
and a slope of 0,2 ‰, was chosen. The selected river reach has 
a typical lowland character. In our analysis of the flood wave travel 
time, we used hourly discharge data from the years 1992 to 2002 
(data were provided by the Slovak Hydrometeorological Institute). 
In the river reach there are two significant inflows measured, the 
Zaya (data were provided by the TU Vienna) and the Rudava Rivers. 
The inter-basin area of the basin is 1,392 km2. The unmeasured 
lateral inflows of the whole reach had to be estimated (based on the 
known data) using hydrological analogy as explained in Danáčová 
(2008). There were no other corrections of the data sets made. 
The classical model calibration approach has been compared in this 
work with the new method prosed here, in which variable travel 
time parameter is estimated by stochastic optimization techniques. 
Two methods, the genetic algorithms (GA) and harmony search 
(HS), were used. Genetic algorithms are common techniques in 
optimization and in hydrologic modeling (e.g. Sekaj, 2005; Čistý 
et al., 1999; Wang et al., 2007; Szolgay et al., 2007; Čistý and 
Bajtek, 2009; Mohan, 1997). HS is a music-inspired evolutionary 
algorithm, mimicking the improvisation process of music players 
(Geem et al., 2001; Kim et al., 2001; Kosinski et al., 2008). 
The effectiveness of a GA or HS depends on the setup of their 
parameters (e.g. in the case of the GA the size of the population, 

the number of generations, the kinds of mutations, selection, 
crossover), the choice of the objective function and boundaries of 
the search space. In particular it is necessary setting up the upper 
boundaries (UB) and lower boundaries within which a Genetic 
algorithm or Harmony search will search for the results. In this 
case it was the range of the search space for the wave travel time 
(K). As an objective function the Nash-Sutcliffe coefficient (Nash; 
1970) was optimized to the minimum value. It was also used for 
the model validation since in practice it is very often used to assess 
the predictive power of hydrological models (Nash, 1970; McCuen, 
Knight and Cutter, 2006; Szolgay et al., 2009; Szolgay, 2004; 
Hlavčová et al., 2004; and Parajka, 2001). 
The calibration of the travel time parameter vs. discharge relationship 
was accomplished at one of largest flood wave subjectively selected 
from large waves at the river reach researched. For verification we 
used randomly selected flood waves with a range of discharges and 
shapes within the selected time period. 
Following calibration approaches were compared: first we assumed 
optimal X and K as constant values estimated for every flood wave 
separately (Column 4, Tab. 1) by the classical calibration approach 
as improved by Valent (2008). This parameter set served as 
a baseline representing the optimal model performance (as achieved 
by the standard calibration procedure). In the second approach we 
have taken X and K (both constant) as the average of all optimal 
pairs from the baseline set estimated by the classical approach 
(Column 5 in Tab. 1). This approach was representing the usual 
situation in practical simulation and forecasting applications, where 
the optimal parameters are not known during the event and the 
average parameters for the given reach have to be used. In the third 
approach (Columns 6 and 7 of Tab.1) we assumed that K is varying 
with discharge and the parameter X was taken as the average of all 
flood waves (as in approach two). 

Fig. 2 Morava River basin (based at Danáčová, 2008)
Fig. 3 Example of the K=f (inflow) relationships for the Morava 
River between Moravský Svätý Ján and Záhorská Ves
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The relationships K=f (inflow) were first taken as composed from 
a preset number of linear segments (lines). For this the discharge 
range was divided into intervals of the same length. From 4 to 12 
linear segments were used and for each set of segments the optimal 
chain was estimated (see Fig. 3) by constrained optimization on one 
large calibration flood wave both with the help of a Genetic algorithm 
and Harmony search. For the final mathematical description the K=f 
(inflow) relationship was fitted by 5th degree polynomial into these 
chains of linear segments by the least squares. 

Results

The models compared were verified on 6 flood waves covering 
a wide range of flood peaks using the Nash-Sutcliffe coefficient 
as performance criterion (Tab. 1). As it can be seen in Table 1, 

the application of average parameters (as expected) degrades 
the performance of the model when compared to the optimal 
performance. On the other hand, the use of GA or HS for the 
forecasting of wave travel time (K) results in an increased level 
of model accuracy. The new models outperform the average 
model and are near optimal. It is also important to note even if the 
accuracy of the fit for simulated discharges was not the best, but 
the visual comparison clearly shows, that the match of the timing 
of the intermediate peaks is better than in the case of the average 
model (constant travel time) (see Fig. 4). Other advantage of the 
approach used is that the K=f (inflow) relationship was calibrated 
at one wave. Moreover the main aim of this research was to find 
a feasible methodology for evaluating flood wave travel time and 
incorporating it into the Muskingum model. Based on the results 
one can conclude, that the proposed approach could be further 
developed. The advantages of HS in comparison with GA are: 
slightly better results and increased saving of time (HS needed 
approximately 10% less required time than GA in this work). HS 
also almost always showed a smaller variability of the estimated 
function when compared with GA.

Conclusion

There are a variety of techniques for estimating the required X and 
K parameters associated with the Muskingum method. The methods 
that were used in this work for the Muskingum equation were 
the classical approach and a new method based on the estimation 
of the relationship between the travel time parameter K and the 
discharge. Also relatively new optimization techniques such as 
Genetic algorithms and Harmony search were used and compared. 

Fig. 4 Example of the simulated wave for the variable K=f (inflow) 
relationship for the Morava River between Moravský Svätý Ján and 
Záhorská Ves

Tab. 1 Nash-Sutcliffe values for each of the tested methods

No. Flood wave
Peak flow 

[m3/s]

Values of the Nash-Sutcliffe coefficient
Optimal K and X for 

each flood  
Classical calibration 

method

Average K and X  
Classical 

calibration method

Average X and 
variable K using 

GA

Average X and 
variable K using 

HS

1 2 3 4 5 6 7
1 24.09.1996 - 02.10.1996 170,2 0,9896 0,9297 0,9313 0,9184
2 11.09.1998 - 27.09.1998 305,3 0,9627 0,9553 0,9611 0,9620
3 01.04.1994 - 07.05.1994 428,5 0,9659 0,9409 0,9664 0,9704
4 16.03.1992 - 23.04.1992 595,6 0,9744 0,9678 0,9844 0,9850
5 15.03.1996 - 04.06.1996 633,8 0,9579 0,9762 0,9833 0,9836
6 29.06.1997 - 29.08.1997 923,1 0,9906 0,9794 0,9846 0,9849

Average 0,9735 0,9582 0,9685 0,9674
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The Muskingum method was applied to the River Morava within 
the Moravský Svätý Ján – Záhorská Ves reach. The function of 
travel time parameter and discharge was estimated for one of the 
largest flood. The results were validated using the Nash-Sutcliffe 
coefficient on 6 floods. The results obtained by the new method 
presented in this work were satisfactory and, because of the 
advantage of the small of wave travel time or for the forecasting 
of discharge. Based on the results one can amount of data required 

for calibration, this method could be used in suitable river reaches 
for the estimation conclude, that the proposed approach could be 
further developed.
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