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ABSTRACT

The Muskingum method is a hydrological flow routing model with lumped parameters, which 
describes the transformation of discharge waves in a river bed using two equations. The first 
one is the continuity equation (conservation of mass) and the second equation is the 
relationship between the storage, inflow, and outflow of the reach (the discharge storage 
equation). These equations are applied within a river reach between two cross sections of 
a river. The parameters of the model can be estimated by several methods. Here the classical 
graphic method is compared with two new methods where a genetic algorithm and harmony 
search was used for optimization. The discrete state space formulation of the Muskingum 
method was applied on the lower Morava reach between Moravský Svätý Ján and Záhorská 
Ves. The results showed a good degree of accuracy of all three methods, which were assessed 
by the Nash-Sutcliffe efficiency coefficient.
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INTRODUCTION

Many	 methods	 have	 been	 sought	 for	 predicting	 the	 characteristic	
features	 of	 the	movement	of	 a	flood	wave	 along	 a	river	 in	 order	 to	
determine	 the	 actions	 necessary	 for	 protecting	 life	 and	 property	
from	 the	 effects	 of	 flooding	 and	 to	 improve	 the	 management	 of	
water	related	systems	along	natural	or	man	made	watercourses.	The	
literature	abounds	with	a	wide	spectrum	of	flow	routing	models	(e.g.	
Fread,	1985;	Liggett,	Cunge,	1975;	Linsley,	Kohler,	Paulhus,	1986)	
which	are	sufficiently	accurate	when	used	within	the	bounds	of	their	
limitations.
Flow	routing	may	be	classified	as	either	 lumped	or	distributed.	 In	
lumped	 flow	 routing or	 hydrologic	 routing, the	 flow	 is	 computed	
as	 a	function	 of	 time	 at	 one	 location	 along	 a	watercourse,	 but	 in	

distributed	flow	routing	or	hydraulic	routing, the	flow	is	computed	
as	a	function	of	time	simultaneously	at	several	cross	sections	along	
a	watercourse	(Maidment,	Fread,	1993).
Distributed	 routing	 models	 are	 mostly	 based	 on	 the	 numerical	
solution	 of	 the	 SaintVenant	 equations.	 According	 to	 Maidment	
and	 Fread	 (1993),	 dynamic	 routing	 models	 are	 required	 for	 (1)	
slowly	 rising	 flood	 waves	 in	 mild	 sloping	 channels,	 i.e.,	 slopes	
roughly	 less	 than	 0.10	 percent;	 (2)	 situations	 where	 backwater	
effects	 are	 important	 owing	 to	 tides,	 signifi	cant	 tributary	 inflows,	
natural	constrictions,	dams,	and/or	bridges;	and	(3)	situations	where	
waves	 propagate	 upstream	 from	 large	 tides,	 storm	 surges	 or	 very	
large	 tributary	 inflows	 (Maidment,	 Fread,	 1993).	As	 the	 trend	 in	
increased	computational	speed	for	computers	and	storage	capabilities	
with	 decreasing	 costs	 continues,	 the	 economic	 feasibility	 of	 using	
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dynamic	 routing	models	 for	 a	wider	 range	 of	 applications	 will	
steadily	 increase,	 since	 dy	namic	 models	 have	 the	 capability	 to	
correctly	simulate	the	widest	spectrum	of	wave	types	and	waterway	
characteristics.	
However,	 due	 to	 the	moderate	 data	 requirements	 and	 operational	
costs,	 in	 several	 practical	 applications	 (e.g.	 flood	 forecasting),	
hydrological	 routing	 models	 will	 still	 be	 in	 use.	 To	 translate	
and	 attenuate	 an	 upstream	 runoff	 hydrograph	 into	 a	downstream	
hydrograph	 in	 lumped	 routing,	 the	 continuity	 of	 a	mass	 can	 be	
expressed	as

 (1)

in	which	I	and	O	are	the	inflow	and	outflow,	respectively,	during	the	
incremental	time dt	(or	∆t),	and	S	is	the	storage.	

For	 the	 hydrograph	 shown	 in	 Figure	 1,	 the	 approximation	 of	
continuity	equation	can	be	expressed	in	terms	of	the	average	inflow	
(upstream)	and	average	outflow	(downstream)	between	times	t1	and	
t2,	(during	the	interval	∆t= t1 – t2).	Expressing	the	equation	in	terms	
of	 the	 average	 inflow	 and	 average	 outflow,	 at	 times	 t1	 and	 t2	 the	
change	of	storage	in	the	reach	can	be	expressed	as	

  (2)

In	 hydrologic	 routing	 Equation	 1	 is	 accompanied	 by	 the	 lumped	
storageoutflow	relationship	for	Q(t). Both	graphic	and	mathematical	
techniques	 can	 be	 used	 to	 solve	 this	 system	 of	 two	 in	 general	
nonlinear	 equations.	The	 attractiveness	 of	 lumped	 flow	 routing	 is	
its	relative	simplicity	when	compared	with	distributed	flow	routing.	
However,	lumped	flow	routing	methods	for	rivers	ignores	backwater	

effects	 and	 are	 not	 accurate	 for	 rapidly	 rising	 hydrographs	 routed	
through	 mildtoflat	 sloping	 rivers.	 They	 are	 also	 inaccurate	 for	
rapidly	rising	hydrographs	in	long	reservoirs.

MUSKINGUM METHOD

The	Muskingum method, which	was developed	by	McCarthy	(1938),	
is	 a	popular	 lumped	 flow	 routing	 technique.	 The	 Muskingum	
Method	 is	 an	 alternative	 for	 routing	 hydrographs	 through	 stream	
reaches,	which	is	well	established	in	the	hydrological	literature	(e.g.	
McCarthy,	 1938;	 Ponce	 and	Yevjevich,	 1978;	 Ponce	 and	Theurer,	
1982;	Perumal,	1992;	Ponce	and	Chaganti,	1994;	Tang,	et	al.,	1999;	
Birkhead,	James,	2002;	AlHumoud	and	Esen,	2006)	and	its	modest	
data	requirements	make	it	attractive	for	practical	use.	The	Muskingum	
method	 sometimes	 produces	 unrealistic	 initial	 nega	tive	 dips	 in	 the	
computed	 hydrograph.	 However,	 it	 provides	 reasonably	 accurate	
results	for	moderatetoslow	rising	floods	propagating	through	mild
tosteep	sloping	watercourses	(Maidment,	Fread,	1993).
Muskingum	 routing	 is	 based	 on	 an	 assumed	 linear	 relationship	
between	a	channel’s	storage	and	inflow	and	outflow	discharge;	and	
consequently,	it	accounts	for	prism	and	wedge	storage.	The	storage	
under	a	line	parallel	to	the	streambed	is	called	prism	storage;	the	water	
located	between	this	line	and	the	actual	profile	is	wedge	storage.	The	
routing	parameters	in	the	models	are	usually	derived	by	calibration	
using	measured	discharge	hydrographs	(Birkhead,	James,	2002).	
In	 the	 Muskingum	 method	 the	 storage	 S in	 the	 routing	 reach	 is	
represented	by	the	following	dischargestorage	equation:	

S= K [X I + (1	—X) Q]		 (3)

in	which	the	rism	storage	in	the	reach	is	KQ, where	K is	a	proportionality	
coefficient,	 and	 the	 volume	 of	 the	 wedge	 storage	 is	 equal	 to	KX 
(I – Q), where	X is	a	weighting	factor	having	a	range	of	0	≤	X ≤ 0,5	
(most	 streams	 (Maidment,	 Fread,	 1993)	 have	 X values	 between	
0,1	 and	 0,3).	A	general	 rule	 of	 thumb	 is	 that	K	can	 be	 estimated	
by	 the	 travel	 time	 through	 a	reach,	 and	 a	value	 of	 0,2	 (McCuen,	
2004)	can	be	used	for	X.	A	value	of	0,5	for	X	is	usually	considered	
to	be	the	upper	limit	of	rationality.	Another	recommendation	to	be	
followed	in	practice	is	that	the	ratio	∆t/K	should	be	approximately	
1	(McCuen,	2004).
The	 time	 rate	 of	 the	 change	 of	 storage	 dS/dt in	 Equation	 3	 is	
represented	substituting	Equation	3	into	Equation	2	as	follows:

  (4)

where	the	superscripts	j	and	j+1	denote	the	times	separated	by	the	
interval	∆t j.	

Fig. 1 Schematic diagram of upstream (I) and downstream (O) flood 
hydrograph
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For	the	outflow	of	the	reach	we	subsequently	get	this	relationship:

Q j+1 =C1 I 
j+1 + C2 I 

j +C3
	Q j   (5)

which	is	the	classical	Muskingum	flow	routing	equation,	where

  (6)

  (7)

  (8)

and	where	C1+C2+C3=1,	and	K/3 ≤ ∆t ≤ K	is	usually	the	range	for	∆t.
The values	for	K and	X	can	be	determined	from	the	observed	inflow	
and	 outflow	 hydrographs	 (McCarthy,	 1938;	 Linsley,	 et	 al.	 1986;	
Morris,	Wiggert,	1972;	Chow,	1964).	Using	Equation	4	and	the	left	
side	of	Equation	3,	K	can	be	expressed	as	(Maidment,	Fread,	1993):

  (9)

If,	 at	 each	 time	 interval,	 the	 values	 of	 the	 numerator	 are	 plotted	
against	 those	 of	 the	 denominator,	 a	loop	 by	 the	 data	 is	 formed.	
Iteratively,	varying	X will	tend	to	close	the	loop	and	that	value	of	X	
which	causes	the	plot	to	be	closest	to	a	single	line	is	the	engineering	
estimate	 value	 for	 the	 reach.	 Then	K may	 be	 computed	 from	 the	
average	 value	 determined	 from	 Equation	 9	 for	 the	 correct	 value	
of	X. Lateral	inflows	can	also	be	included	in	the	calibration	of	the	
Muskingum	method	(O’Donnell,	Pearson,	Woods,	1988).	
The	Muskingum	method	can	also	formulated	within	the	state	space	
framework,	which	enables	us	to	more	flexibly	change	conditions	of	
the	 system’s	dynamics	 (see,	 for	 example,	Szolgay,	 1982).	For	 the	
discrete	 state	 space	 equations	 the	Muskingum	equation	 is	 defined	
as:

	 (10)

where	S	is	the	storage,	K	is	the	time	proportionality	coefficient,	X	is	
a	weighting	factor	(having	the	range	0	≤	X ≤ 0,5),	O	is	 the	outflow	
discharge	 from	the	 river	 reach	and	 I	is	 the	 inflow	discharge	 to	 the	
river	reach.	In	combination	with	a	continuity	equation:

	 (11)

we	obtain	the	following	ordinary	differential	equation

	 (12)

which	 describes	 the	 instantaneous	 change	 of	 storage	 in	 the	 river	
reach.	In	addition,	the	output	from	the	reach	can	be	calculated	as

	 (13)

The	 last	 two	 equations	 describe	 the	 continuous	 state	 space	
representation	 of	 the	 Muskingum	 method	 where	 S	is	 the	 system	
state	variable.	The	general	solution	is:

	 (14)

Under	 the	 assumption	 that	 inputs	 to	 the	 model	 are	 considered	
constant	 during	 sampling	 interval	 of	 the	 length	 T between	 a and 
a+1,	the	state	transition	will	have	the	form

.	 (15)
	
and	the	transition	of	the	input	will	be	

	 (16)

The	discreet	state	equations	then	have	the	form:

	 (17)

 (18)

THE MODEL CALIBRATION AppROACH pROpOSED 
FOR RIVER REACH OF THE MORAVA RIVER

One	 of	 the	 most	 important	 parameters	 in	 flood	 routing	 is	 the	
wave	 speed	 (or	 alternatively	 the	 travel	 time)	 at	which	 the	 flood	
wave	travels	along	the	river	reach	downstream.	Strictly	speaking,	
this	wave	 speed	 (celerity)	 is	 the	 speed	 at	which	 the	 flood	wave	
moves	downstream.	This	speed	can	be	readily	approximated	from	
characteristic	points	on	the	recorded	hydrographs	at	either	end	of	
a	reach	 (Weinmann	 a	Laurenson,	 1979),	 or	 it	 may	 be	 estimated	
from	 the	 rating	 curve	 at	 a	particular	 crosssection	 (Wang,	 et	 al.,	
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2006).	 Here	 it	 is	 proposed	 to	 use	 the	 such	 an	 estimate	 of	 the	
travel	time	 in	 the	 parameterisation	 of	 the	 Muskingum	 routing	
method.
We	have	analyzed	the	relationship	between	the	discharge	and	travel	
time	of	characteristic	points	 from	a	set	of	 flood	waves	 for	a	reach	
of	 the	Morava	 River.	 The	 reach	 between	 the	 gauging	 stations	 at	
Moravský	Svätý	Ján	and	Záhorská	Ves,	with	a	length	of	34.76	km	
and	 a	slope	 of	 0,2	‰,	 was	 chosen.	 The	 selected	 river	 reach	 has	
a	typical	lowland	character.	In	our	analysis	of	the	flood	wave	travel	
time,	we	used	hourly	discharge	data	 from	 the	years	1992	 to	2002	
(data	were	provided	by	the	Slovak	Hydrometeorological	Institute).	
In	 the	 river	 reach	 there	 are	 two	 significant	 inflows	measured,	 the	
Zaya	(data	were	provided	by	the	TU	Vienna)	and	the	Rudava	Rivers.	
The	 interbasin	 area	 of	 the	 basin	 is	 1,392	 km2.	 The	 unmeasured	
lateral	inflows	of	the	whole	reach	had	to	be	estimated	(based	on	the	
known	data)	using	hydrological	analogy	as	explained	in	Danáčová	
(2008).	There	were	no	other	corrections	of	the	data	sets	made.	
The	classical	model	calibration	approach	has	been	compared	in	this	
work	with	 the	 new	method	 prosed	 here,	 in	which	 variable	 travel	
time	parameter	is	estimated	by	stochastic	optimization	techniques.	
Two	 methods,	 the	 genetic	 algorithms	 (GA)	 and	 harmony	 search	
(HS),	 were	 used.	 Genetic	 algorithms	 are	 common	 techniques	 in	
optimization	 and	 in	 hydrologic	modeling	 (e.g.	 Sekaj,	 2005;	Čistý	
et	 al.,	 1999;	Wang	 et	 al.,	 2007;	 Szolgay	 et	 al.,	 2007;	 Čistý	 and	
Bajtek,	 2009;	Mohan,	 1997).	HS	 is	 a	musicinspired	 evolutionary	
algorithm,	mimicking	 the	 improvisation	 process	 of	music	 players	
(Geem	et	al.,	2001;	Kim	et	al.,	2001;	Kosinski	et	al.,	2008).	
The	 effectiveness	 of	 a	GA	 or	 HS	 depends	 on	 the	 setup	 of	 their	
parameters	 (e.g.	 in	 the	 case	of	 the	GA	 the	 size	of	 the	population,	

the	 number	 of	 generations,	 the	 kinds	 of	 mutations,	 selection,	
crossover),	 the	choice	of	 the	objective	 function	and	boundaries	of	
the	 search	space.	 In	particular	 it	 is	necessary	setting	up	 the	upper	
boundaries	 (UB)	 and	 lower	 boundaries	 within	 which	 a	Genetic	
algorithm	 or	 Harmony	 search	 will	 search	 for	 the	 results.	 In	 this	
case	 it	was	 the	range	of	 the	search	space	for	 the	wave	travel	 time	
(K).	As	an	objective	function	the	NashSutcliffe	coefficient	(Nash;	
1970)	was	 optimized	 to	 the	minimum	value.	 It	was	 also	 used	 for	
the	model	validation	since	in	practice	it	is	very	often	used	to	assess	
the	predictive	power	of	hydrological	models	(Nash,	1970;	McCuen,	
Knight	 and	 Cutter,	 2006;	 Szolgay	 et	 al.,	 2009;	 Szolgay,	 2004;	
Hlavčová	et	al.,	2004;	and	Parajka,	2001).	
The	calibration	of	the	travel	time	parameter	vs.	discharge	relationship	
was	accomplished	at	one	of	largest	flood	wave	subjectively	selected	
from	large	waves	at	the	river	reach	researched.	For	verification	we	
used	randomly	selected	flood	waves	with	a	range	of	discharges	and	
shapes	within	the	selected	time	period.	
Following	calibration	approaches	were	compared:	first	we	assumed	
optimal	X	and	K	as	constant	values	estimated	for	every	flood	wave	
separately	(Column	4,	Tab.	1)	by	the	classical	calibration	approach	
as	 improved	 by	 Valent	 (2008).	 This	 parameter	 set	 served	 as	
a	baseline	representing	the	optimal	model	performance	(as	achieved	
by	the	standard	calibration	procedure).	In	the	second	approach	we	
have	 taken	X	 and	K	 (both	 constant)	 as	 the	 average	of	 all	 optimal	
pairs	 from	 the	 baseline	 set	 estimated	 by	 the	 classical	 approach	
(Column	 5	 in	 Tab.	 1).	 This	 approach	 was	 representing	 the	 usual	
situation	in	practical	simulation	and	forecasting	applications,	where	
the	 optimal	 parameters	 are	 not	 known	 during	 the	 event	 and	 the	
average	parameters	for	the	given	reach	have	to	be	used.	In	the	third	
approach	(Columns	6	and	7	of	Tab.1)	we	assumed	that	K	is	varying	
with	discharge	and	the	parameter	X	was	taken	as	the	average	of	all	
flood	waves	(as	in	approach	two).	

Fig. 2 Morava River basin (based at Danáčová, 2008)
Fig. 3 Example of the K=f (inflow) relationships for the Morava 
River between Moravský Svätý Ján and Záhorská Ves
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The	relationships	K=f (inflow)	were	first	 taken	as	composed	from	
a	preset	 number	 of	 linear	 segments	 (lines).	 For	 this	 the	 discharge	
range	was	divided	into	intervals	of	the	same	length.	From	4	to	12	
linear	segments	were	used	and	for	each	set	of	segments	the	optimal	
chain	was	estimated	(see	Fig.	3)	by	constrained	optimization	on	one	
large	calibration	flood	wave	both	with	the	help	of	a	Genetic	algorithm	
and	Harmony	search.	For	the	final	mathematical	description	the	K=f 
(inflow)	relationship	was	fitted	by	5th	degree	polynomial	into	these	
chains	of	linear	segments	by	the	least	squares.	

RESULTS

The	 models	 compared	 were	 verified	 on	 6	 flood	 waves	 covering	
a	wide	 range	 of	 flood	 peaks	 using	 the	 NashSutcliffe	 coefficient	
as	 performance	 criterion	 (Tab.	 1).	As	 it	 can	 be	 seen	 in	 Table	 1,	

the	 application	 of	 average	 parameters	 (as	 expected)	 degrades	
the	 performance	 of	 the	 model	 when	 compared	 to	 the	 optimal	
performance.	 On	 the	 other	 hand,	 the	 use	 of	 GA	 or	 HS	 for	 the	
forecasting	 of	 wave	 travel	 time	 (K)	 results	 in	 an	 increased	 level	
of	 model	 accuracy.	 The	 new	 models	 outperform	 the	 average	
model	and	are	near	optimal.	It	is	also	important	to	note	even	if	the	
accuracy	 of	 the	 fit	 for	 simulated	 discharges	was	 not	 the	 best,	 but	
the	visual	comparison	clearly	shows,	 that	 the	match	of	 the	 timing	
of	 the	 intermediate	peaks	 is	better	 than	 in	 the	case	of	 the	average	
model	 (constant	 travel	 time)	 (see	 Fig.	 4).	Other	 advantage	 of	 the	
approach	used	 is	 that	 the	K=f (inflow)	 relationship	was	calibrated	
at	one	wave.	Moreover	 the	main	aim	of	 this	 research	was	 to	 find	
a	feasible	methodology	 for	 evaluating	 flood	wave	 travel	 time	 and	
incorporating	 it	 into	 the	Muskingum	model.	 Based	 on	 the	 results	
one	 can	 conclude,	 that	 the	 proposed	 approach	 could	 be	 further	
developed.	 The	 advantages	 of	 HS	 in	 comparison	 with	 GA	 are:	
slightly	 better	 results	 and	 increased	 saving	 of	 time	 (HS	 needed	
approximately	10%	 less	 required	 time	 than	GA	 in	 this	work).	HS	
also	 almost	 always	 showed	 a	smaller	 variability	 of	 the	 estimated	
function	when	compared	with	GA.

CONCLUSION

There	are	a	variety	of	techniques	for	estimating	the	required	X	and	
K	parameters	associated	with	the	Muskingum	method.	The	methods	
that	 were	 used	 in	 this	 work	 for	 the	 Muskingum	 equation	 were	
the	 classical	 approach	 and	a	new	method	based	on	 the	 estimation	
of	 the	 relationship	 between	 the	 travel	 time	 parameter	 K	and	 the	
discharge.	 Also	 relatively	 new	 optimization	 techniques	 such	 as	
Genetic	algorithms	and	Harmony	search	were	used	and	compared.	

Fig. 4 Example of the simulated wave for the variable K=f (inflow) 
relationship for the Morava River between Moravský Svätý Ján and 
Záhorská Ves

Tab. 1 Nash-Sutcliffe values for each of the tested methods

No. Flood wave
Peak flow 

[m3/s]

Values of the Nash-Sutcliffe coefficient
Optimal K and X for 

each flood  
Classical calibration 

method

Average K and X  
Classical 

calibration method

Average X and 
variable K using 

GA

Average X and 
variable K using 

HS

1 2 3 4 5 6 7
1 24.09.1996		02.10.1996 170,2 0,9896 0,9297 0,9313 0,9184
2 11.09.1998		27.09.1998 305,3 0,9627 0,9553 0,9611 0,9620
3 01.04.1994		07.05.1994 428,5 0,9659 0,9409 0,9664 0,9704
4 16.03.1992		23.04.1992 595,6 0,9744 0,9678 0,9844 0,9850
5 15.03.1996		04.06.1996 633,8 0,9579 0,9762 0,9833 0,9836
6 29.06.1997		29.08.1997 923,1 0,9906 0,9794 0,9846 0,9849

Average 0,9735 0,9582 0,9685 0,9674
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The	Muskingum	method	was	applied	 to	 the	River	Morava	within	
the	 Moravský	 Svätý	 Ján	 –	 Záhorská	 Ves	 reach.	 The	 function	 of	
travel	 time	parameter	 and	discharge	was	 estimated	 for	one	of	 the	
largest	 flood.	The	 results	were	 validated	 using	 the	NashSutcliffe	
coefficient	 on	 6	 floods.	 The	 results	 obtained	 by	 the	 new	method	
presented	 in	 this	 work	 were	 satisfactory	 and,	 because	 of	 the	
advantage	of	 the	 small	 of	wave	 travel	 time	or	 for	 the	 forecasting	
of	discharge.	Based	on	the	results	one	can	amount	of	data	required	

for	calibration,	this	method	could	be	used	in	suitable	river	reaches	
for	 the	 estimation	 conclude,	 that	 the	 proposed	 approach	 could	 be	
further	developed.
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