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Abstract: This paper presents an efficient method and its 
usage for the three-dimensional random bearing capacity 
evaluation for square and rectangular footings. One of the 
objectives of the study is to deliver graphs that can be used 
to easily estimate the approximated values of coefficients 
of variations of undrained bearing capacity. The numerical 
calculations were based on the proposed method that 
connects three-dimensional failure mechanism, simulated 
annealing optimization scheme and spatial averaging. The 
random field is used for describing the spatial variability 
of undrained shear strength. The proposed approach is in 
accordance with a constant covariance matrix concept, 
that results in a highly efficient tool for estimating the 
probabilistic characteristics of bearing capacity. As a 
result, numerous three-dimensional simulations were 
performed to create the graphs. The considered covariance 
matrix is a result of Vanmarcke’s spatial averaging 
discretization of a random field in the dissipation regions 
to the single random variables. The matrix describes 
mutual correlation between each dissipation region 
(or between those random variables). However, in the 
presented approach, the matrix was obtained for the 
expected value of undrained shear strength and keep 
constant during Monte Carlo simulations. The graphs 
were established in dimensionless coordinates that vary 
in the observable in practice ranges of parameters (i.e., 
values of fluctuation scales, foundation sizes and shapes). 
Examples of usage were given in the study to illustrate 
the application possibility of the graphs. Moreover, the 
comparison with the approach that uses individually 
determined covariance matrix is shown. 

Keywords: Spatial averaging; random fields; random 
bearing capacity; fluctuation scale; failure mechanism.
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1  Introduction
Incorporating spatial variability of soil and rock masses 
has recently become an important subject for geotechnical 
engineers’ interest. In recent times, probabilistic 
approaches are being used in many fields of geotechnical 
engineering like tunnelling (e.g., Lu et al., 2018; Pan 
and Dias, 2018; Chen et al., 2019) or deep excavations 
(e.g., Ching et al., 2017; Goh et al., 2019). Popularity of 
probabilistic approaches is also visible in the case of 
shallow foundations bearing capacity estimations. The 
direct reason for this interest is the popularity of cone 
penetrometer test soundings (CPT), and consequently, 
obtaining enough data to estimate the vertical scale 
of fluctuation (that characterized the considered soil 
strength spatial variability). On the other hand, the recent 
development and increase of experience in the field of 
estimating fluctuation scales techniques accelerate the 
development towards the use of random field theory to 
assess bearing capacity (Ching et al., 2018). However, 
most of the existed studies on this subject use two-
dimensional simplification of the problem by assuming 
plane strain conditions (e.g., Fenton and Griffiths 2008; 
Pieczyńska-Kozłowska et. al., 2015; Ali et. al., 2016, Johari 
et al., 2017; Puła and Chwała 2018). Due to the ignorance 
of soil spatial variability in one direction (perpendicular 
to the assumed plane), this simplification may cause 
conservative estimation of variation coefficient of bearing 
capacity. To avoid this effect, it is necessary to perform 
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numerical analyses in three dimensions. However, the 
three-dimensional analyses in the case of a finite element 
approach require a lot of computational effort. As a 
result, there is a lack of such analyses in the literature, 
one of the first papers in this area was published by Kawa 
and Puła (2019) and uses the finite difference method. 
Contrary to the finite element method approaches, the 
method proposed by Puła and Chwała (2015, 2018) that 
uses conjunction of Vanmarcke’s spatial averaging 
(1983) and kinematical failure mechanisms may result 
in significantly improved computational efficiency. The 
application of this approach to the three-dimensional issue 
of bearing capacity estimation of square or rectangular 
foundations in the case of undrained conditions was 
developed recently by Chwała (2019a). In this study, 
the above-mentioned method is modified in a way to 
ensure further increase in computational efficiency. The 
proposed modification uses the constant covariance 
matrix instead of individually determined as in Chwała 
(2019a). The constant covariance matrix is received by 

using the expected values of soil strength parameters. 
Therefore, in the case of this study, an expected value of 
undrained shear strength is used. The covariance matrix 
is determined based on the optimal failure geometry that 
is the result of optimization procedure. Due to the usage 
of upper bound analysis, the geometry for the specified 
undrained shear strength is searched in a way to minimize 
the resulting bearing capacity. The above briefly described 
method was used for analysing numerous scenarios to 
enable the creation of graphs that allow an immediate 
read of the approximate value of the variation coefficient 
of undrained bearing capacity (BC). In the proposed 
method, as the prerequisites, the undrained shear 
strength mean value (μcu

), standard deviation (σcu
) and 

vertical fluctuation scale (θv) are needed. However, all this 
information can be obtained based on the soil sounding 
(e.g., Pieczyńska-Kozłowska et al., 2017; Nuttall, 2019). 
As a result of the numerical analyses, a comprehensive 
behaviour of variation coefficient of undrained BC in a 
wide range of foundation geometries and fluctuation 

Figure 1: Failure geometry for a rough foundation base in the case of rectangular foundation. More details on failure geometry can be found 
in Chwała (2019a). 



On determining the undrained bearing capacity coefficients of variation for foundations embedded ...    127

scales are demonstrated on the created graphs. They 
can be used in the practical applications to estimate the 
BC coefficient of variation or as a comparison for other 
probabilistic methods.              

2  Numerical algorithm

2.1  Failure geometry optimization

In this study, a Prandtl-type three-dimensional failure 
mechanism for a rough foundation base is assumed 
(Gourvenec et al, 2006). However, for the purpose of this 
study, a probabilistic version of the failure mechanism is 
needed (to calculate the bearing capacity in the case of 
different values of undrained shear strength are applicate 
to different dissipation regions). Therefore, the results 
obtained in the study by Chwała (2019a) were used as a 
basis for the proposed approach and numerical analyses 
performed in this study. The geometry of the failure 
mechanism is shown in Fig 1. 

A set of failure geometry parameters shown in Fig. 1 
is responsible for describing failure geometry. However, 
for unique failure geometry determination, only eight of 
those parameters are necessary, namely: six angles α1, α2, 
α3, α4, β2 and β3; and two lengths d1 and d2. Additionally, 
the foundation width and length are also necessary, but 
those two parameters are not a subject of optimization 
(they are constant during the optimization process). The 
resulting bearing capacity formula is given in Appendix 
A. The selected set of failure geometry parameters is 
subjected to changes during the optimization process 
of finding the minimum bearing capacity. Note that the 
bearing capacity formula is the objective function. The 
optimization method is based on the simulated annealing 
(Kirkpatrick et al., 1983; Kirkpatrick, 1984). The objective 
of using simulated annealing is to overcome local minima 
in the bearing capacity function. The simple gradient 
method can be more efficient than simulated annealing 
approach, but not resisted on avoiding local minima. 
On the other hand, the optimization issue has eight 
degrees of freedom, and consequently, direct simulation 
optimization based on Monte Carlo are not applicable 
due to poor efficiency. The bearing capacity formula and 
optimization method for the selected failure mechanism 
were discussed in Chwała (2019a) and the details are 
not repeated here. Generally, the procedure during the 
simulation uses a so-called acceptance probability Pa 
that is intended to accept or reject a subsequent solution 
(that is obtained by small changes in the failure geometry 

parameters). However, the ability to overcome local 
minima requires that during simulation, the solutions 
characterized by higher bearing capacity (worse solution) 
can be accepted. The value of Pa is in decreasing tendency 
during the simulation, and approaches almost zero 
at the end of simulation. As a result of using the above 
briefly described method, the approximate location of a 
global minimum of the bearing capacity function is found 
together with the corresponding optimal failure geometry. 
One exemplary optimization is demonstrated in Fig. 2. As 
shown there, the ability of the optimization scheme to 
avoid local minima is clearly visible. 

2.2  Spatial averaging

The kinematical failure mechanism can be used in 
conjunction with random field theory by using Vanmarcke’s 
(1983) spatial averaging. By this procedure, the average 
values of undrained shear strength are determined for each 
dissipation region resulting from failure geometry. The 
application of spatial averaging provides no necessity of 
direct random field sample generation. Instead of that, the 
averaged values of undrained shear strength are generated. 
The generation takes place from single random variables 
obtained after discretization of the initial random field. 
Each random variable is dedicated to the corresponding 
dissipation region. Therefore, in this study, there are 30 
random variables (because the failure mechanism consists 
of 30 dissipation regions). However, those variables are 
not independent, they are correlated in accordance with 

Figure 2: Value of bearing capacity during simulation within 
optimization procedure
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their relative positions, assumed correlation structure 
and values of fluctuation scales. Each random variable 
is obtained by integrating over the dissipation region 
geometry; thus, its shape, size and position with respect 
to the coordinate system is taken into account. To obtain 
full information about correlation between each of those 
30 random variables, the matrix of size 30 over 30 is 
necessary. This matrix is called as the covariance matrix 
and denoted as CX. The general formula that constitutes 
spatial averaging can be expressed as in Eq. (1):
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where, V is the domain of averaging that is related to the 
specified dissipation region, X is the initial random field 
(before averaging) and XV is the random variable obtained 
after spatial averaging proper to the averaging domain 
V. In this study, a stationary lognormal random field is 
assumed as initial random field. As a result of averaging, 
the mean value of XV is preserved; however, the variance 
of XV is subjected to reduction. The new variances and 
covariances can be determined from Eq. (2) (see Puła, 
2007; Puła and Chwała, 2015):
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where, indices i and j denote dissipation regions; i, 
j=1,…,30. Function R is a covariance function. In this study, 
a Gaussian covariance function is assumed (e.g., Fenton 
and Griffiths, 2008); moreover, the correlation structure is 
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(3)

where, Δx, Δy, Δz are distances between points in x, y 
and z direction, respectively. Parameters θx, θy and θz are 
fluctuation scales in x, y and z direction, respectively. In 
this study, both horizontal fluctuation scales are assumed 
to be equal, θx = θy, and denoted later as horizontal 
fluctuation scale θh. Analogously, θz is called as vertical 

fluctuation scale and denoted as θv. By substituting 
the same index values in Eq. (2) instead of covariance, 
the formula for variance is obtained. Note that, for the 
considered scenario, there are 30×30=900 possible 
combinations. As a result, the covariance matrix has 900 
components; however, due to the symmetricity of the 
matrix, there are 465 unique components. The derivation 
of the covariance matrix components is demonstrated in 
the earlier mentioned paper by Chwała (2019a). Despite 
different approaches developed there, those formulas 
can by successively utilized in this study. In the paper by 
Chwała (2019a), the covariance matrix was determined 
individually for each Monte Carlo simulation. However, 
in this study, a different approach is proposed; namely, 
the concept of constant covariance matrix. It means that 
the covariance matrix is kept constant during Monte Carlo 
simulation. Nevertheless, the important question arises 
here: which covariance matrix should be selected for 
this application? A natural choice is to use a covariance 
matrix obtained for the failure geometry established for 
the expected value of undrained shear strength. This 
choice was first applicable for the classic Prandtl failure 
mechanism by Puła (2007). The determination of the 
covariance matrix is the most time-consuming element 
in the proposed numerical algorithm. For example, if one 
thousand Monte Carlo simulations have to be performed 
to estimate some probabilistic characteristics of bearing 
capacity, in the case of constant covariance matrix, 
only one matrix determination is needed instead of one 
thousand, as in the algorithm given in Chwała (2019a). 
This significantly reduced the overall time that is needed 
for numerical analyses. As detailed in the introduction 
section, to achieve the objective of this study, numerous 
simulations are needed. Therefore, the constant 
covariance matrix is assumed to make them possible to 
calculate in a rational period of time. As shown in the next 
section, the impact of this assumption is very limited and 
is acceptable for the planned applications. 

2.3  Method

The numerical algorithm that uses the constant covariance 
matrix is described below. The algorithm consists of 
two main parts. The first one is the determination of the 
covariance matrix that takes place before the Monte Carlo 
loop started. The second part is the actual Monte Carlo 
loop with the generation of averaged undrained shear 
strengths and bearing capacity calculation. Below, the 
detailed algorithm is described. Moreover, the flow chart 
of the procedure is shown in Fig. 3.
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Step 1. Determines the constant covariance matrix. 
The covariance matrix is determined basing on the optimal 
failure geometry that was obtained for the expected value 
of the undrained shear strength. At this stage, the same 
value of cu is assumed in all dissipation regions. In this 
particular case, the failure geometry has two planes 
of symmetry (not like in Fig. 1, where the general non-
symmetrical case is shown). The covariance matrix CX  is 
kept constant during the simulation process. Set k=1.

Step 2. Begins the Monte Carlo simulation. If k>N, go 
to step 6. If not, go to step 3 (N is the assumed number of 
repetitions).   

Step 3. Generates a vector of 30 normal independent 
components. Each component describes undrained shear 
strengths cYu,i. The generation process uses a pseudo-random 
number generator. As the probabilistic characteristic, the 
initial random field parameters transformed to underlying 
normal distribution are assumed (μYcu

 and σ2
Ycu

). The 
transformation is shown in Eq. (4).

Cov�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� = 1
|𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖|�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗�

∫ ∫ 𝑅𝑅𝑅𝑅�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�  (2) 

𝑅𝑅𝑅𝑅(Δ𝑥𝑥𝑥𝑥,Δ𝑦𝑦𝑦𝑦,Δ𝑧𝑧𝑧𝑧) = 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 exp �− ��√𝜋𝜋𝜋𝜋

Δ𝑥𝑥𝑥𝑥
𝜃𝜃𝜃𝜃𝑥𝑥𝑥𝑥
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑦𝑦𝑦𝑦
𝜃𝜃𝜃𝜃𝑦𝑦𝑦𝑦
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑧𝑧𝑧𝑧
𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧
�
2
��        (3 

       (4) 

𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 = ln�1 +

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � 

𝜇𝜇𝜇𝜇𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 = ln�𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � − 0.5𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢

2  

 

respectively.  

𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑁𝑁
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1        (5) 

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝 = �∑ �𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑁𝑁𝑁𝑁−1

      (6) 

COV𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝

       (7)     

End of an algorithm. 

 

𝑋𝑋𝑋𝑋𝑉𝑉𝑉𝑉 =
1

|𝑑𝑑𝑑𝑑|���𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)d𝑥𝑥𝑥𝑥d𝑦𝑦𝑦𝑦d𝑧𝑧𝑧𝑧                   (1) 

 

 

Cov�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� = 1
|𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖|�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗�

∫ ∫ 𝑅𝑅𝑅𝑅�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�  (2) 

𝑅𝑅𝑅𝑅(Δ𝑥𝑥𝑥𝑥,Δ𝑦𝑦𝑦𝑦,Δ𝑧𝑧𝑧𝑧) = 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 exp �− ��√𝜋𝜋𝜋𝜋

Δ𝑥𝑥𝑥𝑥
𝜃𝜃𝜃𝜃𝑥𝑥𝑥𝑥
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑦𝑦𝑦𝑦
𝜃𝜃𝜃𝜃𝑦𝑦𝑦𝑦
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑧𝑧𝑧𝑧
𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧
�
2
��        (3 

       (4) 

𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 = ln�1 +

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � 

𝜇𝜇𝜇𝜇𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 = ln�𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � − 0.5𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢

2  

 

respectively.  

𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑁𝑁
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1        (5) 

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝 = �∑ �𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑁𝑁𝑁𝑁−1

      (6) 

COV𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝

       (7)     

End of an algorithm. 

 

𝑋𝑋𝑋𝑋𝑉𝑉𝑉𝑉 =
1

|𝑑𝑑𝑑𝑑|���𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)d𝑥𝑥𝑥𝑥d𝑦𝑦𝑦𝑦d𝑧𝑧𝑧𝑧                   (1) 

 

 

(4)

As a result of the generation, the following vector of 30 
components is obtained: (cYu,1, …, cYu,30).

Step. 4. Computes the averaged undrained shear 
strengths. The averaged undrained shear strengths are 
determined by the algorithm proposed by Puła and Chwała 
(2015). This procedure uses Cholesky decomposition of 
the covariance matrix CX (Horn, 1985). However, before 
the decomposition, the covariance matrix is transformed 
from a lognormal covariance matrix to the normal one. 
The resulting triangular matrix is multiplied by the 
standardized vector of the independent normal vector 
obtained in step 3. Finally, the resulting correlated 
undrained shear strengths are transformed again to the 
lognormal distribution. As a result of this procedure, the 
final vector of the averaged undrained shear strengths is 
obtained (c̅u,1, …, c̅u,30). The covariance matrix used in this 
step was determined in step 1.     

Step 5. Calculates the bearing capacity corresponding 
to the undrained shear strengths (c̅u,1, …, c̅u,30). The bearing 
capacity pN is determined by using the optimization 
procedure described in section 2.1. Set k=k+1 and go to 
step 2.

Step 6. Calculates the probabilistic characteristics of 
bearing capacity. The formulas for mean value, standard 

deviation, and coefficient of variation of BC are shown in 
Eq. (5), Eq. (6) and Eq. (7), respectively. 

Cov�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� = 1
|𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖|�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗�

∫ ∫ 𝑅𝑅𝑅𝑅�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�  (2) 

𝑅𝑅𝑅𝑅(Δ𝑥𝑥𝑥𝑥,Δ𝑦𝑦𝑦𝑦,Δ𝑧𝑧𝑧𝑧) = 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 exp �− ��√𝜋𝜋𝜋𝜋

Δ𝑥𝑥𝑥𝑥
𝜃𝜃𝜃𝜃𝑥𝑥𝑥𝑥
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑦𝑦𝑦𝑦
𝜃𝜃𝜃𝜃𝑦𝑦𝑦𝑦
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑧𝑧𝑧𝑧
𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧
�
2
��        (3 

       (4) 

𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 = ln�1 +

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � 

𝜇𝜇𝜇𝜇𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 = ln�𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � − 0.5𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢

2  

 

respectively.  

𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑁𝑁
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1        (5) 

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝 = �∑ �𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑁𝑁𝑁𝑁−1

      (6) 

COV𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝

       (7)     

End of an algorithm. 

 

𝑋𝑋𝑋𝑋𝑉𝑉𝑉𝑉 =
1

|𝑑𝑑𝑑𝑑|���𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)d𝑥𝑥𝑥𝑥d𝑦𝑦𝑦𝑦d𝑧𝑧𝑧𝑧                   (1) 

 

 

(5)

Cov�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� = 1
|𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖|�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗�

∫ ∫ 𝑅𝑅𝑅𝑅�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�  (2) 

𝑅𝑅𝑅𝑅(Δ𝑥𝑥𝑥𝑥,Δ𝑦𝑦𝑦𝑦,Δ𝑧𝑧𝑧𝑧) = 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 exp �− ��√𝜋𝜋𝜋𝜋

Δ𝑥𝑥𝑥𝑥
𝜃𝜃𝜃𝜃𝑥𝑥𝑥𝑥
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑦𝑦𝑦𝑦
𝜃𝜃𝜃𝜃𝑦𝑦𝑦𝑦
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑧𝑧𝑧𝑧
𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧
�
2
��        (3 

       (4) 

𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 = ln�1 +

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2

𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � 

𝜇𝜇𝜇𝜇𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢 = ln�𝜇𝜇𝜇𝜇𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 � − 0.5𝜎𝜎𝜎𝜎𝑌𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢

2  

 

respectively.  

𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑁𝑁
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1        (5) 

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝 = �∑ �𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑁𝑁𝑁𝑁−1

      (6) 

COV𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝

       (7)     

End of an algorithm. 

 

𝑋𝑋𝑋𝑋𝑉𝑉𝑉𝑉 =
1

|𝑑𝑑𝑑𝑑|���𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)d𝑥𝑥𝑥𝑥d𝑦𝑦𝑦𝑦d𝑧𝑧𝑧𝑧                   (1) 

 

 

(6)

Cov�𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗� = 1
|𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖|�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗�

∫ ∫ 𝑅𝑅𝑅𝑅�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ,𝑦𝑦𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗�  (2) 

𝑅𝑅𝑅𝑅(Δ𝑥𝑥𝑥𝑥,Δ𝑦𝑦𝑦𝑦,Δ𝑧𝑧𝑧𝑧) = 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢
2 exp �− ��√𝜋𝜋𝜋𝜋

Δ𝑥𝑥𝑥𝑥
𝜃𝜃𝜃𝜃𝑥𝑥𝑥𝑥
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑦𝑦𝑦𝑦
𝜃𝜃𝜃𝜃𝑦𝑦𝑦𝑦
�
2

+ �√𝜋𝜋𝜋𝜋
Δ𝑧𝑧𝑧𝑧
𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧
�
2
��        (3 
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2  

 

respectively.  

𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑁𝑁
∑ 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1        (5) 

𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝 = �∑ �𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖−𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝�𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1
𝑁𝑁𝑁𝑁−1

      (6) 

COV𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎𝑝𝑝𝑝𝑝
𝜇𝜇𝜇𝜇𝑝𝑝𝑝𝑝

       (7)     

End of an algorithm. 

 

𝑋𝑋𝑋𝑋𝑉𝑉𝑉𝑉 =
1

|𝑑𝑑𝑑𝑑|���𝑋𝑋𝑋𝑋(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧)d𝑥𝑥𝑥𝑥d𝑦𝑦𝑦𝑦d𝑧𝑧𝑧𝑧                   (1) 

 

 

(7)

End of an algorithm.

3  Numerical accuracy
The concept of using a constant covariance matrix may 
introduce differences in the obtained random bearing 
capacity estimations in comparison with the situation 
where the covariance matrix is determined individually to 
the generated undrained shear strengths. However, earlier 
experiences in the case of two dimensional Prandtl’s 
failure mechanism indicated that those differences are 
very small, for more details please see Puła and Chwała 
(2015). Despite this, for the purpose of this study, the 
comparison analyses are conducted to verify the impact 

Figure 3: Flow chart of the numerical algorithm. Detailed 
descriptions of the steps are in the text. 
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on accuracy for the three-dimensional case. For this 
reason, a series of numerical analyses were performed 
to examine the variation coefficients of the undrained 
bearing capacity obtained by the standard version of the 
algorithm (Chwała, 2019a) and by the approach presented 
in this study. The analyses cover variety of foundation 
lengths; namely, a=1.0 m, a=3.0 m, a=5.0 m and a=10.0 
m ; the foundation width is assumed constant, b=1.0 m. 
Variety of fluctuation scales are examined; however, 
in this comparison the isotropic correlation structure 
is assumed (θh=θv=θ). The results are shown in Fig. 4. 
It is clearly visible that the impact of using constant 
covariance matrix in the case of the three-dimensional 
analyses is very limited. Moreover, it is near the numerical 
accuracy connected with the finite number of Monte Carlo 
simulations used to estimate coefficient of variation of 
undrained bearing capacity. In the analysed scenarios, a 
number of N=2000 simulations were used.  

In Fig. 4, the results obtained by random finite limit 
analysis are also shown for the same soil conditions. Those 
results were obtained by Huang et al. (2013) for plane strain 
conditions (see green dashed line in Fig. 4); therefore, 
they cannot be compared directly with those obtained 
by the approach proposed in this study. Nevertheless, 
Fig. 4 illustrates the importance of considering spatial 
variability in three dimensions – for longer foundations, 
plane strain assumption may provide more conservative 
BC coefficient of variation estimates. 

Moreover, by using the algorithm proposed in this 
study, the same scenarios were examined as in the study 
by Simoes et al. (2014), where the three dimensional 
spatial variability was considered for 8 m foundation 
section (the authors used random finite limit analysis). 
Note that in the study by Simoes et al. (2014) plane strain 
conditions were assumed. Therefore, the obtained failure 
mechanism was not fully three-dimensional; however, 
due to its proportions 8.0 m over 1.0 m, this impact is 
not very significant. The comparison is shown in Table 1. 
The results obtained by both approaches are consistent; 
however, in the study by Simoes et al. (2014), lower 

bearing capacity mean values and standard deviations 
were obtained. Certain parts of these differences can be 
explained by the fully three-dimensional mechanism 
considered in this paper and different covariance 
functions assumed in both studies. 

As mentioned above, a number of 2000 simulations 
was used for the estimation of bearing capacity mean 
value and standard deviation. This number is found to be 
sufficient for the objectives of this study. To illustrate that 
the mean value and standard deviations are stabilized 
for N=2000, in Fig. 5, those parameters together with 
coefficient of variation of bearing capacity for one 
particular simulation are shown. It can be observed that 
for N>500, the concerning values converged. For the 
application needed in this study, the obtained accuracy is 
sufficient. 

Figure 4: Comparison of bearing capacity variation coefficients 
obtained by the method proposed in this study (constant covariance 
matrix) with standard algorithm (individual covariance matrix, 
Chwała (2019a)). The relative differences between both approaches 
are below 5%, which is sufficient for the purpose of this study. A 
detailed description is in the text.  

Table 1: Comparison of the results obtained in this study with those obtained by Simoes et al. (2014) by random finite limit analysis.

Scenario Method μNc
 [-] σNc [-] COVNc [-]

COVcu
=0.5

θ=8.0 m

RFLA (Simoes et al. 2014) 4.77 1.68 0.35

This study 5.19 2.14 0.41

COVcu
=1.0

θ=2.0 m

RFLA (Simoes et al. 2014) 3.72 1.23 0.33

This study 4.51 1.77 0.39
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4  Numerical analyses
To construct graphs that are sufficiently accurate for the 
approximate estimation of the coefficient of variation of 
undrained bearing capacity in a wide range of soil and 
foundation geometry scenarios, numerous numerical 
simulations have to be performed. The results are present 
in a dimensionless coordinate system to cover almost all 
possible scenarios (from practical application viewpoint in 
the case of standard foundation sizes). As the vertical axis, 
the dimensionless coefficient of variation of undrained 
bearing capacity Dp defined as Dp=COVp⁄COVcu

) is assumed 
in the graphs. As a result of such a definition, Dp takes 
values from 0.0 to 1.0. Note that if the undrained shear 
strength be described by a single random variable (instead 
of random field like in this study), the corresponding Dp 
value will be equal to 1.0. However, by introducing spatial 
averaging of undrained shear strength, Dp is bounded by 
the above-mentioned range. As a horizontal axis, a ratio 
between foundation length and horizontal fluctuation 
scale is assumed, a ⁄ θh. Due to the wide range of  quotient 
a ⁄ θh the logarithmic scale is assumed for the horizontal 
axis. In this coordinate system, a series of results for a 

variety of θv  ⁄ b ratios and b/θh ratios were plotted. To use 
these charts, the information of foundation size (a and b), 
coefficient of variation of cu and vertical fluctuation scale 
are needed. This set of values is necessary in the case of 
practical applications because COVcu

 and θv can be quite 
easily determined basing on CPT sounding (Pieczyńska-
Kozłowska, 2015). The estimation of horizontal 
fluctuation scale is still a challenging task; however, for 
the conservative estimation of COVp, the infinite value 
of θh can be assumed. To prepare the charts given in the 
following section, 155 scenarios were analysed in total. 
This number of scenarios results in 3.1×105 performed 
numerical simulations. The analyses were conducted for 
θv  ⁄ b = 2.0, 1.0, 0.75, 0.5, 0.25 and 0.125. For specified θv  ⁄ 
b different b/θh are assumed; b/θh = 0.1, 0.2, 0.5, 1.0, 2.0, 
4.0, 8.0. However, due to the requirements that foundation 
length a≥b, not all values of b/θh are admissible (this can be 
seen in the charts shown in the following section). Finally, 
for each considered b/θh, a series of a ⁄ θh are examined. 
All performed analyses are for square and rectangular 
foundations, other foundation shapes are not considered 
in this study. The surface foundation was assumed.         

5  Results
The resulting coefficients of variation of undrained 
bearing capacity for the scenarios described in the 
previous section are used here to construct the graphs 
for reading approximate values of undrained bearing 
capacity (without the necessity of conducting numerical 
calculations). The description of the graphs is given 
below; however, the examples of their application are 
shown in section 5.1. The final results were divided into 
two graphs shown in Fig. 6 and Fig. 7. This separation is to 
ensure their clarity. From Fig. 6, the values of coefficients 
of variations for ratios θv ⁄b ∈ [2.0, 1.0] and  θv ⁄b ∈ [0.25, 
0.125] can be read. However, from Fig. 7, the coefficients of 
variations for ratios θv ⁄b ∈ [1.0, 0.25]. Note that vertical axes 
in Fig. 6 and Fig. 7 are a dimensionless ratio of Dp=COVp 

⁄ COVcu  (this ratio expresses the reduction magnitude of 
COVcu

); therefore, to calculate a coefficient of variation 
of undrained shear strength, the read value of Dp has to 
be multiplied by the coefficient of variation of undrained 
shear strength COVcu

. As shown in Fig. 6 and Fig. 7, the 
values of Dp decrease with a decrease in θv ⁄b ratio. Please 
note that the left edges of all lines represent the square 
foundation, for example, in Fig. 6, for θv ⁄b=0.25 and  
b/θh=0.1 on the left edge, a/θh=0.1 (a=b). This is the reason 
why there are different starting locations for different b/θh. 

Figure 5: Mean value, standard deviation and variation coefficient of 
bearing capacity as a function of simulation number N. The square 
foundation is assumed with geometry parameters and fluctuation 
scales detailed in the figure.
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The second visible tendency observable in Fig. 6 and Fig. 7 
is that for the specified θv ⁄b, the values of Dp decrease with 
an increase in b/θh. Moreover, for established θv ⁄b and  
b/θh, Dp decreases with an increase in the foundation 
length a (a/θh). The results shown in Fig. 6 and Fig. 7 cover 
almost all cases that may occur in the standard sizes of 
shallow foundations and recently reported fluctuation 
scales (e.g., Pieczyńska-Kozłowska et al., 2017, Bagińska 
et al., 2018).           

Results shown in Fig. 6 and Fig. 7 are represented 
as functions of b/θh and a/θh. However, in the case of 
practical applications, the determination of the horizontal 
fluctuation scale is difficult. Moreover, this is still the open 
question: how to determine the horizontal fluctuation 
scale when limited number of soil soundings are 
accessible? For this reason, the calculations for θh=∞ were 
performed for different θv ⁄b ratios. By taking an infinite 
value of the horizontal fluctuation scale, the horizontal 
axis from Fig. 6 and Fig. 7 has no sense; therefore, as 
a horizontal axis, a ratio of a ⁄θv is chosen. As it can be 
seen in Fig. 8, the values of Dp decrease slightly with an 
increase in a ⁄θv. This phenomenon is caused by changes 
in foundation shape. The results shown in Fig. 8 have to 
be treated as conservative estimations of Dp (higher than 
for θh<∞). The similar dependence of Dp, like in Fig. 6 and 
Fig. 7, is observed in Fig. 8.   

5.1  Example of usage of graphs and accuracy 
verification

To demonstrate the possible usage of the graphs in Fig. 
6, Fig. 7 and Fig. 8, the undrained bearing capacity 
coefficient of variation for a set of scenarios is estimated 
based on these figures. To verify the outcomes, the same 
scenarios were analysed by the proposed algorithm 
individually. Finally, the obtained results are compared 
and juxtaposed in Table 2. The locations of the considered 
scenarios are shown in Fig. 9 and Fig. 10. Let’s discuss the 
first row of Table 2. According to the initial data for the 
first scenario, the following dimensionless coordinates 
of point 1 can be found: θv ⁄b= 0.3, b/θh= 0.167 and  
a/θh= 0.167. After positioning point 1, the value Dp of 0.685 
can be read. Finally, by multiplying it by the corresponding 
COVcu

, a value of searching undrained bearing capacity 
coefficient of variation is obtained as 0.41. In the last two 
rows, the values of COVcu

 and θv are taken from the study 
of Pieczyńska-Kozłowska et al. (2017).

According to Table 2, the obtained differences are 
below 10% and they are caused by the finite number of 
considered scenarios and interpolation errors. Note that 

the positioning of scenarios from Table 1 is made without 
the use of drafting equipment. This level of accuracy can 
be accepted for the approximate estimations of undrained 
bearing capacity coefficient of variations. Note that the 
errors in estimation of the fluctuation scale and COVcu

 may 
be of the same order.    

6  Summary and concluding remarks
This paper presents a very efficient algorithm for the 
three-dimensional analysis of the undrained bearing 
capacity of shallow foundations in the case of spatially 
variable undrained shear strength. The algorithm uses 

Figure 6: Graph for reading Dp value for ratios θv  ⁄ b ∈ [2.0,1.0] and 
θv  ⁄ b ∈ [0.25,0.125]. Note that the colour in the legend indicates θv  ⁄ 
b and the line type (coloured on black in the legend) indicates θv  ⁄ b.

Figure 7: Graph for reading Dp value for ratios θv  ⁄ b ∈ [1.0,0.25]. 
Note that the colour in the legend indicates θv  ⁄ b and the line type 
(coloured on black in the legend) indicates θv  ⁄ b.
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constant covariance matrix approach and is based on the 
Vanmarcke’s spatial averaging in conjunction with upper 
bound approach (a kinematical failure mechanism is 
used). The algorithm was used in the study to analyse a 
series of scenarios. The objective of this extensive analysis 
is to create graphs that allow reading the approximate value 
of undrained bearing capacity coefficient of variation. The 
ranges of foundation geometries and fluctuation scales are 
assumed in a manner to cover almost all scenarios possible 
to exist for standard shallow foundations’ geometries and 
for the reported values of fluctuation scales. Square and 
rectangular foundations were analysed. The proposed 
algorithm is very efficient; namely, one three-dimensional 
bearing capacity evaluation for spatially variable 
undrained shear strength takes below 1s for one core of a 
standard notebook. According to the presented algorithm 
and performed numerical analyses, the following 
conclusions can be drawn:
1.	 As indicated in Fig. 4, the resulting coefficient of 

variation of undrained bearing capacity obtained 

by using constant covariance matrix (the matrix 
computed for the expected value of undrained shear 
strength) is very close to the values obtained for 
individually determined covariance matrix (Chwała, 
2019a). As a result of using the proposed approach, a 
similar accuracy can be achieved, but the numerical 
efficiency is improved dramatically (the computation 
time for one simulation is reduced about 100 times). 
The observed efficiency is far better than the observed 
for the methods based on finite element method, or 
finite difference method (Kawa and Puła, 2019). The 
problem of poor numerical efficiency is the reason 
why there is a lack of studies concerning three-
dimensional bearing capacity for spatially variable 
soil. The paper by Kawa and Puła is one of the first in 
this area. Nevertheless, the efficiency of the method 

Figure 8: Graph for reading Dp value for an infinite horizontal 
fluctuation scale.

Table 2: Exemplary usage of the graphs proposed in this study. Detailed descriptions are in the text.

No. Scenario description COVp read from 
graphs [-]

COVp determined by 
numerical analyses [-]

Difference 
[%]a [m] b [m] θv [m] θh [m] COVcu

 [-]

1 2.0 2.0 0.6 12.0 0.6 0.41 0.435 -6.1%

2 10.0 1.5 1.0 5.0 0.4 0.226 0.210 +7.1%

3 20.0 0.9 0.8 3.0 1.0 0.29 0.311 -7.2%

4 25.0 1.8 1.2 1.2 0.5 0.057 0.052 +8.7%

5 2.0 1.0 1.5 2.0 0.7 0.451 0.458 -1.5%

6 25.0 3.0 0.5 10.0 1.0 0.29 0.280 +3.4%

7 3.0 3.0 0.40 ∞ 0.24 0.13 0.130 0.0%

8 20.0 1.0 0.47 ∞ 0.51 0.40 0.403 -0.7%

Figure 9: Illustration of example scenarios. Note that the colour in 
the legend indicates θv  ⁄ b and the line type (coloured on black in 
the legend) indicates θv  ⁄ b.
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proposed in this study allows for its usage for the 
applications that required many simulations to be 
analysed, like the analyses performed in this study or 
the recently proposed approach for searching optimal 
borehole locations (Chwała, 2019b).  

2.	 The proposed algorithm was used to create graphs 
that allow fast reading of approximate coefficient of 
variation of undrained bearing capacity. The usage 
of the graphs is demonstrated in the study, the 
obtained results indicate that the final accuracy can 
be accepted for this purpose. The graphs can be used 
if vertical fluctuation scale and coefficient of variation 
of undrained shear strength are known. However, 
those values can be relatively easily determined 
from CPT sounding. The graphs can be used to make 
a comparison with the other three-dimensional 
methods for random bearing capacity estimation. As it 
can be observed in Fig. 6, Fig. 7 and Fig. 8, there are no 
worst-case scenario (e.g., Fenton and Griffiths, 2008; 
Ching et. al., 2017) in the coefficients of variation of 
bearing capacity exists. This is in agreement with 
earlier experiences where the worst-case is observed 
mostly in mean values (e.g., Puła et al., 2017).  

3.	 The study indicates the importance of performing 
three-dimensional analyses if the soil spatial 
variability is taken into account. A three-dimensional 
algorithm is necessary to consider realistically the 
soil spatial variability that has a three-dimensional 
nature. This phenomenon is visible in Fig. 6 and 
Fig. 7, where a significant decreasing tendency in 
variation coefficient of undrained bearing capacity 

is observed with an increase of foundation length a. 
Results indicate that if two-dimensional analysis is 
assumed, the resulting estimation of COVp will be a 
conservative one.
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Appendix A
The bearing capacity formula for rough foundation base 
according to the study by Chwała (2019a) can be expressed 
by Eq. (A.1): 

p=p1+p2+p3+p4 (A.1)

where, p1, p2, p3 and p4 are contributions to the bearing 
capacity for the bottom side, the top side, the left side and 
the right side of the failure mechanism, respectively (see 
Fig. 1):

(A.2)

(A.3)

𝑝𝑝𝑝𝑝1 = 𝑏𝑏𝑏𝑏2�𝑎𝑎𝑎𝑎 − (𝑑𝑑𝑑𝑑1 + 𝑑𝑑𝑑𝑑2)�𝑚𝑚𝑚𝑚1 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛1𝑚𝑚𝑚𝑚2 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛2𝑚𝑚𝑚𝑚3     (A.2) 

𝑝𝑝𝑝𝑝2 = 𝑏𝑏𝑏𝑏1�𝑎𝑎𝑎𝑎 − (𝑑𝑑𝑑𝑑1 + 𝑑𝑑𝑑𝑑2)�𝑚𝑚𝑚𝑚4 + 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛3𝑚𝑚𝑚𝑚5 + 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛4𝑚𝑚𝑚𝑚6     (A.3) 

𝑝𝑝𝑝𝑝3 = 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛5𝑚𝑚𝑚𝑚7 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛6𝑚𝑚𝑚𝑚8       (A.4) 

𝑝𝑝𝑝𝑝4 = 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛7𝑚𝑚𝑚𝑚9 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛8𝑚𝑚𝑚𝑚10       (A.5) 

Table A.1. Coefficients from Eq. (A.2)–Eq. (A.5) for rough and smooth foundation base. Note that the undrained 
shear strengths 𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊 are defined individually for each dissipation region (for more details see Chwała,  2019a).  

Coeff. Expression 

𝑚𝑚𝑚𝑚1 𝑐𝑐𝑐𝑐1 cot𝛽𝛽𝛽𝛽2 + 2𝑐𝑐𝑐𝑐21(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐2 cot𝛼𝛼𝛼𝛼2 

𝑚𝑚𝑚𝑚2 𝑐𝑐𝑐𝑐6 cot𝛼𝛼𝛼𝛼2 + 2𝑐𝑐𝑐𝑐24(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐5 cot𝛽𝛽𝛽𝛽2 

𝑚𝑚𝑚𝑚3 𝑐𝑐𝑐𝑐8 cot𝛼𝛼𝛼𝛼2 + 2𝑐𝑐𝑐𝑐23(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐7 cot𝛽𝛽𝛽𝛽2 

𝑚𝑚𝑚𝑚4 𝑐𝑐𝑐𝑐3 cot𝛽𝛽𝛽𝛽3 + 2𝑐𝑐𝑐𝑐22(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐4 cot𝛼𝛼𝛼𝛼3 

𝑚𝑚𝑚𝑚5 𝑐𝑐𝑐𝑐10 cot𝛼𝛼𝛼𝛼3 + 2𝑐𝑐𝑐𝑐26(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐9 cot𝛽𝛽𝛽𝛽3 

𝑚𝑚𝑚𝑚6 𝑐𝑐𝑐𝑐12 cot𝛼𝛼𝛼𝛼3 + 2𝑐𝑐𝑐𝑐25(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐11 cot𝛽𝛽𝛽𝛽3 

𝑚𝑚𝑚𝑚7 𝑐𝑐𝑐𝑐16 cot𝛼𝛼𝛼𝛼1 + 2𝑐𝑐𝑐𝑐28(𝛼𝛼𝛼𝛼1 + 𝛽𝛽𝛽𝛽1) + 𝑐𝑐𝑐𝑐14 cot𝛽𝛽𝛽𝛽1 

𝑚𝑚𝑚𝑚8 𝑐𝑐𝑐𝑐15 cot𝛼𝛼𝛼𝛼1 + 2𝑐𝑐𝑐𝑐27(𝛼𝛼𝛼𝛼1 + 𝛽𝛽𝛽𝛽1) + 𝑐𝑐𝑐𝑐13 cot𝛽𝛽𝛽𝛽1 

𝑚𝑚𝑚𝑚9 𝑐𝑐𝑐𝑐20 cot𝛼𝛼𝛼𝛼4 + 2𝑐𝑐𝑐𝑐30(𝛼𝛼𝛼𝛼4 + 𝛽𝛽𝛽𝛽4) + 𝑐𝑐𝑐𝑐19 cot𝛽𝛽𝛽𝛽4 

𝑚𝑚𝑚𝑚10 𝑐𝑐𝑐𝑐18 cot𝛼𝛼𝛼𝛼4 + 2𝑐𝑐𝑐𝑐29(𝛼𝛼𝛼𝛼4 + 𝛽𝛽𝛽𝛽4) + 𝑐𝑐𝑐𝑐17 cot𝛽𝛽𝛽𝛽4 

𝑛𝑛𝑛𝑛1 �1 +
𝑏𝑏𝑏𝑏22

𝑑𝑑𝑑𝑑12(sin𝛽𝛽𝛽𝛽2)2 

𝑛𝑛𝑛𝑛2 �1 +
𝑏𝑏𝑏𝑏22

𝑑𝑑𝑑𝑑22(sin𝛽𝛽𝛽𝛽2)2 

𝑛𝑛𝑛𝑛3 �1 +
𝑏𝑏𝑏𝑏12

𝑑𝑑𝑑𝑑12(sin𝛽𝛽𝛽𝛽3)2 

𝑛𝑛𝑛𝑛4 �1 +
𝑏𝑏𝑏𝑏12

𝑑𝑑𝑑𝑑22(sin𝛽𝛽𝛽𝛽3)2 

𝑛𝑛𝑛𝑛5 �1 +
𝑑𝑑𝑑𝑑12

𝑏𝑏𝑏𝑏12(sin𝛽𝛽𝛽𝛽1)2 

𝑛𝑛𝑛𝑛6 �1 +
𝑑𝑑𝑑𝑑12

𝑏𝑏𝑏𝑏22(sin𝛽𝛽𝛽𝛽1)2 

𝑛𝑛𝑛𝑛7 �1 +
𝑑𝑑𝑑𝑑22

𝑏𝑏𝑏𝑏12(sin𝛽𝛽𝛽𝛽4)2 

					   
					   

(A.4)

							      (A.5)

Coefficients mi and ni are juxtaposed in Table A.1.

Table A.1: Coefficients from Eq. (A.2)–Eq. (A.5) for rough and smooth 
foundation base. Note that the undrained shear strengths ci are 
defined individually for each dissipation region (for more details see 
Chwała,  2019a). 

Coeff. Expression

𝑝𝑝𝑝𝑝1 = 𝑏𝑏𝑏𝑏2�𝑎𝑎𝑎𝑎 − (𝑑𝑑𝑑𝑑1 + 𝑑𝑑𝑑𝑑2)�𝑚𝑚𝑚𝑚1 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛1𝑚𝑚𝑚𝑚2 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛2𝑚𝑚𝑚𝑚3     (A.2) 

𝑝𝑝𝑝𝑝2 = 𝑏𝑏𝑏𝑏1�𝑎𝑎𝑎𝑎 − (𝑑𝑑𝑑𝑑1 + 𝑑𝑑𝑑𝑑2)�𝑚𝑚𝑚𝑚4 + 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛3𝑚𝑚𝑚𝑚5 + 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛4𝑚𝑚𝑚𝑚6     (A.3) 

  

Coeff. Expression 

𝑚𝑚𝑚𝑚1 𝑐𝑐𝑐𝑐1 cot𝛽𝛽𝛽𝛽2 + 2𝑐𝑐𝑐𝑐21(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐2 cot𝛼𝛼𝛼𝛼2 

𝑚𝑚𝑚𝑚2 𝑐𝑐𝑐𝑐6 cot𝛼𝛼𝛼𝛼2 + 2𝑐𝑐𝑐𝑐24(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐5 cot𝛽𝛽𝛽𝛽2 

𝑚𝑚𝑚𝑚3 𝑐𝑐𝑐𝑐8 cot𝛼𝛼𝛼𝛼2 + 2𝑐𝑐𝑐𝑐23(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐7 cot𝛽𝛽𝛽𝛽2 

𝑚𝑚𝑚𝑚4 𝑐𝑐𝑐𝑐3 cot𝛽𝛽𝛽𝛽3 + 2𝑐𝑐𝑐𝑐22(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐4 cot𝛼𝛼𝛼𝛼3 

𝑚𝑚𝑚𝑚5 𝑐𝑐𝑐𝑐10 cot𝛼𝛼𝛼𝛼3 + 2𝑐𝑐𝑐𝑐26(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐9 cot𝛽𝛽𝛽𝛽3 

𝑚𝑚𝑚𝑚6 𝑐𝑐𝑐𝑐12 cot𝛼𝛼𝛼𝛼3 + 2𝑐𝑐𝑐𝑐25(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐11 cot𝛽𝛽𝛽𝛽3 

𝑚𝑚𝑚𝑚7 𝑐𝑐𝑐𝑐16 cot𝛼𝛼𝛼𝛼1 + 2𝑐𝑐𝑐𝑐28(𝛼𝛼𝛼𝛼1 + 𝛽𝛽𝛽𝛽1) + 𝑐𝑐𝑐𝑐14 cot𝛽𝛽𝛽𝛽1 

𝑚𝑚𝑚𝑚8 𝑐𝑐𝑐𝑐15 cot𝛼𝛼𝛼𝛼1 + 2𝑐𝑐𝑐𝑐27(𝛼𝛼𝛼𝛼1 + 𝛽𝛽𝛽𝛽1) + 𝑐𝑐𝑐𝑐13 cot𝛽𝛽𝛽𝛽1 

𝑚𝑚𝑚𝑚9 𝑐𝑐𝑐𝑐20 cot𝛼𝛼𝛼𝛼4 + 2𝑐𝑐𝑐𝑐30(𝛼𝛼𝛼𝛼4 + 𝛽𝛽𝛽𝛽4) + 𝑐𝑐𝑐𝑐19 cot𝛽𝛽𝛽𝛽4 

𝑚𝑚𝑚𝑚10 𝑐𝑐𝑐𝑐18 cot𝛼𝛼𝛼𝛼4 + 2𝑐𝑐𝑐𝑐29(𝛼𝛼𝛼𝛼4 + 𝛽𝛽𝛽𝛽4) + 𝑐𝑐𝑐𝑐17 cot𝛽𝛽𝛽𝛽4 

𝑛𝑛𝑛𝑛1 �1 +
𝑏𝑏𝑏𝑏22

𝑑𝑑𝑑𝑑12(sin𝛽𝛽𝛽𝛽2)2 

𝑛𝑛𝑛𝑛2 �1 +
𝑏𝑏𝑏𝑏22

𝑑𝑑𝑑𝑑22(sin𝛽𝛽𝛽𝛽2)2 

𝑛𝑛𝑛𝑛3 �1 +
𝑏𝑏𝑏𝑏12

𝑑𝑑𝑑𝑑12(sin𝛽𝛽𝛽𝛽3)2 

𝑛𝑛𝑛𝑛4 �1 +
𝑏𝑏𝑏𝑏12

𝑑𝑑𝑑𝑑22(sin𝛽𝛽𝛽𝛽3)2 

𝑛𝑛𝑛𝑛5 �1 +
𝑑𝑑𝑑𝑑12

𝑏𝑏𝑏𝑏12(sin𝛽𝛽𝛽𝛽1)2 

𝑛𝑛𝑛𝑛6 �1 +
𝑑𝑑𝑑𝑑12

𝑏𝑏𝑏𝑏22(sin𝛽𝛽𝛽𝛽1)2 

𝑛𝑛𝑛𝑛7 �1 +
𝑑𝑑𝑑𝑑22

𝑏𝑏𝑏𝑏12(sin𝛽𝛽𝛽𝛽4)2 

𝑛𝑛𝑛𝑛8 �1 +
𝑑𝑑𝑑𝑑22

𝑏𝑏𝑏𝑏22(sin𝛽𝛽𝛽𝛽4)2 

 

𝑝𝑝𝑝𝑝1 = 𝑏𝑏𝑏𝑏2�𝑎𝑎𝑎𝑎 − (𝑑𝑑𝑑𝑑1 + 𝑑𝑑𝑑𝑑2)�𝑚𝑚𝑚𝑚1 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛1𝑚𝑚𝑚𝑚2 + 0.5𝑏𝑏𝑏𝑏2𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛2𝑚𝑚𝑚𝑚3     (A.2) 

𝑝𝑝𝑝𝑝2 = 𝑏𝑏𝑏𝑏1�𝑎𝑎𝑎𝑎 − (𝑑𝑑𝑑𝑑1 + 𝑑𝑑𝑑𝑑2)�𝑚𝑚𝑚𝑚4 + 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑1𝑛𝑛𝑛𝑛3𝑚𝑚𝑚𝑚5 + 0.5𝑏𝑏𝑏𝑏1𝑑𝑑𝑑𝑑2𝑛𝑛𝑛𝑛4𝑚𝑚𝑚𝑚6     (A.3) 

  

Coeff. Expression 

𝑚𝑚𝑚𝑚1 𝑐𝑐𝑐𝑐1 cot𝛽𝛽𝛽𝛽2 + 2𝑐𝑐𝑐𝑐21(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐2 cot𝛼𝛼𝛼𝛼2 

𝑚𝑚𝑚𝑚2 𝑐𝑐𝑐𝑐6 cot𝛼𝛼𝛼𝛼2 + 2𝑐𝑐𝑐𝑐24(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐5 cot𝛽𝛽𝛽𝛽2 

𝑚𝑚𝑚𝑚3 𝑐𝑐𝑐𝑐8 cot𝛼𝛼𝛼𝛼2 + 2𝑐𝑐𝑐𝑐23(𝛼𝛼𝛼𝛼2 + 𝛽𝛽𝛽𝛽2) + 𝑐𝑐𝑐𝑐7 cot𝛽𝛽𝛽𝛽2 

𝑚𝑚𝑚𝑚4 𝑐𝑐𝑐𝑐3 cot𝛽𝛽𝛽𝛽3 + 2𝑐𝑐𝑐𝑐22(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐4 cot𝛼𝛼𝛼𝛼3 

𝑚𝑚𝑚𝑚5 𝑐𝑐𝑐𝑐10 cot𝛼𝛼𝛼𝛼3 + 2𝑐𝑐𝑐𝑐26(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐9 cot𝛽𝛽𝛽𝛽3 

𝑚𝑚𝑚𝑚6 𝑐𝑐𝑐𝑐12 cot𝛼𝛼𝛼𝛼3 + 2𝑐𝑐𝑐𝑐25(𝛼𝛼𝛼𝛼3 + 𝛽𝛽𝛽𝛽3) + 𝑐𝑐𝑐𝑐11 cot𝛽𝛽𝛽𝛽3 

𝑚𝑚𝑚𝑚7 𝑐𝑐𝑐𝑐16 cot𝛼𝛼𝛼𝛼1 + 2𝑐𝑐𝑐𝑐28(𝛼𝛼𝛼𝛼1 + 𝛽𝛽𝛽𝛽1) + 𝑐𝑐𝑐𝑐14 cot𝛽𝛽𝛽𝛽1 

𝑚𝑚𝑚𝑚8 𝑐𝑐𝑐𝑐15 cot𝛼𝛼𝛼𝛼1 + 2𝑐𝑐𝑐𝑐27(𝛼𝛼𝛼𝛼1 + 𝛽𝛽𝛽𝛽1) + 𝑐𝑐𝑐𝑐13 cot𝛽𝛽𝛽𝛽1 

𝑚𝑚𝑚𝑚9 𝑐𝑐𝑐𝑐20 cot𝛼𝛼𝛼𝛼4 + 2𝑐𝑐𝑐𝑐30(𝛼𝛼𝛼𝛼4 + 𝛽𝛽𝛽𝛽4) + 𝑐𝑐𝑐𝑐19 cot𝛽𝛽𝛽𝛽4 

𝑚𝑚𝑚𝑚10 𝑐𝑐𝑐𝑐18 cot𝛼𝛼𝛼𝛼4 + 2𝑐𝑐𝑐𝑐29(𝛼𝛼𝛼𝛼4 + 𝛽𝛽𝛽𝛽4) + 𝑐𝑐𝑐𝑐17 cot𝛽𝛽𝛽𝛽4 

𝑛𝑛𝑛𝑛1 �1 +
𝑏𝑏𝑏𝑏22

𝑑𝑑𝑑𝑑12(sin𝛽𝛽𝛽𝛽2)2 

𝑛𝑛𝑛𝑛2 �1 +
𝑏𝑏𝑏𝑏22

𝑑𝑑𝑑𝑑22(sin𝛽𝛽𝛽𝛽2)2 

𝑛𝑛𝑛𝑛3 �1 +
𝑏𝑏𝑏𝑏12

𝑑𝑑𝑑𝑑12(sin𝛽𝛽𝛽𝛽3)2 

𝑛𝑛𝑛𝑛4 �1 +
𝑏𝑏𝑏𝑏12

𝑑𝑑𝑑𝑑22(sin𝛽𝛽𝛽𝛽3)2 

𝑛𝑛𝑛𝑛5 �1 +
𝑑𝑑𝑑𝑑12

𝑏𝑏𝑏𝑏12(sin𝛽𝛽𝛽𝛽1)2 

𝑛𝑛𝑛𝑛6 �1 +
𝑑𝑑𝑑𝑑12

𝑏𝑏𝑏𝑏22(sin𝛽𝛽𝛽𝛽1)2 

𝑛𝑛𝑛𝑛7 �1 +
𝑑𝑑𝑑𝑑22

𝑏𝑏𝑏𝑏12(sin𝛽𝛽𝛽𝛽4)2 

𝑛𝑛𝑛𝑛8 �1 +
𝑑𝑑𝑑𝑑22

𝑏𝑏𝑏𝑏22(sin𝛽𝛽𝛽𝛽4)2 

 


