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Abstract: The article describes a computer analysis of 
the pull-out test used to calculate the force needed to 
pull out a rock fragment and determine the shape of this 
broken fragment. The analyzed material is sandstone 
and porphyry. The analysis included the first approach 
to using own subroutine in the Simulia Abaqus system, 
that is, which task is undertaken to accurately determine 
the crack path of the Finite Element Method model. The 
work also contains a description of laboratory tests and 
analytical considerations.

Keywords: Pull-out test; rock mechanics; fracture 
mechanics; numerical modeling of fracture.

1  Introduction
The “pull-out” test is quite often used as a simple method 
of estimating the material parameters of concrete or rock 
without the need for laboratory test. The test consists of 
pulling out the anchor placed in the material. On the basis 
of the test results, tensile strength and fracture energy can 
be estimated. Most often, this test is performed for concrete 
with an anchor, which was embedded during the formation 
of the sample (Brencich, 2015; Wang, Wu, Ouyang, He, 
& Sun, 2017; Contrafatto & Cosenza, 2014). Thus, the 
characteristics of the pull-out test is completely different 
from that described in their papers. The authors of the 
presented work attempted to analyze sandstone cracking 
during a pull-out test made with a self-undercutting 
anchor, which only has contact with the tested material 
in the undercut area. These anchors are normally used 
to anchor various structural elements. The described 
test is intended for the opposite purpose – to pull out the 
anchor together with a part of the rock. This is a different 

approach, because the anchor is designed not to destroy 
the material in which it is mounted, but to destroy itself. 
The analysis focused on the sandstone obtained from the 
quarries Braciszów and Brenna in Poland, but there were 
some tests concerning the porphyry from the quarry Zalas 
in Poland. Rock samples were obtained during the “in 
situ” pull-out tests at the mentioned quarries, which were 
carried out as a part of the Rodest project financed by the 
Polish National Center of Science (Jonak et al., 2019).

The research consisted of finding the parameters of 
the selected material – sandstone from the Braciszów 
quarry. Next, the numerical analysis of the pull-out test 
was carried out using the Finite Element Method with 
the use of X-FEM elements, which allowed simulation 
of the crack propagation giving results not dependent 
on the FEM mesh. The pulling process was forced by the 
vertical displacement of the upper edge of the anchor. 
Contact rock-anchor was analyzed taking into account 
the different friction coefficients. The results obtained 
in the calculations were compared with the pull-out 
tests performed on actual rock. The aim of the described 
research is to find a way to calculate the force of pulling 
out the anchor for any material and for any length of 
anchoring.

The HILTI HDA-P M20x250/100 anchor was adopted 
for pull-out tests. with anchoring length of 25 cm will be 
used (“European Technical Assessment…”), the picture of 
this anchor is shown in Fig. 1.

To mount this anchor, it is placed in a prepared hole 
in the anchored surface. Then, a drill is attached to the 
anchor, and while drilling, the anchor undercuts itself 
with deflecting elements. Scheme of mounting the anchor 
is shown in Fig. 2. Fixing the anchor, therefore, consists of 
a contact between the material and the undercut, not the 
anchor side. So the contact area is relatively small.

2  Description of the Model
Simulia Abaqus FEA system was used for calculations. 
The X-FEM method implemented in Abaqus was used for 
modelling the crack. The pull-out test was modeled in 2D 
space as an axially symmetrical task. The computational 
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model is presented in Fig. 3, where h is the depth of the 
anchorage. The boundary conditions were modelled on the 
right and bottom edge, the size of the model was assumed 
to be large enough so that the boundary conditions did 
not affect the result.

The sandstone was modelled as a linear-elastic 
material with Young’s modulus E = 15.7749 GPa, Poisson’s 
ratio ν = 0.251. Maximum principal stress (Rankine 
criterion) was chosen as a parameter responsible for the 
material damage, the following material parameters: 
tensile strength ft = 12.89 MPa and the critical strain energy 
release rate GIc = 0.306 N/mm were used. The laboratory 
tests from which these parameters were obtained are 
described in the further subsection. Tensile strength ft is 
also the stress that initiates the crack.

The load was simulated by several different methods. 
The first method consists of modeling the action of the 
anchor by forcing the vertical displacement in the area of 
the rock undercut fragment (see Fig. 3). This method was 
divided into two variants. First, with horizontal blocking 
on the anchor edge, and second, without this blocking. 
Next method was with an anchor in the model. The load 
was simulated by vertical displacement applied on the 
upper edge of the anchor, and a contact was modeled 
between the anchor and sandstone, with 5 different 
friction coefficients: h = 0.01, 0.1 0.2, 0.5 and 1.0. There was 
no possibility to determine the exact friction coefficient 
between these two material because in this test, the rock 
under heavy load crushes, but still this crushed part 
transfers the load further.

The critical force was determined by the sum of the 
vertical reactions in nodes with applied displacement, 
both in the case of the load specified in the place of contact 
of two materials and for the load at the end of the anchor.

3  Material Parameters
Correct modelling in the program requires the 
determination of material parameters. A series of 
laboratory tests were performed on the samples of the 
selected material.

Figure 1: Pre-set undercut Hilti HDA-P anchor.

    
                                 			   (a) 					                        (b)

Figure 2: a) scheme of mounting the anchor, b) used anchor.

Figure 3: Scheme of the task.
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3.1  Compression test

Cubes of 7 x 7 x 7 cm dimensions were used to determine 
a few material parameters. They were used to calculate 
the Young modulus and Poisson’s ratio as a result of 
the compression with extensometer tests. Then, the 
compressive strength was obtained from the destructive 
compression test performed on the same samples.

Photograph from these tests are shown in Fig. 4. On 
the left side, the displacement sensor is visible, which 
measures the vertical deformations, and on the right side, 
there is the extensometer that measures the horizontal 
deformations. It is mounted on steel plates glued to the 
opposite sides of samples.

The Young modulus was calculated from the below 
equation:
 

(3.1)

where, h is the height of the sample, A is the area of 
horizontal cross-section of the sample and κ is the slope 
of the curve of compressive force to vertical deformations’ 
dependence, read in the range where the curve is close 
to a straight line. Results from this test are shown in Fig. 
5a. There were 14 cubic samples named K1–K14, but some 
tests were unsuccessful. The Young modulus varied from 
10.136 to 24.768 GPa. Mean value was 15.745 GPa with 
standard deviation 4.819 GPa (31% of the mean value).

Poisson’s ratio was estimated on the basis of the curves 
showing the dependence of transverse displacements 
of the sample (measured with the extensometer) on the 
vertical displacements recorded by the displacement 
sensor (Fig. 5b). The calculated Poisson’s ratio varied 
from 0.1199 to 0.2909. Mean value was 0.2025 with 
standard deviation 0.0694 (34% of the mean value). The 
compressive strength was obtained from the standard 
method as the ratio of the destructive force to the area of 
horizontal cross-section of the sample. The mean value 
was 187.23 MPa with standard deviation 18.46 MPa (~10% 
of the mean value).

3.2  Beam bending test

The authors have performed three point bending test on 
notched beams, of the discussed material, to calculate the 
stress intensity factor in mode I and then the critical strain 
energy release rate in mode I.

Figure 4: Compression with extensometer test.

			   (a)

			   (b)

Figure 5: Results of the compressive tests: a) relation between the 
force and vertical displacement, b) relation between horizontal and 
vertical displacement.
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Critical stress intensity factor is a material 
characteristic. It specifies the amount of stress 
concentration at the crack tip. There are three main 
modes of cracks. In the case of the problem described in 
this article, the most appropriate mode is mode I, which 
occurs when the crack opening caused by tensile force is 
perpendicular to the crack.

Several laboratory methods for testing the rate of crack 
energy release are used (van Mier, 1996). In the presented 
research, a three-point bending test was used, this test is 
performed on the samples notched in the middle of the 
span. Fig. 6 shows the static scheme and geometry of the 
samples, and Fig. 7 shows the photo taken during the 
laboratory test.

There are several methods for calculating the stress 
intensity factor in mode I from the results obtained from 
the described test (Bower, 2010; Elices, Guinea, Gómez, 
Planas, & Gomez, 2002). The authors of this article used 
the equation according to ASTM described in (Brown & 
Srawley, 1966):

(3.2)

Pc used in this equation is the force that initiates the crack 
in this bending test, a is the length of the notch, h – the 
height of the beam, b – the width of the beam, l – length 
of the beam. Six samples were used for this test. The 
calculated stress intensity factor is 69.184 N/mm3/2, which 
is close to factors obtained by other researchers for similar 
materials (Hasanpour & Choupani, 2008). The standard 
deviation was 5.500 N/ mm3/2 (8% of the mean value).

The critical strain energy release rate in mode I was 
calculated from the equation (Elices et al., 2002):

(3.3)

Its value is 0.306 N/mm.

3.3  Quasi-Brazilian test

The authors also made a quasi-Brazilian test on cubes. 
Typically, tests of traction during splitting are performed 
on cylindrical samples, but they are hard to obtain from 
such material as analyzed here. So, the Abaqus system 
was used to find the field of stresses and then the tensile 
strength for cubic samples. The tensile strength was 
calculated thanks to the results presented in the previous 
authors paper (Gontarz & Podgórski, 2016). Authors used 
the Ottosen-Podgórski criterion, which allows to calculate 
the tensile strength based on the equation:

(3.4)

where smax is the tensile stress in the center of the sample, 
obtained from own numerical analyzes, ρ is the coefficient 
depending on the ratio of tensile and compressive stress 
and the chosen failure criterion for material in a complex 
stress state. For the chosen criterion and material,  
r ≈ 0.969, which shows that the tensile strength is slightly 
greater than the critical tensile stress. For the four 
examined samples, the tensile strength is 12.89 MPa with 
standard deviation 3.72 MPa (29% of the mean value).

In Fig. 8 samples after the exemplary tests are shown. 
The heterogeneity of the examined material can be seen.

Figure 6: Scheme of the three point bending test with the notch.

Figure 7: Three point bending test for notched beams.
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4  Computer Simulations
The above material parameters were used to model the 
test in Abaqus for the 9 cm anchoring. The authors used 
the X-FEM method of crack propagation. Extended Finite 
Element Method is a method of simulating a fracture in the 
Finite Element Method, which is independent of the mesh. 
Modification of the shape function of element allows the 
finite element to be separated anywhere (Mohammadi, 
2008), so the mesh doesn’t need to be fine. Crack initiation 
refers to the beginning of the degradation of the cohesive 
response in the enriched element. The degradation 
process begins when stresses or strains meet certain crack 
initiation criteria. Crack initiation criteria are available 

based on the following built-in Abaqus/Standard models: 
the maximum principal stress criterion, the maximum 
principal strain criterion, the maximum nominal stress 
criterion, the maximum nominal strain criterion, the 
quadratic traction-interaction criterion, and the quadratic 
separation-interaction criterion. An additional crack is 
introduced or crack length of an existing gap is carried 
on after an equilibrium increment, when the crack 
propagation criterion f = 1.0 (Abaqus V 6.14.2, 2014). In the 
above example, the simplest criterion for crack initiation 
is chosen – the maximum principal stress damage, which 
occurs when the tensile stress exceeds the value of the 
tensile strength. The damage evolution can be determined 
based on fracture energy or displacement at failure. In 

 

Figure 8: The quasi-Brazilian test.

Figure 9: Model of the test before the load application.
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this simulation, energy is the most-suited choice, because 
the critical strain energy release rate was calculated from 
laboratory tests (GIc = 0.306 N/mm).

As it was described before, 7 methods of the pull-out 
force application were selected:

–– without anchor, locked horizontal displacement,
–– without anchor, free horizontal displacement,
–– with anchor, friction coefficient µ = 0.01,
–– with anchor, friction coefficient µ = 0.1,
–– with anchor, friction coefficient µ = 0.2,
–– with anchor, friction coefficient µ = 0.5,
–– with anchor, friction coefficient µ = 1.0.

Given below are some exemplary figures from simulations 
in Abaqus. In Fig. 9, one of the models before the load 
application is shown. The view of the damaged model 
from a sample simulation is shown in Fig. 10.

As it can be seen, the crack started to propagate as 
expected, but near the upper edge of the model, the 
crack began to distort and return. For various FEA system 
settings and different meshes, it was not possible to 
cause the crack to go through to the end. This is related 
to the limitations of X-FEM in Abaqus, probably due to a 
complex stress state in which the procedures implemented 
in system are not precise enough to correctly predict the 
direction of the crack propagation. Analyzing the results 
of the simulation, we can observe that the force applied to 
the anchor increases until the crack reaches the size equal 
approximately to the anchorage depth. At this point, the 
gap propagates with decreasing value of force. Fig. 11 shows 
the relationship between the crack range and the pull-out 

force that was obtained during the FEM simulation. As can 
be seen, there were significant differences in the values 
of the critical forces obtained, which were derived from 
the method of load simulation and anchor-rock contact. 
The maximum force varies from about 100 kN to 220 kN. 
Given below are all the maximum force values for different 
methods that have been achieved:

–– locked horizontal displacement: 124.52 kN,
–– with free horizontal displacement: 95.31 kN,
–– friction coefficient  µ = 0.01: 225.90 kN,
–– friction coefficient  µ = 0.1: 190.67 kN,
–– friction coefficient  µ = 0.2: 169.40 kN,
–– friction coefficient  µ = 1.0: 129.25 kN,

In Fig. 12, crack paths for different methods are shown. 
Here, the results for simulations without anchor are so 
unnatural that they can’t be taken into account further. 
Nevertheless the results for simulations with anchor are 
also very different to each other. The maximum force 
is also obtained in different locations, with different 
crack lengths. It means that the model and the friction 
coefficient should be chosen very carefully, but this is a 
difficult task due to the fact that the material crushes in 
contact with the anchor. As it will be proved in the next 
section, the shape closest to reality is the one for the 
friction coefficient µ = 0.2.

It can be seen that the path of the crack at the very end 
behaves unnaturally in all the models. It should also be 
noted that the line for actual test is approximate because 
it is physically impossible to acquire such information 
during the test. This test is described in the next section.

Figure 10: Last step of calculation from simulation with anchor and friction coefficient µ = 0.2.
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Figure 11: Graph of force dependence on the horizontal range of the crack.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Crack paths for different methods of applying the load.

 

Figure 13: Pull-out test performed on actual rock (Jonak et al., 2019).
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The main conclusion from the above analysis is that 
anchor presence should not be neglected in the analysis; 
however, different values of the friction coefficients have 
a very significant influence on the result, both on the 
maximum force and the crack path.

5  Pull-Out Test on Actual Rock
Tests in the quarry were also made on the same stone 
and for the same depth of the anchor (Fig. 13). For three 
successful tests performed on a sandstone, the average 
pulling-out force is 162 kN (Jonak et al., 2019). Inspection 
of the damaged rock in Fig. 14 allowed to state that the 
shape of the broken fragment is similar to the one in the 
computer simulation, especially for the simulation with 
the anchor-rock friction coefficient µ ≈ 0.2.

Examining one of the pulled-out cone in Fig. 15, it is 
also possible to explain the incorrect crack behavior in 
computer simulations. It is evident that the width of the 
pulled-out fragment is different on the circumference. 
For most tests, the rock breaks perpendicular to the 
surface when the gap approaches it at a distance of 1¸2 cm. 
Probably in simulations, there should also be such a crack, 
but the Abaqus system has difficulty in simulating the 
crack forking. The best obtained result is for simulation 
with anchor and friction coefficient between the anchor 
and the rock µ = 0.2, both in terms of the maximum 
obtained force and the shape of the crack. However, it is 
not known if this coefficient is correct, especially since in 
fact this coefficient changes due to the change of the rock 
structure in the contact zone, high pressure in this area 
causes crushing of the rock.

6  Determining the Direction of the 
Crack Propagation
For the reason that Abaqus FEA system has difficulties to 
correctly lead the crack, authors are planning to implement 
their own “Abaqus User Subroutine”, which will use its 
own crack propagation criterium. Abaqus determines 
the crack direction based on the direction of maximum 
principal stress occurring in the finite element in which 
the crack occurs. In the proposed method, finding the 
direction of the crack propagation requires calculation of 
the “failure parameter” μ (material effort ratio): its value is 
calculated as a ratio rσ/rf of vectors modules in the stresses 
space (Podgórski, 2017), as it can be seen in Fig. 16.

 
(a)

 
(b)

Figure 14: A cross-section of the actual pull-out sample: a) Sandstone, 
b) Porphyry

Figure 15: The shape of the actual pull-out sandstone sample.

Figure 16: Definition of the material effort ratio μ.
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The rσ parameter is the distance in the stress space 
between point 0, and the point describing the current 
stress state, rf is the distance in the stress space between 
the point 0 and the point on the failure criterion envelope:

(6.1)

where τ0 and σ0 are stress invariants, which can be 
calculated for the chosen failure criterion. Authors have 
chosen the Ottosen-Podgórski (PJ) criterion (Podgórski, 
1984), (Podgórski, 1985), which can be written in the form:

(6.2)

Where P(J) is a function describing the shape of limit surface 
in deviatoric plane and α, β, C0, C1, C2 are material constants. 
The limit surface for this criterion is shown in Fig. 17.

The failure parameter μ is calculated for a small area 
around the crack tip. It is calculated for any applied force, 
and when it is greater than 1, then the failure occurs. 
Applied force then is reduced proportionally to parameter 
μ, to receive the force that initiates the crack. The next 
important aspect is the crack propagation direction. 
The appropriate direction φ of the crack propagation 
is chosen, for which the maximum value of the failure 
parameter gradient is achieved:

(6.3)

Figure 17: a) The limit surface associated with author Ottosen-Podgórski (PJ) criterion compared with Drucker‑Prager cone, b) Coulomb-
Mohr, Drucker‑Prager and PJ criteria at 2D stress state.

 
			   (a)							       (b)

Figure 18: a) Values of the material effort ratio μ near the crack tip, b) the exemplary gradient-crack direction dependency.
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The algorithm for own Abaqus User Subroutine is simple 
in assumptions. When the crack reaches a specific finite 
element the gradient function is calculated for angle 
φ from -90° to 90°. The angle for minimum gradient is 
chosen and the crack is carried out at this angle to the next 
finite element. The shape function of the element with the 
crack is enriched as in typical X-FEM analysis.

The authors decided to pre-check the operation of 
this algorithm in one selected point of the calculation. 
Element near the beginning of the crack was chosen, 
which is the area where the crack path appointed by 
Abaqus was correct. For this purpose, stresses σ11, σ22, σ33 
and τ12 were read in several distances from the crack tip 

(from 0.4 mm to 1.1 mm, where the average size of finite 
element is 1 mm near the crack path). Then, these stresses 
were transformed into the σ0 - τ0 plane. The paths after 
which the stresses were read are presented in Fig. 19 (red 
arcs). Then σf and tf were calculated from equation  and 
proportion s0/t0 = sf /tf for every angle from -90° to 90° and 
for each circumference of the arc. Then the material effort 
was calculated from the following equation:

(6.4)

The values of material effort ratio are presented in Fig. 
20. Instead of finding the gradient of material effort, the 
authors stated in this case that the crack will go in the 
direction where the material effort is minimum. It allowed 
to find the crack path within the range of the assumed 
arches (blue line in Fig. 19). It is worth noticing that in Fig. 
20, there are some vertical shifts on the curves. This is due 
to the fact that there are finite element edges. Stresses in 
the two adjacent finite elements are different, while inside 
the element stress, values are interpolated.

Returning to Fig. 19, X-FEM method does not assume 
cracking along the curve, but only in a straight line. 
Therefore, the only important thing here is the point of 
intersection of the predicted crack curve with the edge 
of the tested finite element, and this is the point where 
the crack tip should appear in the next increment of the 
simulation. Initial analysis showed promising results, 
because this point coincides with the point determined 
by the Abaqus program. Next step of these considerations 
would be checking the same procedure in further 
increments of the calculation, that is, where Abaqus 
began to give wrong directions of the crack. Then, if the 
method turned out to be correct, the next step would be 
programming the discussed algorithm as own Abaqus 
User Subroutine.

7  Summary
As it was stated before, the results without an anchor 
are incorrect in relation to the models with an anchor. 
Computer simulations can’t be performed to the total 
breakage of the rock fragment, because before the end, 
the crack begins to behave inconsistently to the test in 
reality. Fortunately, the maximum force was obtained 
before the occurrence of this phenomenon, which means 
that even if this phenomenon continues to occur, it is 

Figure 19: Predicted crack path found with own method.

Figure 20: Values of material effort ratio for different angles and 
different distance from the crack tip.
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possible to determine the maximum force. Authors are 
planning to implement own “Abaqus User Subroutine” in 
Abaqus system with own crack propagation criterion, and 
hopefully, it will allow to correctly lead the crack as in a 
real rock.
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