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Abstract: Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most eco-
nomical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section
gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the reso-
lution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution.
Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to
visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image
resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive
transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated im-
ages. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian
method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance
matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop
applications of image transformation tools to inhomogeneity detection in salt deposits.
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1. INTRODUCTION

Rock mass containing salt deposits display high
seismologic inhomogeneity. Correct detection of in-
homogeneity of horizontal or semi-horizontal stratum
of rocky salt deposits are crucial in preparation of
reservoirs.

The acoustic impedance changes with lithologic
and facial changes in subsurface. The inversion of
seismic section for obtaining pseudoacoustic imped-
ance section gives the possibility to bind very closely
with geological data and gives the possibility to ex-
tract additional information from seismic data. The
inversion process effectively transforms seismic in-
formation into the geological domain. The quality and
quantity of interpretation of the final results increase
with the frequency bandwidth of seismic data and
dominant frequency increase. The basic inversion
concept is simple; a reversal of the procedure long
used to compute synthetic seismograms from sonic
logs is the first idea. Many different approaches are
applied to achieve the goal [12]. In practice the re-

verse process is difficult, since it requires inversion of
a low grade, the seismic trace, into the higher-grade
sonic log signal. A reflection coefficient time series
should be represented by a single spike. The synthetic
seismic trace is given by convolution reflection coef-
ficients series and seismic wavelet

x(t) = r(t) * w(z) (M

where
r(t) — reflection coefficient series,
w(t) — seismic wavelet,
x(t) — synthetic seismic trace.
The synthetic seismic trace with noise is given by

x(t) = r(t) * w(t) + n(z) )

where

r(t) — reflection coefficient series,

w(t) — seismic wavelet,

x(¢) — synthetic seismic trace,

n(t) — random noise.

The real data are briefly distorted especially by
transmission losses, random noise, phenomena associ-
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ated with the recorded seismic signal and band limited
wavelet. The main step in the inversion process is
adequate processing seismic data before inversion.
Modern seismic field data can be processed to elimi-
nate much of the distortion, and can be compensated
in part wave propagation phenomena and density, to
yield an approximation to reflection coefficients. First,
seismic traces are converted into pseudoreflection
coefficient time series, then into acoustic impedance
by the inversion of the time series. A reflection coeffi-
cient time series should be represented by a single
spike. An important procedure to repair damage to the
spectrum (caused by transmission trough the earth and
the recording instruments) is deconvolution. Ideally,
an acoustic impedance interface should be represented
by a single spike on the seismic section.
Pseudoacoustic impedance section obtained by in-
version of seismic section facilitates the interpretation,
but the seismic wavelet parameters and noise briefly
influence the resolution. Low dominant frequency and
especially long signal duration time and the presence
of noise decrease pseudoimpedance resolution [9].
One of the methods to improve the resolution thor-
ough processing before the inversion process is espe-
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cially the deconvolution. The other is the image proc-
essing after the inversion process.

Image processing and edge detection presented in
the paper are based on synthetic pseudoimpedance
acoustic section of seismic-geology model as standard
detection of salt deposits in our country.

The edge detection of analysed images uses Sobel
operator, Prewitt operator, Robert operator, Canny
operator as well as Laplacian of Gaussian method,
Wiener filtering and by slicing 3-D acoustic pseudoim-
pedance matrix into proper acoustic pseudoimpedance
value, corresponding to selected geologic stratum.

2. SEISMIC MODELLING
OF PSEUDOIMPEDANCE
ACOUSTIC SECTIONS

The synthetic pseudoimpedance acoustic sections
presented in this paper are generated for the simplified
data from LGOM areas obtained by inversion method
based on recursive relation. The rock salt on synthetic
pseudoimpedance acoustic sections is observed in
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Fig. 1. Synthetic pseudoimpedance acoustic section.
The parameters of signal applied to construction of synthetic seismogram are: f; — dominant frequency 40 Hz, fy/f = 2
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Fig. 2. Synthetic pseudoimpedance acoustic section.
The parameters of signal applied to construction of synthetic seismogram are: f; — dominant frequency 40 Hz, fo/f = 2
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b)

Fig. 3. Synthetic pseudoimpedance acoustic section.
The parameters of signal applied to construction of synthetic seismogram are: f, — dominant frequency 40 Hz, fo/f = 2, noise 30%

a)

b)

Fig. 4. Synthetic pseudoimpedance acoustic section.
The parameters of signal applied to construction of synthetic seismogram are: f;, — dominant frequency 40 Hz, 60 Hz, fo/ff = 1

time limit between 0.70—1.00 s (1000 m and 1600 m,
respectively, on the geological model).

The synthetic pseudoimpedance acoustic section
presented in Figs. 1-3 are generated for long signal
duration time fy/f = 2 (fy — dominant frequency,
f — dumping factor), for dominant frequency f, =
40 Hz, in Fig. 1, for dominant frequency f; = 60 Hz in
Fig. 2, for dominant frequency f, = 60 Hz and random
noise added to synthetic seismic section in Fig. 3. The
synthetic pseudoimpedance acoustic sections gener-
ated without deconvolution are presented in Figs. 1a,
2a, 3a and with deconvolution minimum entropy
MED applied before process inversion are presented
in Figs. 1b, 2b, 3b.

The synthetic pseudoimpedance acoustic sections
generated for short signal duration time fo/f =1 are pre-
sented in Fig. 4, for dominant frequency fo = 40 Hz
(Fig. 4a) and f; = 60 Hz (Fig. 4b).

From the comparison of the resolution of pseu-
doimpedance acoustic sections, Figs. 1-4, the effect of
deconvolution minimum entropy (MED) can be ob-
served. The effect of long time signal duration is
compensated by the deconvolution minimum entropy
MED which is done before inversion process. That
enhances the precision of interpretation, but the effect

of compensation is not so visible in the presence of
noise.

In the paper, the minimum entropy deconvolution
(MED) before inversion synthetic data generated by
INVERS system is applied. MED technique was
proposed by Wiggins [13], it performs maximisation
of an entropy norm, so called the Varimax norm. In
the original approach, the term “minimum entropy”
is a synonym of “maximum order”. Minimum entropy
deconvolution MED norm seeks the smallest number
of large spikes that are consistent with the data mainly
of isolated spikes Dirac o(7). The solution consists of
reasonable feature of reflectivity. That means that in
practice a high reflection coefficient influences much
more the solution.

Internal structure of the salt deposit displays sev-
eral lithological types of rock salt (pure coarse-
crystalline salt, anhydrite salt, salt intercalated with
anhydrite). Rock mass containing salt deposits dis-
plays high seismologic inhomogeneity. Due to con-
siderable contrast of elastic properties of different
kinds of salts and unlike neighbouring layers the high
reflection coefficients are observed within the Zech-
stein rocks. That is consistent with theoretical features
of minimum entropy deconvolution (MED).
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3. COMPUTER AID IN GEOLOGIC
FEATURE IDENTIFICATION

From aggregated data, in many cases, there is con-
structed a set of data that establish knowledge base to
built images of properties of the modelled geologic
morphology. Visualisation of data sets takes the form
of some images as well as colours or grey.

The most frequently used geometric conversions
of image with computer aided technique are context and
spectrum transformation as well as different forms of
a morphology mapping [1], [2]. Context transformation
is based on alteration of image elements depending on
their own content and content of circumambient ele-
ments. It requires a lot of calculations and recalcula-
tions on the basis of surrounding image elements to
achieve value of transformed image element. Those
operations are defined by convolution function. Con-
volution provides a way of “multiplying together” two
arrays of numbers, generally of different sizes, but of
the same dimensionality, to produce a third array of
the same dimensionality. This can be used in image
processing to implement operators whose output pixel
values are simple linear combinations of certain input
pixel values. In an image context processing, one of
the input arrays (/) is normally just a greyscale image.
The second array (K) is usually much smaller, and is
also two-dimensional (although it may be just a single
pixel thick), and is known as the kernel. Mathemati-
cally we can write the convolution as

0@, j)= iil(z#k -Lj+L-DK(k,1) Q)

k=1 1=1

where i runs from 1 to M —m + 1 and j runs from 1 to
N-—n+1, M, N are the sizes of arrays (/), m, n are the
size of array (K).

The median and mean filtering methods will re-
duce the amount of noise contained in a signal, but

will do nothing towards restoring a distorted image. It
is a low-pass filtering method based on the assump-
tion that each pixel is more or less like the ones
around it. As a result, fine details may be lost, but
a better feel for the entire image may be gained [14].
An example pictures of INVERS system model
A42S530 — with ill-posed parameters as: low main
frequency f'= 40 [Hz], dumping factor £ = 20, noise
s = 30% are presented as mash visualisation of origi-
nal matrix and after cutting off percentiles (1.99), and
mash visualisation after median filtering.

An edge in an image is a sharp variation of the in-
tensity function. In greyscale images this applies to
the intensity or brightness of pixels. In colour images
it can also refer to sharp variations of colour. An edge
is distinguished from noise by possessing a long range
structure. The properties of edges include gradient and
orientation.

Edge detection is a terminology in image process-
ing and computer vision, particularly in the areas of
feature detection and feature extraction, to refer to
algorithms which aim at identifying points in a digital
image at which the image feature changes sharply or
more formally has discontinuities. The edge detection
methods [14] that have been published mainly differ
in the types of smoothing filters that are applied and
the way the measures of edge strength are computed.
As many edge detection methods rely on the compu-
tation of image gradients, they also differ in the types
of filters used for computing gradient estimates in the
x- and y-directions.

Canny algorithm edge detection method is consid-
ering the mathematical problem of deriving an optimal
smoothing filter given the criteria of detection, local-
isation and minimising multiple responses to a single
edge. Canny showed that the optimal filter given these
assumptions is a sum of four exponential terms. He
also showed that this filter could be well approxi-
mated by first-order derivatives of Gaussians. Canny
also introduced the notion of non-maximum suppres-
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Fig. 5. The sample of INVERT image model A42S30 as mash visualisation of:
(a) original matrix and (b) after cutting off percentiles (1.99), (c) mash visualisation after median filtering and Wiener’s filtering
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sion, which means that given the presmoothing filters,
edge points are defined as points where the gradient
magnitude assumes a local maximum in the gradient
direction. The Canny—Deriche detector was derived
from similar mathematical criteria as the Canny edge
detector, although starting from a discrete viewpoint
and then leading to a set of recursive filters for image
smoothing instead of exponential filters or Gaussian
filters.

2D edge detection filters
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Fig. 6. Picture of two-dimensional edge detection filters

For estimating image gradients from the input im-
age or a smoothed version of it, different gradient
operators can be applied. The simplest approach is to
use central differences

Lx,y)=-12* L(x—1,y)
+0*Lx,y)+12*L(x+1,y),

Lyx,y)=-12* L(x,y—1)
+0*Lx,y)+12% L(x,y+ 1) 4

corresponding to the application of the following filter
masks to the image data

Le=[-1/2 0 12]*L
and L,=[+1/2 0 —1/2]"* L.

The well-known and earlier Sobel operator is
based on the following filters

1 0 +1
L.=|-2 0 +2|*L,
1 0 +1

+1 +2 +1
Ly: 0 0 0 [*L.
-1 -2 -1

Given such estimates of first-order derivatives, the
gradient magnitude is then computed as

VL =2+, (6)

while the gradient orientation can be estimated as

O=atan2(L,,L)). 7

The Kayyali operator extracted from Sobel opera-
tor based on two directions, which has direction
(South East North West) known as Kayyali SENW
and another direction (North East South West) known
as Kayyali NESW is shown below

[+6 0 —6]
Kayyali SENW = 0 0 0 |,
) ~6 0 +6
_ _ (6)
-6 0 +6
Kayyali SENW =1 0 0 O
) +6 0 —6

Other first-order difference operators for estimat-
ing image gradient have been proposed in the Prewitt
operator and Roberts cross.
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Fig. 7. Gradient operators used in edge detection algorithms:
(a) Roberts’ cross operator, (b) 3 x 3 Prewitt operator,
(c) Sobel operator, (d) 4 x 4 Prewitt operator

A recent development in edge detection tech-
niques called Phase Congruency Based Edge Detec-
tion takes a frequency domain approach to finding
edge locations. Phase congruency (also known as
phase coherence) methods attempt to find locations
in an image where all sinusoids in the frequency
domain are in phase. These locations will generally
correspond to the location of a perceived edge, re-
gardless of whether the edge is represented by a large
change in intensity in the spatial domain. A key
benefit of this technique is that it responds strongly
to Mach bands, and avoids false positives typically
found around roof edges.
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4. EXEMPLIFICATION OF
EDGE DETECTION IN
GEOLOGIC INTERPRETATION OF
ACOUSTIC PSEUDOIMPEDANCE
IMAGES OF ROCKY SURROUNDINGS

Image processing tools applied in interpretation of
acoustic pseudoimpedance picture are considered as
a subject of increased effectiveness of correct inter-
pretation of images simulated by INVERS system [5].
The sample results, obtained from the calculation on
model A42S30 considered in the paper (Fig. 3), are
gathered in Fig. 8.

The original matrix of acoustic pseudoimpedance
up to now is pictured as colourful image. MATLAB
function was used to form a greyscale image, so origi-
nal matrix was recalculated to limited range of value
(0-255) corresponding to greyscale. After the nor-
malisation process, acoustic pseudoimpedance matrix
was filtered by edge detecting algorithms, described
before. Sample results are presented in Fig. 9.

Reading ability of the above images and proper
geological interpretation are doubtful, so next step of
investigation is an idea to detect edges of images
transformed to logic matrix (grey images are changed
to black and white pictures). Edge detection process
consists of threshold selection for binary conversion,
grain filtration, reintegration and dilatation of proc-
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Fig. 8. Picture of original matrix of model A42S30, normalised to grey scale (0-255) as
(a) meshes and (b) contour grey image
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Fig. 9. Greyscale image of A42S30 geologic morphology model (a), with profile chart (for market section on image) (b),
contour image of A42S30 geologic morphology model (c), and its picture after smoothing and entropy filtration (d)
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Fig. 10. Sample of images picturing conversion process to BW form (binarization),
grain filtration, reintegration and dilatation of processed geologic section matrix
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Fig. 11. Original acoustic pseudoimpedance matrix of model A42S30 after process edge detection with:
(a) Canny, (b) Robert, (c) Sobel and (d) Prewitt algorithms accordingly

essed matrix [3], [10]. The process of conversion is
pictured in Fig. 10.

Reading ability of those images and their proper
geological interpretation is a little more accurate com-
pared to results of edge detection with Prewitt/
Canny/Sobel/Roberts operator, illustrated in Fig. 11,
but still not satisfactory.

The model A42S30 considered in the paper is in-
tentionally disturbed by noise to simulate real condition
of acoustic measurement. Keeping in memory, that
original image and its matrix belong to difficult ob-
jects, any progress in readability and proper geologic
interpretation should be taken.

An easy interpretation and detection of interesting
stratum (for example, layer of rocky salt or anhydrite)
is still doubtful. The concept, introduced in [6], to
slice mash charts of acoustic pseudoimpedance matrix
value on chosen level, proper for interesting stratum,
is still up-to-date. The contour charts were filled by
colour, depending on acoustic pseudoimpedance se-
lected value, presented in [5], are comparable with
results presented in Fig. 10.

5. SUMMARY OF RESULTS
AND CONCLUSIONS

The best hydrocarbon reservoirs are constructed
in salt deposits. First, the detection and identification
of salt stratum inhomogenity are required. This can
be done on the basis of seismic surface measurement.
The seismic section in pseudoacoustic impedance
version facilitates the interpretation. Due to limited

frequency bandwidth of seismic data and the pres-
ence of noise, the inversion procedure is not unambi-
guous. The results are validated as an image, whose
quality can be improved by deconvolution process.
In the paper, serviceability of minimum entropy de-
convolution (MED) method to correct resolution of
seismic section images is presented. In the presence
of noise the (MED) method gives no satisfying im-
provements.

Image processing and edge detection presented in
the paper are based on synthetic pseudoimpedance
acoustic section of simple seismogeological model as
standard salt deposit from LGOM area. The model
A42S30 and its clones, generated for the geological
configuration of salt deposit with anhydrite intercala-
tion were materials studied for parameter selection of
image processing. Those difficult conditions, espe-
cially low signal parameters and relatively high noise
level of 30% were assumed in modelling. Conclusions
drawn from the investigation suggest prudence in
optimism, because context filtering even complying
with adaptive filters is sensitive to context extent. The
best results of Wiener filtering can be obtained for the
noise parameters determined, which is in real meas-
urement difficult.

In the present paper, edges of analysed images
were detected using the Sobel operator, Prewitt op-
erator as well as Laplacian of Gaussian method and by
slicing a 3-D acoustic pseudoimpedance matrix into
proper acoustic pseudoimpedance value, correspond-
ing to selected geologic stratum.

The Sobel operator is based on convoluting the
image with a small, separable, and integer valued
filter in horizontal and vertical direction so the gra-
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dient approximation is relative crude. Its advantage
is relatively inexpensiveness in terms of computa-
tions.

The Prewitt method is called edge template match-
ing, because a set of edge templates is matched to the
image, each representing an edge in a certain orienta-
tion. The edge magnitude and orientation of a pixel
are determined by one but of eight templates that
matches best the local area of the pixel.

The result for the edge magnitude image is very
similar with both (Sobel and Prewitt) methods, pro-
vided the same convoluting kernel is used.

The Laplacian, as isotropic measure on plane of
the 2nd spatial derivative of an image, highlights re-
gions of rapid intensity change and therefore is used
in our analysis for edge detection. The Laplacian is
applied to investigate image that has first been
smoothed with Wiener smoothing filter in order to
reduce its sensitivity to noise.

In the paper, an idea to detect edges of images
transformed to logic matrix (grey images are changed
to black and white pictures) is presented. Edge detec-
tion process consists of threshold selection for binary
conversion, grain filtration, reintegration and dilata-
tion of processed matrix.

The images of selected stratum (anhydrite) are
presented as contour charts filled with colour de-
pending on the value of acoustic pseudoimpedance
(set of a few values for given range). The sliding pro-
cess of mash chart of acoustic pseudoimpedance ma-
trix value on chosen level, proper for interesting stra-
tum has most interesting results, but still not enough
to be satisfactory.
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