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Abstract

The present report is based on a cytological data base on 614 
(56.0 %) of the total 1104 recognized species and 82 (90.0 %) of 
the 88 recognized genera of gymnosperms. Family Cycada-
ceae and many genera of Zamiaceae show intrageneric unifor-
mity of somatic numbers, the genus Zamia is represented by a 
range of number from 2n=16-28. Ginkgo, Welwitschia and Gen-
tum show 2n=24, 2n=42, and 2n=44 respectively. Ephedra 
shows a range of polyploidy from 2x-8x based on n=7. The 
family Pinaceae as a whole shows 2n=24except for Pseudolarix 
and Pseudotsuga with 2n=44 and 2n=26 respectively. Arauca-
riaceae constantly shows 2n=26 while Podocarpaceae has a 
range of 2n=18-38. Sciadopityaceae and Cupressaceae are 
represented by 2n=20 and 2n=22 respectively. Taxaceae 
shows variable numbers of 2n=24, 36 and 22. Polyploidy is 
exceptional being represented by 8.0 % of the taxa studied. 
B-chromosomes have been studied in 31 taxa while hetero-
morphic sex chromosomes have been reported in some dioe-
cious taxa.

Keywords: gymnosperms, chromosome numbers, polyploidy, 
B-chromosome, sex chromosomes

Introduction

Gymnosperms are a small close knit group of seed plants with 
significantly less species diversity as compared to angio-
sperms. Nevertheless, they constitute 39 % of world’s forests in 
both the hemispheres (Armenise et al. 2012) and their impor-
tance in regulating global carbon cycles, supply of timber, 
resins, edible nuts and in horticulture cannot be overstated 
(Zonneveld 2011, Farjon 2018). As a group, however, there is 
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still some controversy with regard to a monophyletic or para-
phyletic origin of the gymnosperms (Hill 2005). Recently they 
have been classified into four subclasses Cycadidae, Ginkgoi-
dae, Gnetidae and Pinidae under the class Equisetopsida 
(Chase and Reveal 2009) comprising 12 families and 83 genera 
(Christenhusz et al. 2011) and 88 genera with 1104 recognized 
species according to the Plant List (www.theplantlist.org). The 
validity of accepted name of each taxa and the total number of 
species in each genus has been checked from the Plant List 
(www.theplantlist.org). The chromosome numbers of 688 taxa 
arranged according to the recent classification (Christenhusz 
et al. 2011) have been summarized in Table 1. The cytological 
data have been obtained from Chromosome Counts Database 
(CCDB), Index to Plant Chromosome Numbers (IPCN), Mehra 
(1988), and over 600 original references, listed separately for 
each genus in the data base. 

Chromosome number data
The present study is based on a very comprehensive chromo-
some and genome size data base of gymnosperm species, pre-
pared by the authors. The last compilation of chromosome 
numbers was done some 60 years back (Khoshoo 1961), a large 
amount of data has accumulated since then resulting in the 
representation of 82 genera and 688 taxa comprising of 614 
species which is well above that of any other plant group. The-
se data representing 56.0 % of the species and 90.0 % of the 
genera have provided further insight into the cytological infor-
mation of this important group of plants. All the gymnosperm 
genera except Columbea, Austrotaxus, Callitropsis, Neocuprosis, 
Sabina and Margbansonia are represented in Table 1. The range 
of chromosome numbers is rather narrow from 2n=14-66 
showing a 5-fold variation (Table 1, Fig. 1) as compared to 
angiosperms from 2n=4-ca.640 a 160-fold variation (Johnson 
et al. 1989). Another significant feature is the occurrence of a 
constant basic number in most of the individual families.
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Table1 
Chromosome numbers in Gymnosperms

Sr. No. Taxon Total No. of Species Chromosome Number (No. of taxa Counted)

Subclass I.: Cycadidae

Order A: Cycadales

Family: Cycadaceae

1. Cycas 92 22 (31)

Family Zamiaceae

2. Dioon 13 18 (10)

3. Bowenia 2 18 (2)

4. Macrozamia 39 18 (15)

5. Lepidozamia 2 18 (2)

6. Encephalartos 68 18 (23) 27(1 plant, E. hildebrandtii))

7. Stangeria 1 16 (1)

8. Ceratozamia 25 16 (13)

9. Microcycas 1 26 (1)

10. Zamia 65 16-28 (41)

Order B: Ginkgoales

Family: Ginkgoaceae

11. Ginkgo 1 12 (haploid), 24, 36, 48 (1)

SUBCLASS III. GNETIDAE

ORDER C. WELWITSCHIALES

FAMILY WELWITSCHIACEAE

12. Welwitschia 1 42 (1)

ORDER D. GNETALES

FAMILY GNETACEAE

13. Gnetum 41 44 (3), 44, 48 (1)

ORDER E. EPHEDRALES

FAMILY EPHEDRACEAE

14. Ephedra  70 14 (16), 28 (18), 42 (2), 42, 56 (1), 28, 56 (1), 56 (1), 14,28 (8), 1 with Bs

SUBCLASS IV. PINIDAE

ORDER F. PINALES

FAMILY PINACEAE

15. Cedrus 3 24 (4)

16. Pinus  130 24 (103), 36, 48 (1 sporadic), 48 (2 sporadic), 1 with B

17. Cathaya 1 24 (1)

18. Picea 40 24 (37), 36, 48 (2 sporadic), 19 with Bs

19. Pseudotsuga 4 24 (4), 26 (2)

20. Larix 14 24 (17), 36 (1 sporadic), 48 (1 sporadic),  
1 with B

21. Pseudolarix  1 44 (1)

22. Tsuga  10 24 (10)

23. Nothotsuga 1 24 (1)

24. Keteleeria 3 24 (4)

25. Abies  48 24 (33), 48 (1 sporadic), 36, 48 (1 sporadic)

Order: Araucariales

Family 8: Araucariaceae

26. Araucaria 19 26 (20)

27. Wollemia 1 26 (1)

28. Agathis 18 26 (3)

29. Columbea 1 --

Family9: Podocarpaceae

30. Phyllocladus 4 18 (4)

31. Lepidothamnus 4 28 (1), 30 (2)

32. Prumnopitys 9 36 (1), 38 (2)

33. Sundacarpus 1 38 (1)

34. Halocarpus 3 18 (1), 22 (1), 24 (1) 

35. Parasitaxus 1 36 (1)

36. Lagarostrobos 1 30 (1)

37. Manoao 1 20 (1)

38. Saxegothaea  1 24 (1)
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Sr. No. Taxon Total No. of Species Chromosome Number (No. of taxa Counted)

39. Microcachrys 1 30 (1)

40. Pherosphaera 2 26 (2)

41. Acmopyle 2 20 (2)

42. Dacrycarpus 9 20 (3)

43. Dacrydium 22 20 (9)

44. Falcatifolium 6 20 (1)

45. Retrophyllum 5 20 (3)

46. Nageia 6 26 (2), 26, 20 (1)

47. Afrocarpus 5 24 (3)

48. Podocarpus 108 22 (1), 33 (1), 34 (2), 36 (1), 38 (3), 20, 22 (2), 34, 36 (1), 34, 35, 36 (1), 
33, 34, 38 (1), 37, 38 (2)

49. Margbensonia 1 ---

ORDER H. CUPRESSALES

FAMILY 10. SCIADOPITYACEAE

50. Sciadopitys  1 20 (1)

FAMILY 11. CUPRESSACEAE

51. Cunninghamia 2 22 (2), 33 (1 sporadic), 1with B’s

52. Taiwania 1 22(1), 33 (1 sporadic), 1with B’s

53. Athrotaxis 3 22 (3)

54. Metasequoia 2 22 (1), 1with Bs

55. Sequoia 1 66 (1), 1 with Bs

56. Sequoiadendron 1 22 (1)

57. Cryptomeria 1 22 (1), 33 (1 sporadic),

58. Glyptostrobus 1 22 (1), 33 (1 sporadic)

59. Taxodium 2 22 (3), 1 with Bs

60. Papuacedrus 1 22 (1)

61. Austrocedrus 1 22 (1)

62. Libocedrus 5 22 (1)

63. Pilgerodendron  1 22 (1)

64. Widdringtonia 4 22 (4)

65 Diselma 1 22 (1)

66. Fitzroya 1 44 (1)

67. Callitris 15 22 (6)

68. Actinostrobus 3 22 (1)

69. Neocallitropsis 1 22 (1)

70. Thujopsis 1 22 (1)

71. Thuja  5 22 (5)

72. Fokienia 1 22 (1)

73. Chamaecyparis 5 22 (7)

74. Cupressus 19 22 (22), 22, 44 (2), 44 (1), 4 with B’s

75. Juniperus 75 22 (71), 22, 33 (1), 33, 44 (1), 22, 33, 44 (1), 22, 44 (7), 44 (9), 22, 44, 66 
(1), 22, 66 (1)

76. Calocedrus 4 22 (3)

77. Tetraclinis 1 22 (1)

78. Platycladus 1 22 (1) 33, 44 (Sporadic)

79. Microbiota  1 22 (1)

80. Callitropsis 1 ---

81. Neocuprosis 3 ---

82. Sabina 2 ---

Family 12: Taxaceae

83. Pseudotaxus  1 24 (1)

84. Taxus 9 24 (10), 16 (1), 1 withBs

85. Cephalotaxus 8 24 (6)

86. Amentotaxus  6 36 (1), 14, 40, 36 (1)

87. Torreya 6 22 (4)

88. Austrotaxus 1 ---

Table 1: continued
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metacentric pair (Christiansen 1963, El-Kassaby et al. 1983, 
Hizume & Kondo 1992, Hizume & Akiyama 1992). The CMA 
banding pattern of P. menziesii however, does not allow any 
derivation from 2n=24 species studied by Hizume &  Kondo 
(1992). Similarly, Pseudolarix amabilis which shows 4 long sub-
metacentrics and 40 small telocentrics of gradually decreasing 
size, derives its karyotype by centric fission of 20 sub-metacen-
trics (Mergen 1961, Hizume 2015).

Araucariaceae: Three genera investigated i.e. Araucaria, 
Agathis and Wollemia uniformly have 2n=26 (Table 1). There is 
no report for Columbea.

Podocarpaceae: Chromosome numbers of 19 species 
have been studied except for Margbensonia (Table 1). A variati-
on of 2n=18-38 occurs in 19 genera and the karyotypes are 
characterized by various combinations of meta-, acro- and 
telocentric chromosomes resulting from centric fission (Table 
1) (Hair and Beuzenberg 1958, Davies et al. 1997).

Sciadopityaceae: This monotypic family with Sciadopitys    
verticillata has a highly symmetrical complement of 2n=20 
(Hizume 1989) (Table 1).

Cupressaceae: This family comprises 32 genera and except 
for Callitropsis, Neocuprosis and Sabina which have not been 
investigated, the rest have constant basic number of x=11 
(Table 1). Out of the 169 species studied 144 are diploid with 
2n=22, intraspecific polyploidy is shown by 13 species and 12 
species are exclusively polyploid (Table 1).

Taxaceae: Variable numbers are present i.e., 2n=24 (Taxus 
and Cephalotaxus), 2n= 40, 36, 14 (Amentotaxus) and 2n=22 
(Torreya) (Table1). The report in Amentotaxus however, needs 
further verification. The only remaining genus is Austrotaxus 
which has not been investigated.

Polyploidy
As has been explained earlier, the cases of recent polyploidy 
are  very less and exceptional in comparison to angiosperms 
(Khoshoo 1959, Ahuja 2005). The data obtained till now shows 
that out of 685 taxa known cytologically 5.0 per cent are poly-
ploid  3.0 per cent have both diploid and polyploid types and 
the rest 92.0 per cent are diploid (Fig. 2). Ployploidy in the gym-
nosperms occurs in the form of stray seedlings, individual 
trees, intraspecific polyploidy in cultivation or in wild and enti-
rely polyploid species and genera (Khoshoo1959).

Cycadaceae: Out of the total of 92 species, 31 species of Cycas  
studied show 2n=22 (Table 1). 

Zamiaceae: This family with nine genera shows variable 
chromosome numbers. The cytologically studied species of 
Dioon (10 spp.), Bowenia (2 spp.), Macrozamia (15 spp.), Lepi-
dozamia (2spp.), Encephalartos (23 spp.) have 2n=18, Stangeria 
(1 sp.), Ceratozamia (13 spp.) have 2n=16 while Microcycas 
shows 2n=26 (Table 1). However, Zamia with 41 species stu-
died shows a dysploid range from 2n=16-28 while Z. chigua  
(2n=22, 24, 25, 26; Norstog 1980, 1981), Z. herrerae (2n=23, 24; 
Nicolalde-Morejon et al.2009), Z. lacandona (2n=16, 17, 18;  
Schutzman & Vovides 1998), Z. loddigesii (2n=17,18 24-27; 
Moretti & Sabato 1984, Moretti 1990, Tagashira & Kondo 1999, 
2001, Vovides & Olivares 1996), Z. paucizuga (2n=19, 23, 25, 27, 
28; Napalitano et al. 2004), Z. prasina (2n=22, 26; Moretti et al. 
1993) and Z. variegata (2n=21, 22; Moretti et al. 1991, 1993) 
show extensive intraspecific variation (Table 1). All this variabi-
lity in chromosome numbers without any change in the num-
ber of chromosome arms is however, explained by centric fissi-
ons as there exists a ratio of one-to-two between median and 
terminal chromosomes with increase or decrease of somatic 
number (Olson & Gorelick 2011,  Rastogi & Ohri 2019).  

Ginkgoaceae: This monotypic family with Ginkgo biloba 
has 2n=24 (Table 1).

Welwitschiaceae: The only species Welwitschia mirabilis 
with 2n=42 has a unique all telocentric karyotype (Khoshoo 
and Ahuja 1963).

Gnetaceae: Four species of Gnetum i.e., Gnetum gnemon, 
Gnetum montanum, Gnetum ula and Gnetum costatum show 
2n=44 (Table 1). 

Ephedraceae: Ephedra shows a range of somatic numbers 
from 2n=14-56 among 47 species studied. The ploidy level 
goes up to octoploidy which is the highest among gymno-
sperms (Table 1).

Pinaceae: Among 11 genera included in this family Cedrus, 
Pinus, Cathaya, Picea, Psudotsuga (except P. menziesii), Larix, 
Tsuga, Nothotsuga, Keteleeria and Abies constantly show 2n=24. 
Pseudotsuga menziesii shows a dysploid variation of 2n=26 and 
Pseudolarix amabilis has 2n=44. P. menziesii has a different kary-
otype of 10m+12sm+4t while 2n=24 species lack smaller telo-
centrics and instead have an additional metacentric pair which 
shows that increase in number is due to centric fission in a 
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Fig. 1 
Distribution of 2n chromosome numbers in 688 taxa of gym-
nosperms
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Fig. 2 
Percentage of polyploids (1), intraspecific polyploids (2) and 
diploids (3) in 685 taxa of gymnosperms
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In the entire Cycadidae a single case of a triploid individual is 
known in a cycad species Encephalartos hildebrandtii (Abraham 
and Mathew 1966). 

Individual cases of polyploidy have been found in some  
Pinaceae i.e. Pinus, Picea, Larix, Abies and Cupressaceae genera 
i.e. Cunninghamia, Taiwania, Cryptomeria, Glyptostrobus, Cup-
ressus, Juniperus and Platycladus (Table 1). 

Recently an extensive survey of 2200 individual trees 
which included seedlings obtained from a known tetraploid 
tree (Smarda et al. 2018) and 371 plants of 200 cultivars has 
shown a spontaneous origin of haploid, triploid and tetraploid 
individuals and named cultivars (Table 1), morphologically dis-
tinct from diploids, growing in semi-natural and cultivated sta-
te (Smarda et al. 2018). It is therefore stated that Ginkgo biloba  
spontaneously produces individuals at different ploidy levels 
in a frequency which is well above being sporadic or extremely 
rare, however these polyploid individuals while grow normally 
in cultivation, supposedly have low survival in wild (Smarda et 
al. 2018). 

Ephedraceae and Cupressaceae have been recently found 
to have a high incidence of polyploidy than the cases earlier 
known. In Ephedraceae out of the total of 47 species studied, 
intraspecific polyploidy is detected in Ephedra americana, E. 
chilensis, E.equisetina, E. fragilis, E.gerardiana, E. monosperms, E 
przewalskii, E. regeliana (2x, 4x), and exclusively polyploid spe-
cies are E. altissima, E. aspera, E. boelckei, E. coryi, E. culteri, E. dis-
tachya, E. distachya subsp. helvetica, E. gerardiana var. sikkimen-
sis, E. glauca, E. likiangensis, E. likiangensis f. mairei, E.  lomatolepis, 
E. nevadensis, E. sinica, E. strobilacea, E. transitoria, E trifurca, E. 
viridis (4x), E. californica (6x, 8x), E. funerea (4x, 8x), E. aphylla, E. 
sarcocarpa (6x), E. antisyphilitica (8x) (Ickert Bond et al. 2014, 
Wu et al. 2016). 

Similarly in Cupressaceae out of 169 species studied 13 
show intraspecific polyploidy i.e. Cupressus dupreziana, C. mac-
rocarpa (2x, 4x), Juniperus chinensis (2x, 3x, 4x), J. chinensis var. 
sargentii, J. deppeana var. gamboana, J. pingii, J. polycarpos var. 
seravschanica, J. sabina, J. squamata, J. squamata f. wilsonii (2x, 
4x), J. foetidissima (2x, 6x), J. phoenicea (2x, 4x, 6x) (Table 1). 
Exclusively polyploid species are Sequoia sempervirens (6x), 
Fitzroya cupressoides, Cupressus guadalupensis var. forbesii, Juni-
perus coxii, J. indica, J. procumbens, J. przewalskii, J. recurva, J. 
sabina var. balkanensis, J. thurifera, J. thurifera subsp. africana, J. 
tibetica (4x), J. pfitzeriana (3x, 4x) (Table 1). Interestingly, a 
rather high incidence of polyploidy is observed in Ephedra 
(64.0 %) (Wu et al. 2016) and Juniperus (21.0 %) (Farhat et al. 
2019a, b) (Figs. 3,4).

Autotetraploidy has been deduced in Fitzroya cupressoides 
based on tetrasomic inheritance (Premoli et al. 2000). The kary-
otype studies in Sequoia, Metasequoia and Sequoiadendron 
have brought out distinct differences between the karyotype 
of Sequoia and that of other genera therefore precluding the 
derivation of Sequoia complement from that of its close relati-
ves (Schlarbaum and Tsuchiya 1975, 1984a, b, Ahuja 2005, 
2009). Meiotic configurations in Sequoia further depict an 
overwhelmingly large numbers of bivalents and some multiva-
lents including hexavalents indicating a diploidized autohexa-
ploid, autoallohexaploid or a segmental hexaploid genome 

(Ahuja & Neale 2002, Hizume et al. 2014, Ahuja 2009). Recently 
transcriptome data followed by Baysian concordance analysis 
of single-copy genes strongly supported Sequoiadendron 
rather than Metasequoia as closest relative of Sequoia thereby 
discounting any genomic contribution from Metasequoia. 
However, the phylogenetic relationships based on single-copy 
genes do not exclude hybridization within Sequoiadendron-
Sequoia clade therefore further evidence for autopolyploidy 
was obtained from orthogroups or homeologs of Sequoia as 
the duplicate genes show more similarity of sequences than 
expected (Scott et al. 2016). On the contrary, the interrelation-
ships based on two single copy nuclear genes (LFY and DDB2) 
and two chloroplast DNA fragments reveal widespread inter-
specific hybridization followed by allotetraploidy in Ephedra 
species (Wu et al. 2016). Another exclusively 4x species, Junipe-
rus thurifera shows diploidization of its genome in revealing 
two 35S rDNA sites similar to diploid species (Valles et al. 2015). 
Therefore, it is clear that recent cases of polyploidy are primari-
ly seen in Cupressaceae and Ephedraceae and the present data 
shows that total incidence of polyploidy in gymnosperms is 
about 8.0 %.

B-chromosomes
Like polyploidy, B-chromosomes also occur in very low fre-
quency as compared to angiosperms. Supernumerary chromo-
somes have been detected in 31 taxa which make up about 5 

Fig.3  
Percentage of polyploids (1), intraspecific polyploids (2) and 
diploids (3) in 47 taxa of Ephedra
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Fig.4 
Percentage of polyploids (1), intraspecific polyploids (2) and 
diploids (3) in 91 taxa of Juniperus
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% of the total cytologicaly known taxa. Solitary cases are pre-
sent in Ephedra, Pinus, Podocarpus, Taxus, Cunninghamia and   
Pseudotsuga. However, a tree with 2n=27 in Pseudotsuga   men-
ziesii may well be a trisomic (Owens 1967). Larix and Cupressus 
show B-chromosomes in two and three taxa respectively. The 
greatest frequency of instances are seen in Picea where 18 taxa 
show B-chromosomes in varying numbers (Table 1) (Rastogi 
and Ohri 2019).

Sex chromosomes
Majority of the gymnosperm species (64.6 %) are dioecious   
represented by Cycadidae, Gnetidae, Ginkgo and some species 
in Pinidae and the rest are hermaphrodite monoecious (Ohri & 
Rastogi 2019). Therefore, in dioecious taxa many studies have 
tried to show sex determination based on heteromorphism of 
sex chromosomes where either heteromorphic sex is male  
with XX/XY or female with ZZ/WZ system. In Podocarpus the 
male sex chromosome may even be formed by the fusion of 
two telocentrics giving rise to X1X2X1X2/X1X2Y system. Some 
species of Cycas, Zamia, Stangeria and one each of Ephedra, 
Podocarpus and Ginkgo show heteromorphic sex chromoso-
mes (Table 1). These studies nevertheless, require further 
detailed analyses and confirmation (Ohri and Rastogi 2019).

Conclusions

As a small group, gymnosperms are well represented for their 
chromosome numbers compared with angiosperms. The dys-
ploid variation is present in Zamia, Pseudotsuga, Pseudolarix 
and in Podocarpaceae because of chromosomal fusion/fission 
which do not alter the chromosome arms but increase/decrea-
se chromosome number. The chromosome numbers and kary-
otypes are however, conserved within various families. Recent 
studies have shown that this apparent uniformity of chromo-
some number and form is not commensurate with great varia-
tion in fluorescent bands and number and position of rDNA 
and other repetitive sequences studied by fluorescent in situ 
hybridization (FISH) (Rastogi and Ohri 2019, Ohri & Rastogi 
unpublished). Such studies need to be extended to species 
which need further investigation as this will not only facilitate 
identification of chromosomes in the complement but also 
help to describe the interrelationships in various taxa. Similarly, 
as compared to angiosperms, B-chromosomes have been 
found in a small percentage of species with a non-random dis-
tribution, having been mostly discovered in Picea species (Ras-
togi & Ohri 2019). This aspect needs further investigation as the 
adaptive value shown by B-chromosomes in some particular 
ecological niche as found in some cases, has implications in 
forestry. Similarly a majority of gymnosperm species are dioe-
cious but heteromorphic sex chromosomes have been disco-
vered in less than one percent of the species. This aspect needs 
to be further explored in view of the studies done in Dacrycar-
pus dacrydioides and Manoao colensoi where distinct differen-
ces observed in genome size among male and female plants 
could not be detected in their karyotypes (Ohri & Rastogi 

2019). The present work therefore summarizes the chromoso-
me numbers investigated presently with a view to bring out 
the gaps in our knowledge of this rather important group of 
seed plants.
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