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Abstract

Tree height and diameter at breast height of 30 half-sib Larix 
kaempferi families were analyzed at different ages. Analysis of 
variance revealed a significant difference in growth among dif-
ferent families. Phenotypic variation coefficients of the traits 
tree height and diameter at breast height among families of 
different ages ranged from 11.04 % to 31.74 % and 19.01 % to 
19.83 %, respectively. Average heritability of tree height and 
diameter at breast height ranged from 0.87 to 0.96 and 0.93 to 
0.96, respectively. Significant positive correlations were obser-
ved among all traits at different ages. By the method of multip-
le-traits comprehensive, six families (L18, L12, L8, L3, L25 and 
L20) were selected as being elite using a 20 % selection ratio at 
12 years of age. Average values of these elite families were 
11.15 % and 16.83 % higher than the total average for height 
and diameter at breast height, and genetic gains were 10.53 % 
and 15.79 %, respectively. Forty five elite individual plants were 
selected using a 5 % selection ratio which were 23.47 % and 
24.90 % higher than the overall average for height and diame-
ter at breast height, respectively. 
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Introduction

Larix kaempferi is one of the most successful exotic species in 
China, having been introduced from Japan approximately 100 
years ago (Toda and Mikami 1976). It is an excellent species for 
conifer plantations because of its strong adaptability, wide dis-
tribution, strong resistance, and rapid growth (Kurinobu 2005). 
L. kaempferi has been extensively used as materials for buil-
ding, furniture making, paper manufacture, and biofuel gene-
ration (Fukatsu et al. 2013). For centuries, there are many stu-
dies on L. kaempferi, including growth traits (Teruyoshi et al. 
2014; Hou et al. 2012), wood properties (Cáceres et al. 2017), 
photosynthetic traits  (Watanabe et al. 2011), genetic diversity 
(Achere 2004), and molecular markers (Moriguchi et al. 2008). 

Because cutting and tissue culture was difficult to achieve 
in L. kaempferi, and grafting showed a severe effect on root-
stock, seed orchards are one of the most important improve-
ment methods for L. kaempferi. The earliest seed orchards were 
established in the 1960s (Wang et al. 2000), and many seed 
orchards were established after that. To date, most of the seed 
orchards had been flowering and fruiting, and the elite seeds 
produced were widely used in reforestation (Ding et al. 2002; 
Zhang, 2013; Zheng et al. 2014). To obtain greater genetic 
gains, improvement or advanced seed orchards should be 
established as the next step. Backward selection and forward 
selection is a necessary channel for improvement of seed 
orchard construction. Backward selection is a method to choo-
se superior parents, based on the results of progeny testing 
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(Cornelius, 1994) with the parents chosen to construct an 
improved seed orchard. In forward selection, the elite offspring 
are selected to establish the next generation of seed orchards 
(Wright, 1976). In L. kaempferi seed orchards, most studies used 
on genetic variation and genetic gain in growth traits to evalu-
ate offspring (Zhang et al. 2013; Du et al. 2015) with the back-
ward selection and forward selection seldom reported. In this 
study, tree height (H) and diameter at breast height (DBH) were 
measured in 30 L. kaempferi families over several growth years, 
genetic variation parameters were calculated, and elite fami-
lies in different growth years under different selection ratios 
were selected. Forward and backward selections were used to 
construct different improved seed orchards. This research 
could provide the basis for advaned L. kaempferi breeding. 

Materials and Methods

Experimental sites 
The experimental was conducted in Wudaogou forestry farm 
(N 41º54‘, E 125°17‘), located in Liuhe County, in Jilin Province of 
northeast China. The area has a continental monsoon climate, 
the average annual temperature was 5.5°C, the precipitation 
was 736 mm, the frost-free season was 145 days, and the dura-
tion of sunshine was 2479 hours. L. kaempferi trees grew well at 
the experimental site with the local climate.

Experimental methods
A total of 30 L. kaempferi half-sib families (table 4) were used as 
sources for seed collection in the autumn of 2002. These seeds 
were sown the following year, and the experimental stand was 
established in the spring of 2005. The experimental design 
consisted with 5 blocks and 10 trees row plots was used. The 
test was established using 2-year old seedling at a spacing of 
2×2m.

Data measurement
The tree height (H/m) of all living and unbroken trees was mea-
sured in 2006 (4 years old), 2008 (6 years old), 2010 (8 years 
old), 2012 (10 years old) and 2014 (12 years old). The diameter 
at breast height (DBH/cm) of each tree was measured in 2010 
(8 years old), 2012 (10 years old) and 2014 (12 years old). 

Statistical analyses
Statistical analysis was carried out using SPSS 19.0 (Statistical 
Package for the Social Science) software. The significance of 
fixed effects was tested by analysis of variance (ANOVA) F-tests. 
Variation among families of the same age was analyzed by 
ANOVA according to Hansen (1996) as following formula :

where yij is the performance of an individual of family i 
within block j, μ is the overall mean, αi is the radom effect of 
family (i = 1,…, 30), βj is the fixed effect of block (i = 1,…, 5), αβij 

is the random effect of family i within block j, and εij is the ran-
dom error. 

Phenotypic coefficient of variation PCV (%) and genotypic 
coefficient of variance (GCV) were estimated by the formulas 
below as used by Jonah et al. (2011):

The coefficient of phenotypic variation (PCV) was calcula-
ted using the following formula (Zhao et al. 2013b):

Where 
2

pσ  is variance components of phenotypic, 
2

gσ   
is variance components of genotypic, X  is the mean value of 
a growth character.

Heritability (h2) was calculated according to Zhao (2013b)  
as:

Where h2 is family heritability, σF
2 is variance components of 

family, σFB
2 is variance components of family by block interac-

tion, σe
2 is variance components of residual error, F is the num-

ber of families, B is the number of blocks and N is the number 
of values per family.

The phenotypic correlation coefficient was calculated 
using the following formula (Fernando et al. 2016):

where σ2
a(xy) denotes the phenotypic covariance between the 

traits x and y, and σ2
a(xy) and σ2

a(y) denote the phenotypic vari-
ance of traits x and y, respectively.

The phenotypic correlation, ra(xy), of traits x and y was cal-
culated according to Liang et al. (2018 a) as follows:

where σ2
a(x) is the family variance component for trait x, σ2

a(y) is 
the family variance component for trait y, and σ2

a(xy) is the fami-
ly covariance component.

The genetic correlation rg (xy) of traits x and y was calcula-
ted as Liang et al. (2018 b):
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where COVg(xy) is the genetic variation between traits x and 
y, and 

2
xg   and 

2
yg  are the variance component for traits 

in x and y, respectively.
The estimation of parental breeding values of the traits for 

all families was calculated according to the phenotypic obser-
ved values, and the formula of the breeding value is as follows 
(Kung FH, 1979): 

where Z is the breeding value of a trait of each family, Y  is 
the overall mean of a trait of all families, h2 is the heritability of 
different traits, and Y is the average value of a trait of each fami-
ly.

The comprehensive evaluation was conducted using the 
method of Qi value evaluation. Qi was calculated as follows 
(Liu et al. 2015):

where ai=Xij/Xjmax, Qi is the comprehensive valuation value 
of i family, Xij is the mean of a character, Xjmax is the maximum 
value of a character, and n is the number of evaluation index.

The estimated genetic gain was calculated using the for-
mula (Silva et al. 2008): 

where ΔG is the genetic gain of a trait for the families, h2 is 
the heritability of the traits, W is the difference of the average 
values of the traits between selected families and all families, 
namely, the selection difference, and X  is the mean value of a 
growth character (H or DBH) among all families.

Results

Analyses of variance
ANOVA analysis of H and DBH for all families during different 
ages are shown in Table 1. All variance sources were non-signi-
ficant except for families. At each age, a significant difference 
was observed between different families (P<0.01).

Genetic and variation parameters 
Genetic and variation parameters of H and DBH among diffe-
rent families are shown in Table 2. The average H and DBH of all 
families varied from 0.42 to 13.20 m and 3.50 to 19.00 cm, res-
pectively, at different ages. PCVs of H and DBH at different ages 
ranged from 11.04 % to 31.74 % and 19.01 % to 19.83 %, res-
pectively. GCVs of H and DBH at different ages ranged from 
6.83 % to 17.93 % and 11.26 % to 15.12 %, respectively. PCVs 
and GCVs of H decreased with tree growth. PCVs and GCVs of 
DBH were higher than H from ages 8 to 12 years. The 

heritability of H increased with tree growth; all values were gre-
ater than 0.87, with a maximum of 0.96. All values of DBH were 
greater than 0.93, representing a high heritability. The variance 
components of H and DBH increased with tree growth and 
development with values of 0.0087 to 0.7222 and 0.3431 to 
1.8119, respectively. 
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Table 1 
ANOVA analysis of H and DBH of L. kaempferi families in diffe-
rent growth years

Traits Age Variance source SS df MS F Sig 

H 

12 

Block 0.907 4 0.227 0.291 0.886 
Family 409.704 29 14.128 18.114 0.000 
Plant 4.882 5 0.976 1.236 0.290 

Block × Family 90.471 116 0.780 0.988 0.521 
Error 588.323 745 0.790   

10 

Block 0.829 4 0.207 0.218 0.919 
Family 655.956 29 22.619 23.745 0.000 
Plant 5.679 5 1.136 1.287 0.267 

Block×Family 110.498 116 0.953 1.079 0.281 
Error 657.478 745 0.883   

8 

Block 0.577 4 0.144 0.419 0.866 
Family 198.877 29 6.858 19.937 0.000 
Plant 1.765 5 0.353 0.779 0.565 

Block × Family 39.901 116 0.344 0.759 0.968 
Error 337.632 745 0.453   

6 

Block 0.220 4 0.055 0.551 0.751 
Family 39.098 29 1.348 13.514 0.000 
Plant 0.426 5 0.085 0.742 0.592 

Block × Family 11.572 116 0.100 0.869 0.826 
Error 85.479 745 0.115   

4 

Block 0.070 4 0.017 0.449 0.816 
Family 8.732 29 0.301 7.722 0.000 
Plant 0.261 5 0.052 1.161 0.327 

Block × Family 4.524 116 0.039 0.869 0.828 
Error 33.442 745 0.045   

DBH 

12 

Block 14.029 4 3.507 0.983 0.432 
Family 1679.773 29 57.923 16.236 0.000 
Plant 6.676 5 1.352 0.368 0.871 

Block × Family 413.838 116 3.568 0.970 0.571 
Error 2739.240 745 3.677   

10 

Block 2.113 4 0.528 0.398 0.845 
Family 916.913 29 31.618 23.838 0.000 
Plant 4.656 5 0.931 0.615 0.689 

Block × Family 153.861 116 1.326 0.875 0.814 
Error 1128.736 745 1.515   

8 

Block 1.467 4 0.367 0.480 0.792 
Family 320.677 29 11.058 14.466 0.000 
Plant 6.523 5 1.305 1.506 0.186 

Block × Family 88.669 116 0.764 0.882 0.800 
Error 645.610 745 0.867   

Note: H Tree height, DBH diameter at breast height, df degree of freedom, MS mean square, F value in F test. 
 

Table 2 
Genetic and variation parameters of different families in diffe-
rent growth years

Traits Age Variation 
range X ±SD PCV GCV h2 σ 

H 

4 0.42-1.46 0.81 ± 0.26 31.74 17.93 0.87 0.0087 

6 1.85-3.95 2.46 ± 0.42 17.06 10.05 0.93 0.0416 

8 3.00-7.80 5.44 ± 0.87 15.93 10.03 0.95 0.2171 

10 5.00-10.80 8.46 ± 1.28 15.10 10.23 0.96 0.7222 

12 7.00-13.20 10.25 ± 1.13 11.04 6.83 0.94 0.4449 

DBH 

8 3.50-8.50 6.08 ± 1.16 19.01 11.26 0.93 0.3431 

10 4.50-13.00 8.36 ± 1.66 19.83 15.12 0.96 1.0097 

12 6.00-19.00 12.07 ± 2.37 19.62 11.51 0.94 1.8119 

Note: the unit of H was m, DBH was cm, the unit of PCVand GCV was %. 
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Correlation analysis 
The results of phenotypic and genetic correlation analyses are 
shown in Table 3. All phenotypic correlation coefficients bet-
ween growth traits were significantly and positively correlated. 
Correlation coefficients of H at different ages varied from 0.459 
(4 and 10 years of age) to 0.785 (4 and 6 years of age). Correla-
tion coefficients of DBH at different ages varied from 0.647 (8 
and 10 years of age) to 0.853 (10 and 12 years of age). Correla-
tion coefficients between growth traits at different ages ran-
ged from 0.514 (between the H of the 10-year-old trees and the 
DBH of the 8-year-old trees) to 0.933 (between the H and the 
DBH of the 8-year-old trees). Genetic correlation is stable for 
inheritance and more important for breeding, but it is difficult 
to reach the level of statistical significance because of the large 
sampling error in the estimation of genetic correlation. There-
fore, significance test was not conducted. The genetic correla-
tion coefficients were closely to phenotypic correlation coef-
ficients, which ranged from 0.252 (between 6-year-old H and 
10-year-old) to 0.935 (between the H and the DBH of the 
8-year-old).

Breeding value of Height in different growth year
Breeding values of H among all families were ranked. The top 
ranked family was scored at 30 points, the second at 29 points, 
and so on, with the last family scored at 1 point. Finally, H was 
also ranked according to the same 1 to 30 scoring method. The 
analysis for the breeding values of H for different families, and 
the ranking results, are shown in table 4. Values varied for diffe-
rent ages of trees. The overall average breeding values of H for 
all families ranged from 0.82 m to 10.32 m at different ages. In 
years 4, 6, 8, 10 and 12, families L18, L20, L18, L18 and L18 
showed higher total scores than other families, respectively. 
Families L4, L23, L4, L23 and L23 showed lower total scores 
than other families at different ages.

Comprehensive evaluation 
The results of Multi-traits comprehensive evaluation were 
shown in Table 5. Elite families were selected by H values (at 
ages 4 and 6 years) and Qi values (at ages 8, 10, and 12 years) 
with different selection ratios at different years. Different num-
bers of families (18 families at ages 4; 15 at age 6; 12 at age 8, 9 
at age 10;, and 6 at age 12) were selected as elite families (Tab-
le 5) using different selection ratios. Additionally, the rank of 
different families varied according to age, although families 
L18, L12, L8, L3, L25, and L20 were always selected as elite fami-
lies at different ages under different selection ratios. Family L18 
showed the highest values of H or Qi at different ages. Family 
L24 grew fast during the early stages, but its low Qi value indi-
cated that its DBH was poor, so it was not selected as an elite 
family at age 12. Conversely, family L8 grew slowly in the early 
stages but showed a higher Qi value later on. 

Using a comprehensive evaluation method, six families 
(L18, L12, L8, L3, L25 and L20) were selected as elite families 
using a 20 % selection ratio at 12 years of age. The average H 
and DBH of the elite families were higher than the total ave-
rage by 11.15 % and 16.83 %, –the genetic gains of H and DBH 
were 10.53 % and 15.79 %, respectively. Under the 5 % selec-
tion ratio, 45 elite individual plants were selected at age 12 
(Table 6). Average H and DBH of elite individual plants were 
12.65 m and 15.07 cm, which were 23.47 % and 24.90 % higher 
than the overall average, respectively. 

Table 3 
Correlation analysis of different traits in different growth years

Traits 
H DBH 

4 6 8 10 12 8 10 12 

H 

4H 1 0.423 0.854 0.518 0.759 0.912 0.712 0.701 
6H 0.785** 1 0.470 0.252 0.389 0.411 0.275 0.403 
8H 0.754** 0.756** 1 0.627 0.673 0.935 0.756 0.716 

10H 0.459* 0.677** 0.630** 1 0.743 0.513 0.785 0.774 
12H 0.668** 0.744** 0.678** 0.742** 1 0.659 0.811 0.930 

DBH 
8DBH 0.771** 0.692** 0.933** 0.514** 0.659** 1 0.669 0.661 

10DBH 0.602** 0.765** 0.729** 0.814** 0.824** 0.647** 1 0.845 
12DBH 0.624** 0.771** 0.716** 0.775** 0.931** 0.659** 0.853** 1 

Note: **correlation is significant at the 0.01 level (2-tailed).Left and lower triangle represent  
phenotypic correlation, right and upper represent genetic correlation.  
 

Table 4 
Breeding values of H among different families in different 
growth years

Families 
The 4th growth year  The 6th growth year  The 8th growth year  The 10th growth year  The 12th growth year  

breeding 
value Rank Scores breeding 

value Rank Scores breeding 
value Rank Scores breeding 

value Rank Scores breeding 
value Rank Scores 

L1 0.84  17 14 2.39  23 8 5.66  12 19 7.46  27 4 9.80  25 6 
L2 0.86  10 21 2.50  13 18 5.86  5 26 9.21  6 25 10.49  10 21 
L3 0.87  8 23 2.61  4 27 5.79  8 23 9.17  8 23 11.32  3 28 
L4 0.69  30 1 2.30 29 2 4.69  30 1 7.37  29 2 9.66  29 2 
L6 0.78  23 8 2.41  20 11 5.56  14 17 8.58  16 15 9.95  20 11 
L7 0.80  21 10 2.32  26 5 5.17  24 7 7.44  28 3 9.98  19 12 
L8 0.85  13 18 2.51  11 20 5.86  6 25 9.12  9 22 11.32  4 27 
L9 0.84  16 15 2.47  17 14 5.24  21 10 7.50  26 5 9.86  22 9 
L10 0.87  6 25 2.56  8 23 5.87  4 27 9.01  12 19 10.49  9 22 
L11 0.75  26 5 2.37  25 6 5.42  16 15 7.69  23 8 9.68  28 3 
L12 0.87  4 27 2.65  3 28 5.90  2 29 9.24  3 28 11.66  2 29 
L13 0.81  20 11 2.41  19 12 5.23  22 9 7.79  22 9 9.78  26 5 
L14 0.86  11 20 2.56  7 24 5.69  11 20 9.06  11 20 10.42  12 19 
L15 0.86  12 19 2.55  10 21 5.26  19 12 9.06  10 21 10.53  8 23 
L16 0.77  25 6 2.43  18 13 5.32  18 13 7.93  19 12 9.72  27 4 
L17 0.87  7 24 2.56  9 22 5.50  15 16 8.44  17 14 10.37  13 18 
L18 0.89  1 30 2.73  2 29 5.96  1 30 9.25  1 30 11.79  1 30 
L19 0.78  22 9 2.31  27 4 4.92  29 2 7.89  20 11 10.28  15 16 
L20 0.88  2 29 2.76  1 30 5.12  26 5 9.24  2 29 10.89  5 26 
L21 0.83  18 13 2.50  14 17 5.16  25 6 8.62  15 16 10.34  14 17 
L22 0.87  5 26 2.51  12 19 5.76  10 21 9.22  5 26 10.46  11 20 
L23 0.72  29 2 2.27  30 1 5.79  7 24 7.27  30 1 9.56  30 1 
L24 0.87  9 22 2.61  5 26 5.79  9 22 9.21  7 24 10.65  7 24 
L25 0.88  3 28 2.61  6 25 5.89  3 28 9.22  4 27 10.85  6 25 
L26 0.85  14 17 2.50  15 16 5.18  23 8 7.60  24 7 9.87  21 10 
L27 0.81  19 12 2.31  28 3 5.06  28 3 7.82  21 10 10.10  17 14 
L28 0.74  27 4 2.39  22 9 5.07  27 4 8.70  14 17 10.16  16 15 
L29 0.77  24 7 2.40  21 10 5.35  17 14 8.30  18 13 9.82  24 7 
L30 0.84  15 16 2.49  16 15 5.59  13 18 7.50  25 6 9.86  23 8 
L31 0.74  28 3 2.37  24 7 5.25  20 11 8.96  13 18 10.02  18 13 

Average values 0.82 — — 2.48 — — 5.46 — — 8.43 — — 10.32 — — 
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Discussion

ANOVA
ANOVA analysis is one of the most important methods for esti-
mating the extent of variability, and plays an essential role in 
selecting breeding populations (Zhao et al. 2014). In this 
research, a significant difference was observed among diffe-
rent families at different ages (P<0.01). This finding indicated 
the existence of plentiful variation in growth traits among dif-
ferent families. These results are similar to the previous studies 
(e.g., Nakada et al. 2005), showing that selection of elite fami-
lies is effective. 

Variation and genetic 
It is critical to the efficient usage of genetic resources by under-
standing the relationship of genetic variation within individu-
als or populations in breeding research (Hortensia et al. 2011). 
Large genetic variation and high heritability are requirements 
to achieve selection progress (Kroon et al. 2011; Kaushik et al. 
2015). In this research, we observed high levels of heritability, 
the values of H ranging from 0.87 to 0.96 and DBH values all 

>0.93, indicating that tree growth is weakly influenced by envi-
ronmental effects. The PCVs of H decreased with tree growth, 
especially at age 12, when the value was 11.04 %, indicating 
that phenotypic variation among families was small. The PCVs 
of H were lower than those for DBH from ages 8 to 12, sugges-
ting that DBH is more effective than H in selecting elite fami-
lies. This result is in agreement with the previous studies by Zas 
et al. 2004 and Collet and Chenost 2006. 

Different variation trends with age were found for growth 
traits. We took measurements at various ages, and we obser-
ved that h2 for H and DBH increased with tree growth, which 
was similar to the pattern seen in Pinus taeda (Gwaze et al. 
2001) and Norway spruce (Isik et al. 2010). The h2 of H and DBH 
increased with tree growth, which represented a higher herita-
bility and were controlled genetically at a higher level, indica-
ting that a fairly large genetic gain could be obtained through 
the selection of elite families. Variance components and herita-
bility reflected the degree of genetic control of trait variation 
(Sun 2003). The age trends of variance components for growth 
traits may present different rules in different environment con-
ditions (Diao et al. 2016). The variance components for H show-
ed an increasing trend, but DBH first increased and then decre-
ased with age at the Hubei experiment site (Diao et al. 2016). 
However, the variance components for H and DBH increased 
with time on the whole at the Liaoning experiment site in Chi-
na (Diao et al. 2016). In this research, the variance components 
for H and DBH generally increased as the trees grew. This fin-
ding is in agreement with the results for Scots pine (Haapanen 
2001) and Douglas fir (Dean and Stonecypher 2006), which dis-
played variation of H or DBH mainly controlled by additive 
genetic variance in this research. 

Correlation analysis
In breeding programs, correlation coefficients could reflect the 
relationships between different traits and, therefore, have 
major implications for breeding strategies (Goncalves et al. 
2005; Lee et al. 2002). The relationship of parameters between 
growth traits is rather complex (Sumida et al. 2013). In previous 
work, age-age correlations of growth traits reached a very high 
level at early stages in Pinus taeda (Xiang et al. 2013) and Mas-
son pine (Zeng et al. 2013). In our research, there existed a sig-
nificant positive correlation between all growth traits, indica-
ting the possibility of early elite family evaluation and selection, 
which agrees with previous findings in L. olgensis (Xia et al. 
2016), Radiata pine (Kumar and Lee 2002), and Populus deltoi-
des (Dhillon et al. 2010). 

At present, early selection could shorten breeding process 
as much as possible, which is an important method. The opti-
mal age of early selection can be predicted by correlation coef-
ficient, heritability and age trends of genetic parameters for 
growth traits (Svensson et al. 1999). Because of the different 
selected breeding objectives, there were different optimum 
early selection ages for L. kaempferi (Fujimoto et al. 2006). For 
growth traits, tree height was most ideal index for early selec-
tion in tree breeding (Balocchi et al. 1993), and the optimum 
early selection ages were 2, 4, 8 and 10 years for H in L. kaemp-
feri. In this research, H was selected as an early evaluation 

Table 5 
Elite families selected under different selected ratio in diffe-
rent growth years

The 4th growth year The 6th growth year The 8th growth year The 10th growth year The 12th growth year 
Family H Family H Family Qi Family Qi Family Qi 

L18 0.96 L18 1.68 L18 1.27 L18 1.29 L18 1.31 

L24 0.95 L24 1.67 L8 1.25 L8 1.27 L12 1.28 
L25 0.95 L12 1.64 L25 1.25 L10 1.26 L8 1.27 

L12 0.95 L3 1.63 L20 1.25 L20 1.26 L3 1.26 
L22 0.95 L20 1.63 L2 1.24 L25 1.26 L25 1.24 

L10 0.94 L25 1.63 L12 1.24 L12 1.26 L20 1.24 
L17 0.94 L14 1.61 L3 1.24 L24 1.26   

L3 0.94 L10 1.61 L22 1.24 L3 1.25   
L20 0.94 L17 1.61 L24 1.23 L2 1.25   

L2 0.94 L15 1.60 L10 1.22     
L14 0.94 L8 1.59 L14 1.22     

L15 0.94 L22 1.59 L6 1.21     
L8 0.93 L2 1.59       

L26 0.93 L21 1.58       
L30 0.92 L26 1.58       

L9 0.92         
L1 0.92         

L21 0.92         
 

Table 6 
Elite individual plant selected under a 5 % selected ratio in 
the12th growth year

single plant family H single plant family H single plant family H 

661 25 13.20 456 18 12.80 450 18 12.50 

662 25 13.20 79 2 12.70 657 25 12.50 
97 3 13.00 437 18 12.70 434 18 12.40 

179 8 13.00 451 18 12.70 449 18 12.40 
187 8 13.00 458 18 12.70 514 20 12.40 
306 12 13.00 459 18 12.70 515 20 12.40 
433 18 13.00 303 12 12.60 516 20 12.40 
454 18 13.00 304 12 12.60 439 18 12.30 
457 18 13.00 308 12 12.60 506 20 12.30 
460 18 13.00 318 12 12.60 524 20 12.30 
513 20 13.00 249 10 12.50 525 20 12.30 
527 20 13.00 250 10 12.50 526 20 12.30 
452 18 12.90 316 12 12.50 564 22 12.30 
448 18 12.80 317 12 12.50 619 24 12.30 
455 18 12.80 361 14 12.50 557 22 12.10 
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index, with the same selection ratio (20 %), and the same elite 
families were selected at ages 6 and 12 years. Results indicated 
that the 6 year selection age was the optimum for early selec-
tion, which can shorten the breeding cycle for next generation 
breeding programs.

Comprehensive evaluation
Comprehensive evaluation and selection for the same charac-
teristics in different growth years are important for tree gene-
tics and breeding to obtain stable characteristics (Kang 1985). 
However, in previous studies, the selecting of too many charac-
teristics together could lead to low genetic gains in individual 
characteristics (Guan et al. 2005), resulting in an imprecise 
selection target. H and DBH are vital characteristics for the eva-
luation of tree growth that could make comprehensive evalua-
tion more effective and reliable (Gwaze and Bridgwater 2002). 
In this study, different families had different growth patterns 
(Jansson et al. 2003), especially families L18 and L24 that show-
ed opposing H and DBH values. Though the family ranks varied 
according to year, families L18, L12, L8, L3, L25 and L20 were 
always selected as elite families under different selection rati-
os, indicating that appropriate selection ratio and age are vital 
for elite family selection (Leksono et al. 2006). 

Genetic gain is a crucial parameter for selecting elite fami-
lies (Huang et al. 2006) and is often used as a measure for selec-
tion (Hannrup et al. 2000). Most breeding programs purposes 
are to achieve higher genetic gain, which can be realized by 
selection (Montes et al. 2008), and relatively high genetic gains 
have been observed when selection is dependent on high 
heritability, extensive of genetic variation, and low selection 
rate (Zhou et al. 2014). In this research, the genetic gains of H 
and DBH were higher than that achieved in previous studies on 
Hybrid L. gmelinii (Cao 2016) and L. gmelinii (Liu and Wang 
2016), which were 10.53 % and 15.79 %, respectively, although 
these data could reflect differences in species (Yin et al. 2016). 
Using a 5 % selection ratio in 12 year old trees, 45 elite individu-
al plants were selected, average Hs and DBHs of selected elite 
individual plants were 12.65 m and 15.07 cm, which were 23.47 
% and 24.90 % higher than overall average, respectively. 

Backward selection and forward selection
Backward and forward selections are affected by heritability, 
intensity of selection and genetic gain, but the relationships 
between these parameters vary (Hodge and White, 1993). Low 
heritability is favour to backward selection, which is one of the 
main factors supporting progeny testing, because on this 
occasion forward selection is not effective (Falconer and 
Mackey, 1996). In this research, heritabilities of H and DBH were 
higher than 0.87, which indicates higher heritability, therefore 
the forward selection is more effective.

Genetic gain is the most direct index to reflect improve-
ment of seed orchards (Bai et al. 2012). In this research, 6 elite 
families were selected using a 20 % selection rate, and the 
genetic gains of H and DBH were 10.53 % and 15.79 %, respec-
tively. These results were greater than those found in previous 
research (Zhang et al. 2013), where genetic gains of H and DBH 
for the family of Japanese larch were 7.5 % and 10.3 %, 

respectively, on progeny test forests with open pollination. 
High genetic gain elite families were more suitable for the esta-
blishment of improved seed orchards.

Breeding Values
Breeding values can be predicted for each family and offspring 
(Namkoong et al. 1966). In this research, the breeding value 
scores of different families also varied with different ages, but 
the elite families exhibited higher scores in the same stage, 
which were similar with the selected families using the method 
of a Qi value under the 20 % selection ratio in the 12 year old 
tree. e.g., family F18. Therefore, breeding value scores were 
more accurate and stable for selection while conducting Qi 
value with the breeding value concerned (Israel C et al., 2000; 
Pan XQ, 2014). Selected families could be utilized as excellent 
subjects for the establishment of improved seed orchards, and 
it could also provide the theoretical basis for excellent family 
selection and evaluation of L. kaempferi.

Conclusion 

The early evaluation and selection of elite families is important 
for shortening the breeding cycle and improving breeding 
efficiencies of tree species. In this research, the genetic and 
variation parameters among different families were observed 
to vary based on age. 6 elite families and 45 12-year-old elite 
individual plants were selected using a 20 % and the 5 % selec-
tion ratio. Selected elite families and plants can provide charac-
teristics for the establishment of improved or next generation 
seed orchards. These could be used for future afforestation, 
and the research can directly apply to other conifer breeding 
programs. Additionally, the technique could provide the theo-
retical basis for early selection of other tree species. Further 
research on L. kaempferi should focus on wood properties, flo-
wering rules, stress resistance, and molecular breeding.
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