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Abstract

A naturally occurring putative hybrid between Euca-
lyptus largiflorens F. Muell and Eucalyptus gracilis F.
Muell called Green Box tolerates saline conditions of the
River Murray floodplains better than E. largiflorens. Re-
vegetation strategies utilizing seedlings of Green Box

have had limited success because only a few are Green
Box and the majority are throw backs to E. gracilis and
E. largiflorens. Therefore, the purpose of this study was
to identify traits characteristic of Green Box and AFLP
markers associated with the traits enabling selection at
the seedling stage. This was done by non-linear canoni-
cal correlation analysis (OVERALS) to test for statisti-
cally significant associations between morphological and
physiological traits with 232 AFLP markers from 9
primer combinations. OVERALS with all markers pro-
duced 1st and 2nd dimensions accounting for 80 and 74%
of variation respectively. Green Box plants were placed
intermediate between E. gracillis and E. largiflorens
according to leaf colour, gloss and nitrogen with compo-
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nent loadings (lc) of 0.340, 0.615 and 0.294 respectively.
A second approach of simple linear regression of mor-
phological and physiological traits against all 232 AFLP
markers singled out 17 with significance P<0.05. Thir-
teen of these were also identified by OVERALS. Four
occurred with high frequency in Green Box and E. largi-
florens distinguishing them from E. gracilis. In order to
separate Green Box and E. largiflorens, the segregation
of a further three markers can be used to align Green
Box with E. gracilis. Therefore, the segregation of 7
markers can be utilized to select Green Box. 

Key words: Eucalyptus, Australia, salt, re-vegetation, hybrid
selection, AFLP marker.

Introduction

Prior to Murray River regulation, inundation of the
Chowilla floodplain in South Australia (136 000 ML day-
1) occurred every 13 years whereas now for the same
return period, flows of 76 000 ML day–1 flood less than
half of the floodplain (OVERTON and DOODY, 2010;
SHARLEY and HUGGAN, 1995). The lack of floods has
caused drought, and salt inherent in these ancient river
soils is no longer regularly transported away from the
floodplain. Instead salt has built up to detrimental con-
centrations. Rainfall is less than 350 mm annually
therefore plants rely on flooding for replenishment and
leaching of salt from the root zone (KINGSFORD, 2000).
Along the length of the Murray River in Australia, it is
estimated that approximately 18 000 ha of floodplain
vegetation is severely degraded with saline ground
water (MARGULES AND PARTNERS et al., 1990). High inci-
dence of dieback amongst E. largiflorens and E. camald-
ulensis woodlands was a striking aspect of a biological
survey conducted by O’MALLEY and SHELDON (1990). 

Amongst deteriorating stands of E. largiflorens, Green
Box plants were identified because of their healthy
appearance. Green Box is characterised by bright,
dense, glossy green foliage distinctly different to large
glaucous grey-green leaves of E. largiflorens (PARSONS

and ZUBRINICH, 2010; ZUBRINICH et al., 2000). Although
Green Box are less common, several hundred have been
catalogued extending the length of the Murray Darling
Basin (J. Seekamp unpublished). Green Box are hypoth-
esized to be hybrids between E. largiflorens and Euca-
lyptus gracilis F. Muell, a mallee eucalypt inhabiting
sandy escarpments up off the floodplain. Characteristics
of E. gracilis include multiple stems, lignotubers, rough
bark at the base and smooth whitish bark throughout
the remainder, glossy green leaves (JESSOP et al., 1986)
and flowers with staminodes (BROOKER, 2000).  

With respect to physiological traits, Green Box had
more negative water potentials, pre-dawn and midday,
compared to E. largiflorens growing at the same sites,
indicating they were able to uptake water from drier or
more saline soil (ZUBRINICH et al., 2000). Green Box also
has smaller xylem vessels. It is likely that Green Box
inherited both of these traits from E. gracilis which
have more negative water potentials and small xylem
vessels. Mallees have lignotubers which were shown by
MYERS (1995) to resist water flow and accounted in part
for persistently more negative predawn water potentials
in Eucalyptus behriana F. Muell. 

There is an inherent salt tolerance of E. largiflorens
specimens sampled from Clear Lake, western Victoria.
These plants tolerated 380 mM NaCl, when salt toler-
ance was defined as withstanding 300 mM NaCl (BLAKE,
1981). Green Box had significantly higher leaf Na+ and
Cl – compared to E. largiflorens (P<0.01) (ZUBRINICH et
al., 2000). There was less Na+ compared to Cl – and this
has been similarly observed in Eucalyptus microtheca
F.J. Muell, from Marree, South Australia, the lowest
rainfall in Australia and Eucalyptus microcorys F.
Muell, particularly at the highest salt level of 150 mM
(CHEN et al., 1998; MORABITO et al., 1994). 

Saline affected areas of the Chowilla floodplain have
been re-vegetated with seedlings and clones of mature
Green Box. Adult Green Box are readily distinct but
seedlings are not and because the majority were throw-
backs to either E. largiflorens or E. gracilis they suf-
fered from the salinity of the floodplain. Clones tolerat-
ed the saline floodplain however a drawback is limited
genetic diversity. Therefore a combined approach of
traits associated with molecular markers will help to
identify Green Box seedlings.

To screen for Green Box, characteristic morphological
and physiological traits will be measured among natural
stands of E. largiflorens, E. gracilis and Green Box. To
enhance identification of suitable traits, links will be
explored with amplified fragment length polymorphisms
(AFLP) DNA markers (VOS et al., 1995). AFLP DNA
markers have been utilised extensively for screening
purposes (MCKINNON et al., 2008; WANG et al., 2005).
DNA markers or morphological traits segregating with
physiological traits may be easier and quicker to score
as physiological traits are time consuming to measure
routinely in a screening process. For example, a correla-
tion between leaf size and absisic acid (ABA) in rice
enabled selection for drought resistance such that plants
with smaller leaf sizes were more likely to have higher
levels of ABA (QUARRIE et al., 1997). 

In this study, traits characteristic of Green Box identi-
fied by ZUBRINICH et al. (2000) will be utilised. Morpho-
logical traits include leaf colour, gloss and bark. In addi-
tion, new traits will be explored that indicate resource
partitioning away from plant growth when plants are
experiencing salinity stress. These traits determine the
growth potential of a species (LAMBERS et al., 2008;
POORTER and EVANS, 1998) and include specific leaf area
(SLA), leaf total nitrogen and carbon, and natural abun-
dance of carbon and nitrogen isotopes (KOERBER et al.,
2012). Lower SLA is hypothesised to be a result of evolu-
tionary selection pressure for leaves with long life
spans, thus retaining nutrients longer in nutrient poor
environments (SCHIEVING and POORTER, 1999; WRIGHT et
al., 2004). Other hypothesised strategies involving
reduced SLA are accumulation of secondary compounds
to detract herbivores and accumulation of lignin to facil-
itate survival during dry or cold environmental condi-
tions (POORTER and GARNIER, 1999). Measurement of bio-
mass composition of carbon and nitrogen gives an indi-
cation of resource partitioning, either into photosynthet-
ic apparatus or structural components (LAMBERS et al.,
2008; LLOYD et al., 1992; NIINEMETS, 1999; REICH et al.,
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1998). In a comparison of evergreen and deciduous
species, evergreen species were hypothesised to possess
a higher cost-benefit ratio attributed to longer-lived
leaves, lower SLA, lower nitrogen content, and lower
assimilation on a mass basis (EAMUS et al., 1999).
Although investment in growth of leaves construction of
leaves/growth is more expensive, maintenance costs are
lower and affordable over a longer payback interval
(longer-lived leaves) (EAMUS et al., 1999). 

Nitrogen isotope (�15N) abundance in plant tissue is
hypothesised to be affected by changes in assimilation
activity when salinity was imposed on barley plants
(HANDLEY et al., 1997; ROBINSON et al., 2000). Further-
more, HANDLEY et al. (1997) speculated �15N patterns
might be produced under natural conditions for plants
with slower growth habits and that the patterns would
overlay variations in source (soil) �15N. 

The objective of this study is to screen for Green Box
seedlings using characteristic morphological and physio-
logical traits and AFLP DNA markers.

Methods and Materials

Location

The Chowilla floodplain is centred on the South Aus-
tralia-Victoria-New South Wales Borders (140°52’E
33°59’S) covering approximately 200 km2 (JARWAL et al.,
1996). It is the largest floodplain forest on the lower
Murray River (KINGSFORD, 2000) and is part of ‘River-
land Wetlands’ listed under the UNESCO Ramsar Con-
vention (Section 14.5) as wetlands of international
importance because of unique bird-life and woodlands of
E. camaldulensis and E. largiflorens (NEC, 1988). The
area is located away from the moderating influence of
the ocean and experiences generally clear skies allowing
free heat exchange. Yearly rainfall is low, averaging
250–300 mm, and potential evaporation is about 2000
mm (JARWAL et al., 1996). 

Sites and Trees

The Chowilla floodplain is located within the River-
land Biosphere Reserve (RBR). Throughout RBR, 66

Figure 1. – Local-area sites within the Riverland Biosphere Reserve (RBR). Inset shows location
of RBR. The table below shows abbreviations for sites and their GPS coordinates.
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adult trees were sampled from ‘local-area’ sites (23
E. largiflorens, 16 Green Box, 18 progeny of Green Box
and 9 E. gracilis). The sites Coombool (C), Coombool
Inlet (CI), Monoman Island (MI), Lake Coombool (LC)
and Lake Littra (LL) were chosen because Green Box
naturally occurs there. At Hancock Creek (Hncrk), there
were approximately 50 seedlings each of Green Box
(Hancock creek progeny) and E. largiflorens planted in
1991. The E. largiflorens seedlings were purchased from
Wand F Nursery at Berri (J.V. Seekamp, pers. comm.)
and their seed source is unknown. The sources of the
Green Box seedlings were mature Green Box plants
located on the floodplain. They were also the source of
approximately 700 clonal Green Box plantlets planted in
1994. The clones were produced by tissue culture carried
out by Dr T.C. Lee, Adelaide Botanic Gardens (J.V.
Seekamp, pers. comm.). From each of these three types
of revegetation plantings, five plants growing under
similar soil and environmental conditions were chosen.
In addition, two nearby mature E. largiflorens plants
and one mature Green Box plant were chosen. Box Tree
Waterhole (BTWH) was chosen because it is an isolated
population of Green Box and E. largiflorens surrounded
by E. gracilis mallee scrub. All three taxa were available
for comparison within approximately 100 m2 and were
thus growing under similar soil and environmental con-
ditions. There were four Green Box plants and the four
closest E. largiflorens and E. gracilis plants were chosen
for comparison. Calperum (Calp) and Limbra were cho-
sen because they were stands of E. gracilis located close
to the floodplain. A further site, Murtho (M), was chosen
because there was a mature E. largiflorens and a
mature E. gracilis with several younger trees, greater
than 10 years old (Murtho progeny), occurring on the
edge of a field and isolated from other trees. The loca-
tions of local-area sites are shown in Fig. 1.

In addition, 10 trees of E. largiflorens and E. gracilis
were sampled from allopatric populations using the Aus-
tralian National Herbarium web site (http://www.anbg.
gov.au/cpbr/anhsir/anhsir-manual/index.html, accessed
3rd October 2012). E. largiflorens were sampled from
Wilcannia approximately 450 km NE of the local-area,
and E. gracilis were sampled from Port Lincoln, approx-
imately 450 km SW of the local-area.   

Morphological Traits 

From each tree, colour and gloss of 25 leaves was
recorded from small branches while fresh. Leaf colour
was recorded using a Royal Horticultural Society
(R.H.S. London) colour chart produced in conjunction
with the Flower Council of Holland (Leiden). Each tree
was assigned to one of six colour categories ranging from
Yellow Green through Green to Grey Green. Leaf gloss
was recorded as Dull, Intermediate or Shiny. Rough
bark extends to the stem tips in E. largiflorens whereas
in E. gracilis it terminates above the butt and is inter-
mediate in Green Box. Therefore, the diameters of the
main trunks/stems at the point where rough bark (Rbd)
terminated were measured for all plants as a distin-
guishing trait. 

Physiological Traits

From each tree four healthy mature leaves located at
the fourth node below the stem tip were sampled and
kept fresh for measurement of leaf area with a portable
area meter (Model LI-3000 Li-Cor, U.S.A). Specific leaf
area (SLA) was calculated from the ratio of leaf area to
dry leaf weight (cm2 g–1). Leaves were then dried and
ground to fine powder consistency for determination of
carbon and nitrogen isotope discrimination by mass
spectrometry (Model GEO 20 –20 Dual Inlet, Europa
Scientific Ltd., England). Sample weights required for

Table 1. – Nucleotide sequences for adaptors, preamplification primers and
selective primers. The reverse of the core primer sequences minus the last
nucleotide, corresponds to the reverse adaptor sequences (5’�3’).  Sequences
for EcoRI are according to (VOS et al., 1995) except for A in brackets was a C
in the current study.
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accurate measurements, determined from preliminary
runs, were 1.5 mg and 4 mg for carbon and nitrogen
respectively. Carbon isotope deviations (�13C) were mea-
sured against ‘Vienna’-Pee Dee Belemnite (PDB) (DAW-
SON and BROOKS, 2001). Nitrogen isotope deviations
(�15N) were measured against the standards N1, N2 and
N3. These standards are relative to atmospheric N2
according to the International Atomic Energy Agencies
(IAEA) standards (DAWSON and BROOKS, 2001). Precision
for nitrogen and carbon was quoted as ≤ ±0.2‰ and
≤ ±0.1‰ respectively (Europa Scientific Ltd.). Carbon
deviation (�) was converted to standard discrimination
(�) values using the equation:

� = ((�a / 1000) – (�p / 1000)) / (1 + (�p / 1000))
Units: ‰ (per mil)

Where �a is free atmospheric CO2 on the PDB scale
and has an approximate value of –8‰.

�p is CO2 of plant material, typical C3 plant on the
PDB scale has a value of –27.6‰ (FARQUHAR et al.,
1989). Nitrogen is commonly expressed as deviation
units in per mil (‰) (HÖGBERG, 1997). Carbon and nitro-
gen discrimination was measured from adult (�13Cad and
�15Nad) and juvenile (�13Cj and �15Nj) leaves. Mass spec-
trometry also provides total carbon and nitrogen of
adult (TCad and TNad) and juvenile leaves (TCj and TNj).   

Extraction of DNA 

Mature leaves at the fourth node with minimal blem-
ishes or signs of insect attack were chosen to avoid red
pigments (anthocyanins) and tannins present in
younger leaves (SKABO et al., 1998); (Dr. R.E Vaillan-
court and Dr. B. M. Potts, University of Tasmania, Aus-
tralia, Pers. Com.). Leaves were picked into 50 mL cen-
trifuge tubes (Sarstedt Australia Pty. Ltd.) and placed
into liquid nitrogen then stored at –80°C upon return
from the field. DNA was extracted according to standard
procedures (BYRNE et al., 1996; BYRNE et al., 1993). Some
modification to the procedures are derived from DOYLE

(1991) and DOYLE and DOYLE (1990) to account for high
concentrations of hydrophobic compounds in Eucalyptus
leaves.  

AFLP Analysis

AFLP was carried out using protocols derived from
VOS et al. (1995) and PARKER (1998). The only modifica-
tion was addition of 2 µL RL DNA instead of 4 µL to
improve clarity of marker banding profiles. A total of 9
primer combinations were screened and markers ranged
from 50 to 600 bp (Table 1). EcoRI/MseI primer
sequences were chosen according to published studies
involving Eucalyptus species (GAIOTTO et al., 1997; MAR-
QUES et al., 1998). PstI /MseI primer sequences were cho-
sen based on recommendations by G. Parker and the
fact that PstI is highly methylation sensitive to target
coding regions (POWELL et al., 1997; YOUNG et al., 1999).
EcoRI or PstI selective primers were radioactively
labelled with 33P�ATP. PCR products were visualised on
6% polyacrylamide gels (19:1) [40mL SequaGel-6, 10mL
SequaGel Complete Buffer and 500 µL 10% APS] cast
between 35 � 43 cm glass plates for running in a
Heofer® SQ3 Sequencer apparatus. Marker ladder was

radioactively labelled pUC19 MspI. Vacuum dried gels
were exposed onto Kodak Diagnostic Film (35 � 43 cm)
X-Omat™ K XK-1 for 3 days then developed in a
KODAK X-OMAT 1000 Processor, KODAK (Australasia)
Pty. Ltd. AFLP marker presence or absence data was
collected by blind sampling conducted by two volunteers
with no knowledge of sample identities.  

Data Analysis

All data analysis was carried out in SPSS (IBM SPSS
Statistics 19 USA). All data was checked for normality
and homogeneity of variance by carrying out Levene’s
test and transformations were applied if necessary. To
examine associations between physiological and mor-
phological traits with AFLP markers, two statistical
approaches were undertaken: non-linear Canonical Cor-
relation Analysis (OVERALS) and linear regression with
randomization (HANCOCK, 2002).

OVERALS is similar to Principal Component Analysis
(PCA), however two or more sets of variables with cases
(trees) in common are correlated (CONNOLLY, 1997).
OVERALS is suitable for scale traits such as physiologi-
cal traits and discrete traits such as genotypes of molec-
ular markers. In this study, the two sets are traits (mor-
phological and physiological) and AFLP markers.
OVERALS produces “dimensions” maximally correlating
the sets. Eigenvalues from OVERALS can be interpret-
ed as r2 (fit) and their square root, canonical correla-
tions, can be interpreted as Pearson’s r, with values
greater than 0.30 explaining acceptable variance (GAR-
SON, 2002). Output includes “component loadings” (lc) for
interpreting correlations between variables and each
dimension. Plotting 1st and 2nd dimensions, using object
scores (trees, cases) and component loadings (variables)
produces a diagrammatic representation of the relation-
ship between traits and AFLP markers. Variables posi-
tioned further from the origin contribute more to varia-
tion between trees. Type II error or underestimation
was minimized by including at least 20 times as many
cases as variables for interpreting the 1st dimension
reliably (STEVENS, 1986). 

Two OVERALS analyses were conducted with the
same morphological and physiological traits. Firstly,
OVERALS including all 232 AFLP markers proceeded
by nominating 10 sets of variables to ensure number of
cases (trees) exceeded number of variables. The first set
comprised morphological and physiological traits and
the remaining 9 were AFLP markers split by primer
combination. Accompanying MANOVAs (Multivariate
Analysis of Variance) were conducted and Wilks’s lamb-
da tested whether the variable sets were significantly
correlated (GARSON, 2002). Categorical traits were treat-
ed as unordered variables (multiple nominal in SPSS).
The second OVERALS was of trees from the local-area
with 11 AFLP markers identified within the local-area
that were at least 78% specific for either E. largiflorens
(5 markers) or E. gracilis (6 markers). 

The second statistical approach of linear regression
would be straightforward if only one marker was used
with either its presence or absence scored. The observed
variance ratio would be tested with a critical value asso-
ciated with a significance level of 5% (0.05). The difficul-
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Figure 2. – OVERALS analyses of: a, All 232 AFLP DNA markers and b, eleven at least
78% specific markers within the local-area associated with morphological and physiological
traits. First and 2nd dimensions in a, account for 80% and 74% of the total variance respec-
tively, in b, account for 95% and 89% of the total variance respectively. Box Tree Water-
hole, Hancock Creek and Murtho are within the local-area and their different symbols are
meant to distinguish them from the remaining plants within the local-area. Each of the
trait/trait state centroids are labelled with numbers defined in the table below. 
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ty in this study is that there are more than 200 markers
and repeatedly applying this test greatly increases the
chance of type I error (rejecting the null hypothesis,
when it is in fact true). To arrive at an alternative criti-
cal value that correctly has a significance level of 5%, a
randomization study was performed where response
variables were randomised and the maximum variance
ratio identified, thus ensuring the null hypothesis was
in fact true. Randomisation was repeated 1000 times to
produce the distribution of the variance ratio under the
null hypothesis. This distribution is then used to identi-
fy the 95th percentile, or critical value for testing each of
the 200 excess repeated analyses against the observed
value of the response variables – i.e. morphological and
physiological traits (HANCOCK, 2002). 

Results 

OVERALS with all AFLP DNA markers

OVERALS of morphological and physiological traits
with all 232 AFLP DNA markers produced 1st and 2nd

dimensions accounting for 80 and 74% of variation

respectively (Fig. 2a). Trait centroids occurring in the
vicinity of the Green Box centroid (–0.0445, 0.191) rein-
forced their intermediacy between E. gracilis and
E. largiflorens. Green Box leaf colour centroid yellow
green (–0.330, 0.794) and intermediate gloss (–0.059,
0.746). Other trait centroids reinforcing the intermedicy
of Green Box were Rbd (–0.239, 0.578), �13Cad (–0.241,
0.204) and SLA (0.066, –0.207). Trait centroids charac-
terizing E. gracilis (centroid –0.834, 1.303) were grey
green and yellow green leaf colour (–1.252, –0.488) and
shiny gloss (–1.733, 0.037). Trait centroids characteriz-
ing E. largiflorens (centroid 0.1511, –0.685) were grey
green leaf colour (0.354, –0.587), dull gloss
(0.350, –0.448), leaf area (0.135, –0.585) and TNad
(0.294, –0.357).

There were several component loadings (lc) for traits
and AFLP markers greater than 0.3 therefore strong
enough to separate groups. In the 1st dimension, leaf
colour and gloss contributed most with lc of 0.340 and
0.615 respectively. TNad was not quite as strong, 0.294,
and �13Cad, SLA, leaf area and Rbd did not contribute
much with lc of –0.241, 0.066, 0.135 and –0.239 respec-

 242

Table 2. – AFLP markers significantly associated with traits (response vari-
ables) from both OVERALS and linear regression. * indicates E. gracilis 78%
specific markers and ^ indicates 78% specific markers for E. largiflorens. For
variables: �15Nad, TNad, Rbd and leaf colour; n=78: 17+33+11+9+8 E. gra-
cilis, E. largiflorens and Green Box, Hncrk progeny and Murtho progeny
respectively. For �13Cj; n=43: 6+15+5+9+8 E. gracilis, E. largiflorens and
Green Box, Hncrk progeny and Murtho progeny respectively. Italics indicate
markers identified by OVERALS and linear regression but not by MANOVA. 
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tively. Of AFLP markers, 70 out of 232 had lc greater
than 0.3, thirty of these could be used to predict leaf
colour and ten could be used to predict leaf gloss, as
their lc occurred with similar magnitudes and in the
same direction. 

Analysis with MANOVA revealed 8 out of the 9 AFLP
primer combinations significantly correlated with traits,
reinforcing that they were a good choice. Significance
values were: 0.001 and 0.033 for EcoACT/MseCAG and
EcoACT/MseCCA respectively, 0.000 for each of the
PstAG primer combinations then, 0.000, 0.003 and 0.031
for each of the EcoATG primer combinations respec -
tively. 

OVERALS with 78% specific AFLP DNA markers

OVERALS of morphological and physiological traits
with 11 AFLP DNA markers that were 78% specific for
either E. gracilis or E. largiflorens produced 1st and 2nd

dimensions of 95 and 89% suggesting variance in traits
(response variables) was adequately predicted (Fig. 2b).
There was clear separation of plants into groups with
Green Box intermediate. MANOVA confirmed that all 11
AFLP markers significantly correlated with traits in the
1st dimension (Wilks’s lambda, P=0.000) and all had lc

greater than 0.3 indicating they adequately predicted
variation in traits. Markers, B101 and B137 contributed
most with lc of 0.658 and –0.772 respectively. Leaf area
and colour in the 1st dimension with lc of 0.629 and
0.641 respectively, loaded similarly to B101, indicating
its presence (an E. largiflorens 78% specific marker) can
predict variation in leaf area and colour. Conversely,
variation in Rbd with a negative lc of –0.692, can be pre-
dicted by presence of B137, also with a negative lc
of –0.772. Physiological traits did not contribute greatly
with the exception of TNad (0.395). Markers behaving
similarly for predictive purposes were B12 (0.426) and
B142 (0.437). 

Simple Linear Regression and Comparison with 
MANOVA of OVERALS component loadings

Simple linear regression identified 17 AFLP DNA
markers shown in Table 2. There was agreement
between linear regression and MANOVA of OVERALS lc
for markers B58 and B121 significantly associated with
�15Nad (Table 2). The presence of B58 is associated with
low �15Nad, indicative of E. gracilis while its absence is
associated with higher �15Nad, indicative of E. largiflo-
rens (Table 3). The reverse situation applied to B121,

Table 3. – Quantifications of physiological and morphological traits associated with the
presence and absence of AFLP markers identified from linear regression. Plants from
local-area and outside-local area populations were included. The frequency of marker
present in each of the plant groups is also shown. [n]. * indicates E. gracilis 78% spe-
cific markers and ^ indicates 78% specific markers for E. largiflorens plants identified
from local area markers.

Koerber et. al.·Silvae Genetica (2012) 61-6, 236-246

DOI:10.1515/sg-2012-0030 
edited by Thünen Institute of Forest Genetics



 244

with its presence associated with high �15Nad, indicative
of E. largiflorens. Both linear regression and MANOVA
of OVERALS lc identified two markers associating with
TNad: B95 and B137 (Table 2). The presence of both
markers is indicative of lower concentrations of nitrogen
(Table 3). Marker B224 associated with �13Cj according
to linear regression and MANOVA of OVERALS lc.
There were 7 markers identified from linear regression
and MANOVA of OVERALS lc for Rbd (Table 2) and their
quantifications with either presence or absence are dis-
played in Table 3. Linear regression identified 8 AFLP
markers significantly associated with leaf colour and
two of these were also identified by MANOVA of OVER-
ALS lc (Table 2). Their corresponding quantifications are
shown in Table 3. 

Markers for selecting Green Box

Of the 13 AFLP markers significant for both linear
regression and MANOVA of OVERALS lc, five had high
frequencies (>0.82) in Green Box: B95, B204, B224 and
B121 (Table 3). The presence of B95 is associated with
lower TNad indicative of Green Box and E. largiflorens
as E. gracilis had higher TNad. The presence of B204
was associated with both Rbd and the grey green colour
category, occurring in 91% of E. largiflorens, 82% of
Green Box and only 6% of E. gracilis (Table 3). The
presence of B224 was associated with low �13Cj having
highest frequency in E. largiflorens (85%), lower fre-
quency in Green Box (82%) and lowest frequency in
E. gracilis (67%). Lastly, the presence of B121 is associ-
ated with higher �15Nad indicative of Green Box and
E. largiflorens (100 and 94%) whereas E. gracilis dis-
played lower �15Nad (44%). 

Discussion

In this study, none of the AFLP DNA markers were
100% diagnostic for either species. Instead, analyses
were conducted using all AFLP markers and markers
that were at least 78% specific for E. largiflorens (6
markers) and E. gracilis (5 markers). Justification for
using DNA markers that were not diagnostic is provided
by GOODMAN et al. (1999) who stated, “Generally, genetic
markers should never be treated as absolutely diagnos-
tic because it is impossible to determine the effects of
genetic heterogeneity or ancient introgression between
sympatric species.

Of the 11 78% specific DNA markers, one occurred
beyond the local-area in 8 out of 10 Port Lincoln E. gra-
cilis (B143) and another one in 9 out of 10 Wilcannia
E. largiflorens (B204). Both were also present in the
majority of Green Box therefore supporting their assign-
ment as putative hybrids. This study recommends
screening for more AFLP markers with high specificity
for E. gracilis and E. largiflorens with the ultimate goal
of encompassing natural variation extending from local-
area hybrid zones to allopatric populations. Working
outwards from a hybrid zone fulfils the requirement of
no past introgression between putative parental species
within the hybrid zone, as their specificity will have
been tested against allopatric populations (TRIEST et al.,
2000). 

The alternative approach of linear regression was
effective at singling out 17 AFLP DNA markers signifi-
cantly associated with physiological and morphological
traits. The remaining 215 paled into comparison indicat-
ed by much lower critical values. Linear regression has
been applied elsewhere to identify markers for predic-
tion of response variables (traits). Twelve AFLP DNA
markers were associated with shoot Na+, �13C and site-
of-origin of ecogeographic data measured on 39 geno-
types of wild barley (Hordeum spontaneum) (PAKNIYAT et
al., 1997). 

The frequency of AFLP markers was highest in either
E. gracilis or E. largiflorens with Green Box displaying
mostly varying frequencies. There were four markers
high in frequency in Green Box and E. largiflorens and
traits significantly associated with these markers were
TNad (B95), �15Nad (B121), Rbd and leaf colour (B204)
and �13Cj (B224). These markers occurred with much
lower frequencies in E. gracilis and, therefore, can be
utilized to select for Green Box attributes over E. gra-
cilis attributes. However, because these 4 markers
occurred with similar frequencies in Green Box and
E. largiflorens, they cannot be utilized to select for
Green Box attributes over E. largiflorens attributes. To
overcome this limitation, similar presence/absence of
additional markers is necessary to align Green Box with
E. gracilis. One such marker is B66 occurring with high
frequencies in E. gracilis and Green Box and low fre-
quency in E. largiflorens (Table 3). In addition the
absence of markers B85 and B142 in both Green Box
and E. gracilis distinguishes them from E. largiflorens.
Therefore, the segregation of 7 markers can be utilized
to select for Green Box. It is important to qualify that
there would be other attributes of Green Box not identi-
fied in this study. More salt tolerance traits could be
foliar concentrations of Cl– and ratio of sub-stomatal to
ambient CO2 concentration.

It is interesting that the physiological traits identified
for Green Box correspond to reduced growth potential
(LAMBERS et al., 2008; POORTER and EVANS, 1998). An
exception was that SLA was not identified as signifi-
cantly associating with Green Box or AFLP markers.
The reason why is because it behaved in an intermedi-
ate manner, whereas the 7 markers identified above cor-
respond to extremes of traits aligning Green Box with
either E. largiflorens or E. gracilis. The presence of B95,
B204, B224 and B121 were associated with lower TNad,
smaller Rbd, the grey green colour category, lower �13Cj
and higher �15Nad in Green Box and E. largiflorens.
Whereas, the presence of B66 and B142 was associated
with low frequencies of the grey green colour category,
and the presence of B85 was associated with low fre-
quency of smaller Rbd in Green Box and E. gracilis
(Table 3). 

In conclusion, we have found molecular markers that
correlate with physiological and morphological traits
measured in E. largiflorens, Green Box and E. gracilis.
The majority of these traits correspond to reduced
growth potential. Green Box were hypothesized by
ZUBRINICH (1996) to grow at slower growth rates because
E. largiflorens had significantly higher total plant and
shoot biomass. Morphological comparisons between
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E. gracilis, Green Box and E. largiflorens under saline
conditions, indicated E. gracilis was slower growing at
the seedling stage and maybe Green Box have inherited
this quality. The seven AFLP markers identified can be
used to select Green Box increasing the efficiency of re-
vegetation strategies by selecting for favourable
seedlings and thus limiting the number of seedlings that
are throw backs to E. gracilis and E. largiflorens.
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