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Abstract: A method for calculating the ultimate true stresses arising in the walls of shells of revolution in the 

area of uniform plastic deformation is developed in the research. In order to derive the stability loss for the 

plastic deformation process the criterion of maximum load is taken as the basis, simple differential equations 

were solved. It has been shown analytically that the level of the boundary true stresses is much lower when the 

values of the principal stress ratios approach to 2 or 1/2 compared to the adjacent stress states. 
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1 Introduction 

The increasing requirements for the load-bearing capacity of shell-type containers, and at 

the same time the complexity of carrying out the experiments dealing with the loading of 

axisymmetric thin-walled shells of arbitrary geometry, caused the need of the theoretical 

apparatus improvement. The load on the axisymmetric shell with uniformly distributed 

internal pressure and axial tensile force is one of the types of non-momentary loading, with 

the highest structural strength. Typically, sections of thin-walled spheres, cylinders and cones 

are used in practice. More complex forms have been studied and, accordingly, used less. 

Improving the efficiency of thin-walled shells of revolution and, at the same time, the 

complexity of carrying out experiments on the loading of axisymmetric thin-walled shells of 

arbitrary geometry are related to the improvement of their calculation methods. The purpose 

of the paper was to improve methodology of theoretical estimation the safety level of thin-

walled vessels subjected to plastic or elastic-plastic deformation under complex stress state 

and to trace the influence of the stress state and geometric characteristics of the shells on the 

strength indices. 

2 Brief literature review and problem statement 

The vast majority of studies in the public literature is devoted to the issues of the stability 

of cylindrical shells, which together with conical and spherical shells are the basic cases of the 

axisymmetric shell theory [1 – 5]. The basic theoretical provisions and formulas for 

determining the stresses in the walls of loaded axisymmetric shells are given in [6]. Authors 

Middleton J., Owen DR., Blachut J., Zhu L., Boyle J. T., Carbonari, R. C., and others have 

proposed approaches to the selection and optimization of profiles of thin-walled axisymmetric 
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shells loaded with internal pressure with additional loading conditions have been proposed 

[7 – 10]. The authors note the complexity of estimating the limit loads in the design of 

axisymmetric shells. The question of the influence of geometric characteristics of thin-walled 

shells of other types on their strength characteristics, in particular the value of true stresses at 

plastic deformation before the moment of localization of deformations, has not been 

sufficiently investigated. This publication is devoted to the study of the true stress-strain state 

of thin-walled axisymmetric shells of a positive Gaussian curvature at the stage of plastic 

deformation stability loss. The results obtained can be used as a basis for predicting the onset 

of critical states of cylinders and chemical apparatus under pressure. 

3 Objectives of research 

In connection with the above main objectives of the research were: to develop a method of 

obtaining analytical conditions for the occurrence of boundary states of thin-walled 

axisymmetric shells under the action of internal pressure and axial tensile for the area of large 

plastic deformation; to trace the influence of the type of stress state and geometrical 

characteristics of the axisymmetric shells on the values of true stresses that occur in the shell 

walls in the area of uniform plastic deformation before the localization of deformations; to 

obtain results that will contribute to a better understanding of the role of geometric 

characteristics in ensuring the strength of axisymmetric shells under complex stress state. 

4 Obtaining boundary strength conditions 

The axisymmetric shell with thickness h  and closed bottoms, the median surface of which 

is formed by the smooth curve rotation, is uniformly loaded by internal pressure q  and the 

tensile force N  in such a way that the formed meridional, circular and radial stresses are 

principal. The axial stresses are directed along the tangent to the meridian at each point of 

application (Fig. 1). Large plastic deformations of the shell caused by the action of 

axisymmetric loading due to internal pressure and tension are considered. The deformations 

of elastic section are neglected. Kirchhoff's hypotheses about the normality of the elements 

with respect to the median surface before and after loading, and about the equality of zero 

stresses normal to the median surface [11], as well as the conditions for the existence of a 

momentless stress state are accepted. Residual plasticity arising in the direction normal to the 

middle surface is taken into account. The shell material is assumed to be isotropic and 

incompressible. 

4.1 Main equations 

The shell element, distinguished by two sufficiently close axial cross sections taken at 

angle 1d  two orthogonal cross sections at the central angle 2d , is considered. The edge 

lengths along the median radii in the circular and meridional directions are denoted 

respectively by 1ds  and 2ds  (Fig. 2). For the element taken at the distance sufficient to 

neglect the edge effect from the bottoms, the following notation are introduced: m  is the 

current radius of the element median surface (meridian radius), t  is the current surface 

radius the orthogonal to the meridian (circular or latitudinal radius), m  and t  are meridian 

and circular normal stresses. Radial stress r  is neglected. 
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Fig. 1 Axisymmetric shell under complex 

stress state 

Fig. 2 The axisymmetric shell element 

 

Having projected all the efforts onto the normal to the shell element we get the shell 

element equilibrium equation: 

2 1 2 2
1 2 1 22 sin 2 sin 0

2 2

h h
t m

m t

t m

d d
h ds h ds q ds ds

  
 

 

− −
+ − = . (1) 

Taking into account the angles 1d  and 2d , the equivalence of the small ( )1sin 2d  and 

1 2d , ( )2sin 2d  and 2 2d , approximations 1 1 td ds  , 
2 2 md ds  , the equation 

(1) is represented in the following way:  

2 1
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Since 1 2 0h ds ds  , we get: 

1 1
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m t

m t t m

q h h

h

 

   

  
+ = − −  
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. (3) 

Accepting / 0th   , / 0mh   , from (3) we obtain Laplace equation (4). 

m t

m t

q

h

 

 
+ = . (4) 

For the cylindrical tube ( m → ) we obtain the equation of the mean Nadai diameter 

[10]. 

Another condition of equilibrium for determining the stresses m  and t  is obtained by 

considering the equilibrium of the shell part cut off by circular conical surface with generating 

normal to the middle shell surface at each point of their intersection and inclined to the shell 

axis at angle   (Fig. 3). 
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Suppose that only internal pressure q  is 

applied to the shell. Let tOT = , 

2TF h= , TM r= . 

Taking into account that sintTM  = , 

( )sin 2sintKM TM KT h  = − = − , 

we get 2 2 sinq
mq KM h TM    =   , or 

finally 

2
2sin 2 sin .

2sin

q
t m t

h
q h      



 
− =  

 
 (5) 

Using the formula 22sin 1 cos2 = −  and introducing notation  

/ th  =  (6) 

we get 

2

1
1 cos2

.
2

q
m

q



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

 
− 

− =  
(7) 

According to the principle of the forces action independence, the resulting meridian 

stresses are q N
m m m  = + . Considering (5), we derive: 

( )

( )

2

1
1 cos2

.
2 1 cos2

t
t

m
t

h
q

N

h h


 


 

 
−  − = +

−
 

(8) 

Taking into account 2  = − , cost r  =  and neglecting the correction for the wall 

thickness in the first summand, we gain the known dependences for meridian stresses in the 

thin-walled axisymmetric shell by means of momentless theory [13].  

From the equation system (3), (8) let us express q and N. Let us accept notation 

/ .m t k  =  (9) 

Consider the case where the load is followed by significant relative change in sample sizes. 

Let us denote the conditional large residual deformations in the following way: t  – circle,
 

r  – radial, m  – meridian and take them into account for determination the true stresses, as it 

is in [14]. Let us introduce the notation /t m  = , after transformations we get: 

 

Fig. 3 Fragment of the shell axial section 
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. (11) 

Let us use the condition of material incompressibility for the large residual deformations 

area in the following form 

( )( )( )1 1 1 1r t m  + + + = . (12) 

In order to derive the stability loss for the plastic deformation process the criterion of 

maximum Dorn-Nadai load is taken as the basis [12, 15, 16]. We use conditions 0dq =  and 

0dN = , in the same way as in [17 – 19]. 

4.2 Boundary true circular stresses and strains 

Let us use the condition   

0.dq =  (13) 

We assume that under the internal pressure loading of the shell pinched on the edges, the 

residual deformations are close to zero: 0m   In this case from the incompressibility 

condition (12) we define  

( )1 1 / 1 .r t + = +  (14) 

Taking into account the accepted assumption, formula (10) is presented as follows 
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 (15) 

Considering the incompressibility condition (16) and regarding in formula (15) k ,  ,   as 

constant values, condition 0dq =  is presented in the following way: 

0t t
t t

q q
d d 

 

 
+ =
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 (16) 

After finding the partial derivatives and substitution in (16) we get: 



62 ©2020 SjF STU Bratislava Volume 70, No. 1, (2020) 

 

( )( )
( ) ( )( )

( ) ( )( )
( )( )( )

2

2

3 1 1 / 21 2 1
0

1 1 1 1 / 2 1 / 2

t ttt
t

t t t t t

kd
d

k

    


       

 + − + −+ + + − =
 + + + + − + −  

 (17) 

Considering the assumption 
2 0   acceptable for the thin-walled shell, we obtain the 

general integral of the differential equation (17): 
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(18) 

where tC  is the integration constant determined by the experiment results.  

In case of the cylindrical shell 0 =  we get 

( )
2

1 / 2t t tC   = + −
 

. (19) 

At 0   condition (19) coincides with the result obtained in [19]. 

From (17) we obtain an expression for finding the tangent modulus of the real deformation 

curve at the moment of loss of stability of the plastic deformation process and the beginning 

of deformation localization: 
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Considering the partial load case of a cylindrical tube ( 0 = ) and neglecting the subtlety 

index ( 0  ), we obtain the following expression for finding the tangent module 

2
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4.3 Boundary true circular stresses and strains 

Let us use the condition  

0.dN =  (22) 

Suppose that in the area of uniform plastic deformations the shell convexity changes and 

the thinness index remains practically unchanged, i.e. ( ) ( )1 1r t   + +  . Then (10) is as 

follows  
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Taking into account (9) and Poisson coefficient 0,5 =  we get  

/ ,m t n  =  (24) 

where 

( ) ( )2 1 / 2 .n k k= − −  (25) 

Considering the incompressibility condition (12) for large deformation area in the form 

( )( ) ( )1 1 1 1r t m  + + = +  and formulas (9), (24), from formula (23) we get 
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Condition (22) is reduced to the differential equation: 
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where ( )( )
2
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The general equation integral (27) is: 
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If 0 =  we have the case of cylindrical tube, then m z = , m z = , m zC C= . The 

boundary condition (26) is as follows 
( )
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 or, with notation 

( )( ) *1 / 2 1 2 zk a C− − = , 

( )* 1 .z z zC = +  (29) 

Condition (29) coincides with condition for thin-walled cylinder, obtained in [19]. 

From (27) we obtain an expression for finding the tangent modulus, held at the point of a 

real deformation diagram corresponding to the beginning of the localization of deformations: 
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 (30) 

For the partial case of a cylindrical tube ( 0 = ) we obtain the condition:  

1
,

1

m
m

m m

d

d


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 
=

+
 (31) 

obtained by A. Nadai for the case of uniaxial tensile [12]. The second addition to the right of 

formula (30) corrects the slope of the normal to the plot relative to the axis of the shell, the 

type of stress state and geometry  ,  . Dependences (21) and (31) show that the tangent of 

the slope of the tangent to the true deformation curve, held at a point that reflects the moment 

of onset of deformation localization from the action of internal pressure, is twice the value of 

the tangent modulus for uniaxial tensile. 

4.4 Constants for conditions (18) and (28) 

In order to find tC  in general integral (18) we consider the case 0,5k = . The boundary 

circular stresses and strains b
t , b

t  correspond to the sample fracture moment for brittle 

material state and the beginning of deformations localization for plastic material state 

(Table 1). The experimental results for cylindrical thin-walled samples that have been made 

of grades of structural alloyed steel used for the manufacture of pressure vessels are given in 

[14], [19].  

Table 1 Calculation of integration constant values for condition (18) 

Material grade th =  b

t  
b

t  tC  
Reduced tension 

b

t tC  

Steel 10MnH2MoV 0,06* 0,036 705 MPa 675,74 1,04 

Steel 15Cr2MoV 0,067 0,021 746 MPa 739,39 1,01 

Steel 15Cr2HMoV 0,067 0,024 745 MPa 733,94 1,02 

*the average value for thin-walled shells with 0,04..0,08 =  is taken 

Based on the boundary values 
b

m m = , 
b

m m =  of cylindrical tubes for 2k =  integration 

steels mC  are determined for condition (28). The results are shown in Table 2.  

Table 2 Calculation of integration constant values for condition (28) 

Material grade th =  b

m  
b

m  mC  
Reduced tension 

b

m mC  

Steel 10MnH2MoV 0,06* 0,043 722 MPa 692,23 1,04 

Steel 15Cr2MoV 0,067 0,042 830 MPa 796,55 1,04 

Steel 15Cr2HMoV 0,067 0,030 800 MPa 776,70 1,03 

*the average value for thin-walled shells with 0,04..0,08 =  is taken 
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4.5 Graphical analysis of conditions (18) and (28) 

The graphs of the strength loss conditions (18) for the case t m   were constructed for 

0,06 =  (Fig. 4, a). The deformations values 
b

t  and reduced stresses 
b

t tC  were selected 

according to Table 1. 

The graphs of condition (28) for the case m t   are shown in Fig. 4, b. The deformation 

values range 
b

m , reduced stresses 
b

m mC  and value 0,06 =  were selected according to the 

data in Table 2. 

 
  

а) b) 

Fig. 4 Graphic images: a) condition (18) for t m  ; b) condition (28) for m t   

The analysis of the graph of condition (18), made for 0t m    (Fig. 4, a), showed that 

for complex stress states close to 0,5k = , the reduced limit true stresses practically do not 

depend on the type of stress state, but increase in proportion with the residual deformations. 

On the contrary, analysis of the graphs constructed for (28) at 0m t    (Fig. 4, b) 

showed a significant decrease in the shear strength resource when 2k →  compared to 

adjacent stress states. As the level of residual deformation increases in the meridional 

direction, the corresponding limit true stresses increase, but not rapidly. 

The boundary curves described by condition (18) of the principal stress ratios 0,5k =  for 

cylindrical tube ( 0 = ) are shown in Fig. 5. Analysis of Fig. 5 showed a decrease in the level 

of the boundary true stresses of a cylindrical tube in a circular direction with increasing 

values  .  

A certain level of boundary stresses is 

achieved at a higher level of plastic 

deformation if the ratio of the initial 

thickness of the wall of the tube to its initial 

radius is greater, respectively. For other 

values 0,5...1k =  the qualitative and 

quantitative pattern remained practically 

unchanged. 

The graphs of conditions (28) shown in 

Fig. 6 were constructed for differentk . The 

case of cylindrical tube ( 0 = ) was 

considered. For other   and k  the 

qualitative pattern did not change. 

 

 

Fig. 5 Graphical representation of 

dependence (18) of the boundary circular 

stresses t  and residual deformations t  on 

parameter   
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а) 1k =  b) 1,9k =  

Fig. 6 Graphical representation of dependence (28) of the boundary meridian stresses m  

and residual deformations m  on parameter   at different k 

Analysis of the graphs in Fig. 6 showed the decrease in the values m  at 2k → , the 

influence   on the boundary stresses m  value practically is not observed.  

The family of boundary curves (18) for different parameter   values is shown in Fig. 7. 

The thinness index is accepted to be 0,06 = . 

 

 

 
а) 0,5k =  b) 1,0k =  

Fig. 7 Graphical representation of dependence (18) of the boundary true circular stresses t  

and residual deformations t  on parameter   

The graphs of the dependences (18) showed that under the action of internal pressure only 

(Fig. 7, a), the boundary true stresses in the circular direction decrease as the convex value 

increases. In the conditions of simultaneous action of internal pressure and tensile force, the 

boundary circular stresses with the same convexity indices decrease somewhat (Fig. 7, b). 

When 1k → , the effect of the convexity of the shell on its strength increases. 

The boundary curves obtained from (28) at 0,06 =  are shown in Fig. 8. 

  
а) 1k =  b) 1,9k =  

Fig. 8 Graphical representation of dependence (28) of the boundary true meridian stresses m  

and residual deformations m  on parameter   
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Analysis of graphs in Fig. 8 showed that with the increase of the convexity of the shell 

from 0 =  (cylindrical tube) to 1 =  (spherical shell) the level of the boundary true stresses 

in the meridional direction increases, that is, the walls of the shell before the localization of 

deformations develop larger residual deformations in the corresponding direction. There is an 

increased effect of the convexity of the shell at 1k → . When 2k → , the level of the ultimate 

true meridional stresses decreases, the effect of the convexity of the shell is almost 

neutralized. 

5 Results and discussion 

Analysis of the boundary strength conditions obtained in the article showed that the critical 

load value, which causes the occurrence of plastic deformations in the walls of thin-walled 

axisymmetric shell, depends on the material physical properties, the stress state type, the 

geometric shape and dimensions of the shell and is proved by the experiments. 

As the values of the principal stress ratios approached 2, a significant decrease in the 

material strength resource was observed, which is shown by the lower level of the boundary 

true stresses that develop in the shell walls before the onset of deformation localization. The 

fact that the calculated strength of the cylindrical tube in a circular direction decreases with 

increasing values   is analytically confirmed. 

With only internal pressure, the thin-walled axisymmetric shell increases its strength and 

durability if the shell shape approaches spherical. In conditions of simultaneous action of 

internal pressure and tensile axial force, the boundary circular true stresses with the same 

convexity indices are somewhat reduced compared to the stresses that develop in the walls of 

the shell only from the action of internal pressure. When the value k  approaches one, the 

influence of the shell convexity on its strength increases. 

The results of the verification of the achieved results by means of numerical modeling will 

be covered by the authors in the following articles. 

CONCLUSIONS AND PERSPECTIVES 

The technique of prediction of critical values of stresses in the walls of axisymmetric 

shells, loaded with internal pressure and tensile forces, is proposed in the article, taking into 

account the change in the shells geometry. For this purpose, dependences are proposed for the 

calculation of the limit level of the real stresses formed in the walls of a convex shell due to 

the action of internal pressure and longitudinal tensile. The obtained dependencies make it 

possible to construct an algorithm for obtaining the numerical critical values of stresses in 

thin-walled axisymmetric shells based on the results of uniaxial tensile experiments and 

predict vessels behavior under load. 

The perspectives in this work are: checking the adequacy of the obtained dependencies for 

a specific class of plastic materials; application of the proposed approach to finding the level 

of critical loads and residual deformations to shells with an average value of the wall 

thickness to the diameter of the middle surface, as well as to the axisymmetric shells of 

negative Gaussian curvature; the use of software to automate calculations and improve their 

accuracy. 
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