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Abstract: The heat exchangers are used to heat or cool the material streams. To calculate the heat exchanger, it
is important to know the type of heat exchanger and its operating characteristic. This characteristic determines
one of the key variables (e.g., F, NTUmin, Or 0). In some special cases, it is not necessary to know its operating
characteristic to calculate the heat exchanger. This article deals with these special cases. The article also contains
a general dependency that allows checking the key variables related to a given heat exchanger.
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1 Introduction

The calculation of heat exchangers can be carried out by various methods. LMTD method
[1], e-NTU method [2], 6-NTU method [3], and Roetzel-Spang method [4] belong among the
best known. From a practical point of view, e-NTU method is considered to be one of the
most important methods because it allows performing not only the design calculation but also
the checking (verification) calculation of the exchanger. This method also allows indirectly

determining the value of AT (i.e., AT =P, (T, —T.). Fig. 1). However, e&-NTU method
primarily determines the value of NTUmin which is a function of the variables Pmin
(also referred to ase, i.e., Pmin = €) and Rmin. Other methods also enable using so-called
operating characteristics, primarily for determining the variables F and 6.The key variables
allow specifying the variable AT .The purpose of this article is, inter alia, to show how AT
can be determined in certain specific cases.

minB = 7T +

NTU,,;,5=1.0 —= NTU

min

Fig. 1 The schematic representation of the diagram e-NTU.

Generally, for variables within heat exchangers, the subscript min is attributed to a weaker
stream. The heat exchanger stream having a lower mean heat capacity,
i.e., Cpmin = min{Ephpr}, is considered a weaker stream. The subscripts h and c represent
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the individual material streams (Fig. 2 and 5). However, it should be noted that the subscript
min is usually also replaced by subscript 1 (i.e, Cpmn=Cm, PR=P., R =R_,
NTU, =NTU,,, ). If the subscript 1 denotes a weak stream, the variable P, is identical
with the variable @ (i.e., P, = @) which represents the heat efficiency of the exchanger [5].
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a) Schematic representation. b) Temperature profile.
Fig. 2 The schematic representation of the double-tube countercurrent heat exchanger.

The dependence in Fig. 1, also called the operational characteristic, is usually determined
on the basis of results of the experimental measurements. If such dependence has been created
correctly, the values determined by it should also correspond to the general equations
that follow from the dimensionless variables describing the heat exchanger. The paper
also presents a general equation (as well as a general graphical dependence) which can be
used to check whether the operational characteristic of a given heat exchanger has been
created correctly.

2 Relationships among the dimensionless variables

The variables mentioned in the previous section are interrelated. Based on [6] and [7],
this relationship can be expressed by the following equation:

o AT _ FAT, _ Py _ FP. (1-R.) where O
Tu-Ts Tu-To. NTU., In[@-R,P.)@-P,)]

P = (Toins =T mint )/ (Tows = Truins)» While Py, €(0.0;1.0), 2)

Roin = Comin /Comac = (Tmaxt = Tmaxz )/ (Tminz = Trin)» While R €(0.0;1.0), (3)

NTU ,, =kA/C, ., , while NTU ., € (NTU ..c; NTU oo ), (4)

AT, = [Ty =)= (T = T[T, - T, ) (T, - T ). 5)

In these equations, i.e., Egs. (2) and (3), the subscript max represents a variable associated
with a stronger stream. This index is usually also replaced by index 2.A stream whose mean
heat capacity is greater, i.e., Cpma = C p2 = max Eph,(_:pc}, is always considered a stronger

stream. Eq. (5) determines the maximum possible value of the variable AT that a heat
exchanger can achieve. In the case of the double-tube countercurrent heat exchanger,

the following always applies: E:AT,n .This does not apply to other heat exchangers,
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which is the reason why these heat exchangers are compared with the double-tube
countercurrent heat exchanger. It can further be noted that Eq. (5) may also be written
in the form:

(R, -1)P l-R,)P, _ (@-R)P

To _ ¢ = ' where
Thl Ty ( j (1 R.P, ] In[l— RiPi] (6)
1-P, 1-P

Rc = c_:pc /C_:ph = (Thl =T, )/( ) 1/Rh ) (7)

R = (Thl _ThZ)/ (Thl _Tcl) a Pk = (Tcz _Tcl)/ (Thl _Tcl)' (8
The meaning of temperatures in these equations is shown in Fig. 2 and 5. The ratio value
AT, /(T.,—T,)may also be determined by Fig. 3. However, it is preferable to work
with Fig. 4 to determine the value of the ratio LMTD /AT The dependence shown
in this figure results from the following equation:

LMTD _ [1 - ATsmaller/ATl arger]

ATl arger In []/(ATsmaller / ATI arger )]

In this equation, LMTD represents the logarithmic mean temperature difference
for the double-tube countercurrent and the double-tube cocurrent heat exchanger. In the case

of the double-tube countercurrent heat exchanger, AT and AT, are replaced
by expressions AT, .. =min{T, —T,,T,, ~T.} and AT,.. =max{T, T, T, — T}
(Fig. 2). In the second case, the following is applied AT, . _min{Thl—Tcl,Thz— T,}
and AT, =max{T, —T..T,, —T..} (Fig. 5).However, it should be noted that in the sense

of the Eq. (5) the value of the variable that can only be assigned to the double-tube
countercurrent heat exchanger is calculated. By analysis of Egs. (5) and (9), it can be found
that AT, = LMTD only in the case of the double-tube countercurrent heat exchanger.

larger *

) while ATsmaller < ATl arger * (9)

smaller

The variables defined by Egs. (7) and (8) apply in particular to the determination
of the variable F, while F=f(P,, R,), and F (0.0;1.0). The value of NTUmin belonging

to the double-tube countercurrent heat exchanger is always obtained (NTUminc) if the variable
F is multiplied by the variable NTUmin [7], [8].

3 Mean temperature difference

The information about the value of the expression kA, that occurs in the rate equation of
heat transfer Q = kAAT , is important to determine the heat transfer area. The knowledge

of the mean temperature difference (E) is the key for determining the value of the product

KA. Eg. (1) is a generally valid equation which has to satisfy any recuperative heat
exchanger. According to this equation, the general equation can be written to calculate
the mean temperature difference for any recuperative heat exchanger, i.e., Eq. (10):

AT — _ _ _ I:)min (Thl _Tcl) (T ) min (1 len)
AT =0(T,, -T,)=FAT, = N TR P

min " min min

(10)
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a) Schematic representation. b) Temperature profile.

Fig. 5 The schematic representation of the double-tube cocurrent heat exchanger.

Fig. 6, applicable to each recuperative heat exchanger, can be obtained based on this
equation and in the sense of above mentioned.

In some cases, the calculation of AT, by Eq. (5) may be replaced by the following equation:

ATm = [(Thl _Tcz)"' (Thz _Tcl)]/z . (11)

The same applies to LMTD which appears in Eq (9). Then the following equation
can be written:

LMTD = (ATIarger + AT tter )/ 2, alternatively, (12)

LMTD/ATI arger = (1+ A-I-smeﬂler/ATl arger )/2 ' (13)

in the sense of which the graphical dependence shown in Fig. 7 is obtained. A condition
for using these three equations can be specified with reference to Fig. 8, which is obtained
by joining Figs. 4 and 7. If the following applies: 0.5 <AT e /AT 00 < 1.0, Egs. (11), (12),

and (13) can be used for calculating AT,,, or LMTD. In this case, the error will not be more
than 4.0 %. This is also in accordance with [9] and [10].
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Using variables defined by Egs. (7) and (8), Eq. (11) may be rewritten as follows:

AT, 2-P.-B, 2-P(@+R)_ 2-P(R,+1)
T,-T, 2 2 B 2 ' (14)

This equation is similar to Eq. (6). For completeness, according to Eg. (1), and taking
into account the above, the following equation can also be written:

AT FAT, P. FI2-P.. (R +1 :
9 — — n__ min — [ mln( min )] , alternathEly, (15)
Thl _Tcl Thl _Tcl NTU min 2
— P.(T,,—T T,-T,)FI2-P_.(R.. +1
AT = G(Thl _Tcl): FATIn — mm( hi cl) — ( hi cl) [ mln( min )] . (16)
NTU .. 2
It must be remembered that Egs. (11) to (16) can be used only if the above condition is met,
i.e., 0.5 <AT er /AT ger < 1.0.
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4 Dimensionless mean temperature difference in the special cases of heat transfer

Eqg. (1) can be applied to any recuperative heat exchanger. However, in special cases,
there is a problem that the value of one of the key variables (e.g., 6) cannot be explicitly
expressed from this equation. Figs. 9 to 12, which show the temperature profiles of heat
exchangers, represent these special cases.

The first special case is the situation when the mean heat capacities of both streams
are identical (Fig. 9). If C, =C,, (i.e., R, —1), any stream heat capacity can be selected

as C,, (e, Coin=C,.,0or C . =C..). Inthis case, Eq. (10) can be adapted to this form:

pmin ph?

AT _ FATm — Pmin — F (1_ Pmin) , (17)
Rmin 1 Tu—Te Tu—-Ta NTU,

C.

and in this case, AT, is determined from the equation AT, =(T,,~T.,)=(T,, ~T,).

rf .
7;?1 TT 7;;1:7;12 Cﬁfi 7;12=7EI
_ T
ETU 2
= Coe =
E_‘:__:!
Ty
_-..A
Fig. 9 The temperature profile scheme Fig. 10 The temperature profile scheme
for the double-tube countercurrent for the heat exchanger with the phase change
heat exchanger without the phase occurring on the hot medium side (vapor
change if R, —1.0. condensation at the constant temperature).
Another special case corresponds to a situation where one of the mean heat capacity
is infinitely large, i.e, lim fhzmhéphzwzw (vapor condensation
Too-Ty0 P Th2 _Thl
. . I~ S chevaph(Tc)
at constant temperature T,, =T, =T,, Fig. 10), or _Ilim C =mCp=———"—"=©
Tcszcl_)o TCZ _TC].
(liquid boiling at constant temperature T, =T, =T_, Fig. 11). It then means that R . —0.
In this case, Eq. (1) can be easily adjusted to the form 6= AT = FAT, =
Thl_Tcl Thl_Tcl
P FP_ e -
min min . However, the reason for classifying these cases as special is that,

“NTU,, —Inl-P,)
in these cases, F is always equal to one, i.e., F =1 [7]. This can also be demonstrated using
the universal equation for calculating the heat efficiency of a recuperative heat exchanger [7],
1

[11]. Solving this universal equation gives: Z =1 and NTU, , = In[ j This means

min
that in the equation for calculating the dimensionless mean temperature difference (0),
it must be true that F =1. So for the second special case, the equation may be written:
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: AT AT, P P
lim 0= = n____mn _ i . (18)
Rmin >0 Thl _Tcl Thl _Tcl NTU min - In(l_ I:}min)
If the condition 0.5 <AT . /AT < 1.0 is fulfilled, Eq. (18) may be replaced
by the following form of equation:
AT AT, P 2-P

I|m e — — In — min — min ) 19
Rmin =0 Tw—Ta Tu—-Ty NTU_, 2 19)

C.

This equation is obtained similarly to Eqg. (18) but the Eq. (16) is the source equation
for its creation. By these equations, Fig. 13 can be constructed.

rf rt ‘
Ty T =Tj Cpf' T =T, \
A ) _
. — ] [
E.__'E 7;12 B F--“ C,pc
' 1=T, IL=T, ’
Y Cpc-
=T, T,=T, *
— 4 —= 4
Fig. 11 The temperature profile scheme Fig. 12 The temperature profile scheme
for the heat exchanger with the phase change  of the heat exchanger with the phase change
occurring on the cold medium side (liquid of both media (vapor condensation
boiling at the constant temperature). and liquid boiling at the constant
temperature).

In Egs. (18) and (19), the variable AT, is again determined from Egs. (5) and (11). If Eq.
(18) represents condensation, then AT, = [Tcl —Tcz]/ln[(Th —Tcz)/(Th —Tcl)], otherwise, in the
case of evaporation AT, =[T,, —T,, }/In[(T,, = T.)/(T,, =T.)]. In the case of Eq. (19), it applies
[2Th - (Tcz +Ty )] [(Thl +Th2)_ 2Tc]

2 2
The penultimate situation (the third special situation) that may occur is that the mean heat
capacities of the streams are the same as in the case represented by Eqg. (17) but infinitely
large (i.e., _lim C_th = lim C_)pc =o©). In such a case, whenT,=T,=T, (vapor

Tha=Tpy—0 Teo—Te—0

similarly AT, = (condensation) and AT,, = (evaporation).

condensation at T = const) and T, =T, =T, (liquid boiling at T = const.) (Fig. 12)
the equation for calculating AT, has the form AT, =T,, — T, and here also applies P, — 0,
R, =1, and NTU .. :f(Pmin, Riin s pp)—> 0. Using the universal equation for calculating

the heat efficiency of the recuperative heat exchangers [7], [11] it is again possible to prove
that in the limit P, /NTU . =1 if P.. — 0. If this is to be true, then in Eqg. (10) it must be

min min min
F =1. In this penultimate situation, Eq. (1) takes a simple form given by the equation:
AT AT, P

lim 0= = h__— __mn__ 1, 20
Finin =0 Thl - Tcl Thl - Tcl NTU min ( )

The double-tube countercurrent and the double-tube cocurrent heat exchanger represent
the last special situation. For these heat exchangers, the mean temperature difference
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(E) for different combinations of Pmin and Rmin is always determined by the equation
AT = FAT, =LMTD [10]. This justifies their inclusion among special cases. Taking into
account the above, the equation for calculating the dimensionless mean temperature
difference (0) can be written as:

AT _ LMTD _ Pmin _ ATI arger [1_ ATsmaller /ATI arger] (21)
Thl _Td Thl _TCl NTU min (Thl _Tcl)ln []7/(ATsmaller /ATI arger )]

If the condition 0.5 <AT ., /AT
instead of Eq. (21) to calculate 6 :

0=

< 1.0 is fulfilled, the following equation may be used

larger

min _ ATI arger [1+ ATsmaller /ATI arger ]

Tu—Ta Tu-Ta NTUg (Thl _Tcl)z

1.0 - —
1 w7
g':_eﬁ* /'/—Eq. (18)
/f/
/

064 /
05 /
0.4 1

0.3
0.24
0.1 Fig. 13 The dependence of P,
0.0

AT _LMTD P

0= (22)

2 1 3 3 4 3 & 7T =8 on NTU,,, for any recuperative
NTU 1] heat exchanger if R ;, = 0.0.

Egs. (17) to (22) allow the calculation of the dimensionless mean temperature difference,
or other variables (for example, NTU . =kA/Cpmin ), in special cases if the conditions

under which these equations have been compiled are fulfilled. If F = 1 (i.e., E:ATM),
the general rate equation of heat transfer (i.e., Q = kAAT ) corresponds to the form:

Q =kAAT, (23)

In

from which the value of the expression kA can be determined. This equation may be applied
to the cases represented by Egs. (18) to (20), as well as in the case of double-tube
countercurrent heat exchanger. In the case of the double-tube cocurrent heat exchanger,
the following equation must be used Q=k.ALMTD . In all other cases (i.e., F= 1),

the calculation of the recuperative heat exchangers can be based on Eq. (1) if F is known.

CONCLUSION

The main aim of the article is to state that in special cases it is possible to calculate
any recuperative heat exchanger (key variables) without knowing the operating characteristic
of the given heat exchanger. These cases are represented by Egs. (18) to (22).Without
the operating characteristic, the calculation of a heat exchanger is generally not possible
to carry out by Egs. (1) and (17). However, the knowledge of the operating characteristic
is not necessary in certain circumstances (when Fx= 1) [7]. Knowing the values of the key

variables allows to determine the value of the expression KA. By determining the value
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of this expression, the calculation of the recuperative heat exchanger (calculation of the heat
transfer area) then becomes relatively problem-free.

General equation, Eg. (1), which must comply with any recuperative heat exchanger,
is also presented in this article. This equation, as well as Fig. 6, is particularly useful
for checking data obtained from the experimental measurements.
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NOMENCLATURE

Latin Letters

A — heat transfer area [m?] difference [K]

c, — specific heat capacity at constant m — mass flow rate [kg/s]
pressure [J/(kgK)] NTU  — number of transfer units [1]

C, — heat capacity flow rate at constant P — dimensionless temperature
pressure [W/K] change [1]

F — logarithmic mean temperature 9) — heat flow rate [W]
difference correction factor [1] R — heat capacity rate ratio [1]

k — overall heat transfer coefficient T — temperature[K]
[W/(m?K)] Z — auxiliary parameter [1]

LMTD - logarithmic mean temperature

Greek Letters

Ay dh(T) — enthalpy of condensation AT,, — logarithmic mean temperature
at temperature T [J/kg] difference for double-tube
Aevaph(T) — enthalpy of evaporation countercurrent heat exchanger [K]
at temperature T [J/kg] € — dimensionless temperature change
AT — the temperature difference [1]
between two flowing media D — heat efficiency [1]
at the end or the start of the heat 0 — dimensionless mean temperature
transfer area [K] difference [1]
AT — mean temperature difference [K]
Subscripts
B — point 2 — stronger stream
[ — i-th medium ' — at the inlet
smaller —smaller ) — at the outlet
larger  — larger h — hot medium
max — stronger stream, maximum C — cold medium
min — weaker stream, minimum C — double-tube countercurrent heat
N — mean value exchanger
1 — weaker stream CO  —double-tubecocurrent heat

exchanger
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