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Abstract: The heat exchangers are used to heat or cool the material streams. To calculate the heat exchanger, it 
is important to know the type of heat exchanger and its operating characteristic. This characteristic determines 

one of the key variables (e.g., F, NTUmin, or ). In some special cases, it is not necessary to know its operating 

characteristic to calculate the heat exchanger. This article deals with these special cases. The article also contains 

a general dependency that allows checking the key variables related to a given heat exchanger.  
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1 Introduction 

The calculation of heat exchangers can be carried out by various methods. LMTD method 

1], -NTU method 2], -NTU method 3], and Roetzel-Spang method 4] belong among the 

best known. From a practical point of view, -NTU method is considered to be one of the 

most important methods because it allows performing not only the design calculation but also         

the checking (verification) calculation of the exchanger. This method also allows indirectly 

determining the value of T  (i.e., ( )11Bmin ch TTPT −= , Fig. 1). However, -NTU method 

primarily determines the value of NTUmin which is a function of the variables Pmin             

(also referred to as, i.e., Pmin = ) and Rmin. Other methods also enable using so-called 

operating characteristics, primarily for determining the variables F and .The key variables 

allow specifying the variable T .The purpose of this article is, inter alia, to show how T  

can be determined in certain specific cases. 

 

Fig. 1 The schematic representation of the diagram -NTU. 

Generally, for variables within heat exchangers, the subscript min is attributed to a weaker 

stream. The heat exchanger stream having a lower mean heat capacity,                                  

i.e.,  pcphp CCC ,minmin = , is considered a weaker stream. The subscripts h and c represent 
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the individual material streams (Fig. 2 and 5). However, it should be noted that the subscript 

min is usually also replaced by subscript 1 (i.e., 1min pp CC = , 
min1 PP = , 

min1 RR = ,

min1 NTUNTU = ). If the subscript 1 denotes a weak stream, the variable 
1P  is identical      

with the variable   (i.e., =1P ) which represents the heat efficiency of the exchanger 5]. 

 

 
  

a) Schematic representation. b) Temperature profile. 
  

Fig. 2 The schematic representation of the double-tube countercurrent heat exchanger. 

The dependence in Fig. 1, also called the operational characteristic, is usually determined 

on the basis of results of the experimental measurements. If such dependence has been created 

correctly, the values determined by it should also correspond to the general equations          

that follow from the dimensionless variables describing the heat exchanger. The paper        

also presents a general equation (as well as a general graphical dependence) which can be 

used to check whether the operational characteristic of a given heat exchanger has been 

created correctly. 

2 Relationships among the dimensionless variables 

The variables mentioned in the previous section are interrelated. Based on 6] and 7],        

this relationship can be expressed by the following equation:  

( ) ( ) minminmin

minmin

min

min

11

ln

11 11ln

)1(

NTU PPR

RFPP

TT

TF

TT

T

chch −−

−
==

−


=

−


= , where (1) 

  

( ) ( )1min1max1min2minmin TTTTP −−= , while 0.1;0.0min P , (2) 

  

( ) ( )1min2min2max1maxmaxminmin TTTTCCR pp −−== , while 0.1;0.0min R , (3) 

  

minminNTU pCAk= , while COC minminmin NTU;NTUNTU  , (4) 

  

( ) ( )  ( ) ( ) 12211221ln ln chchchch TTTTTTTTT −−−−−= . (5) 

In these equations, i.e., Eqs. (2) and (3), the subscript max represents a variable associated 

with a stronger stream. This index is usually also replaced by index 2.A stream whose mean 

heat capacity is greater, i.e.,  pcphpp CCCC ,max2max == , is always considered a stronger 

stream. Eq. (5) determines the maximum possible value of the variable T that a heat 

exchanger can achieve. In the case of the double-tube countercurrent heat exchanger,            

the following always applies: lnTT = .This does not apply to other heat exchangers,      
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which is the reason why these heat exchangers are compared with the double-tube 

countercurrent heat exchanger. It can further be noted that Eq. (5) may also be written            

in the form:  
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(6) 

  

( ) ( ) hcchhphpcc RTTTTCCR 11221 =−−== ,  (7) 

  

( ) ( )1121 chhhh TTTTP −−=  a ( ) ( )1112 chccc TTTTP −−= . (8) 

The meaning of temperatures in these equations is shown in Fig. 2 and 5. The ratio value 

( )11 chln TTT − may also be determined by Fig. 3. However, it is preferable to work             

with Fig. 4 to determine the value of the ratio erlT argLMTD  . The dependence shown           

in this figure results from the following equation: 

 

( ) erlsmaller

erlsmaller

erl TT

TT

T
arg

arg

arg 1ln

1LMTD



−
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
, while smallerT   erlT arg . (9) 

In this equation, LMTD represents the logarithmic mean temperature difference                    

for the double-tube countercurrent and the double-tube cocurrent heat exchanger. In the case 

of the double-tube countercurrent heat exchanger, smallerT  and erlT arg  are replaced               

by expressions  1221 ,min chchsmaller TTTTT −−=  and  1221arg ,max chcherl TTTTT −−=  

(Fig. 2). In the second case, the following is applied  2211 ,min chchsmaller TTTTT −−=         

and  2211arg ,max chcherl TTTTT −−=  (Fig. 5).However, it should be noted that in the sense 

of the Eq. (5) the value of the variable that can only be assigned to the double-tube 

countercurrent heat exchanger is calculated. By analysis of Eqs. (5) and (9), it can be found 

that LMTDln =T only in the case of the double-tube countercurrent heat exchanger. 

The variables defined by Eqs. (7) and (8) apply in particular to the determination                       

of the variable F, while ( )cc RPF ,f= , and 0.1;0.0F . The value of NTUmin belonging               

to the double-tube countercurrent heat exchanger is always obtained (NTUminC) if the variable 

F is multiplied by the variable NTUmin 7], 8]. 

3 Mean temperature difference 

The information about the value of the expression Ak , that occurs in the rate equation of 

heat transfer TAkQ = , is important to determine the heat transfer area. The knowledge                           

of the mean temperature difference ( T ) is the key for determining the value of the product 

Ak . Eq. (1) is a generally valid equation which has to satisfy any recuperative heat 

exchanger. According to this equation, the general equation can be written to calculate         

the mean temperature difference for any recuperative heat exchanger, i.e., Eq. (10): 
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Fig. 3 The dependence of Pmin                     

on 
11 chln TTT −  for the double-tube 

countercurrent heat exchanger. 

Fig. 4 The dependence of erlsmaller TT arg  

on erlT argLMTD   for the double-tube 

countercurrent and the double-tube 

concurrent heat exchanger. 
 

 

 
  

a) Schematic representation. b) Temperature profile. 
  

Fig. 5 The schematic representation of the double-tube cocurrent heat exchanger. 

Fig. 6, applicable to each recuperative heat exchanger, can be obtained based on this 

equation and in the sense of above mentioned. 

In some cases, the calculation of lnT by Eq. (5) may be replaced by the following equation: 

( ) ( )  21221ln chch TTTTT −+−= . (11) 

The same applies to LMTD which appears in Eq (9). Then the following equation                 

can be written:  

( ) 2LMTD arg smallererl TT += , alternatively, (12) 

  

( ) 21LMTD argarg erlsmallererl TTT += , (13) 

in the sense of which the graphical dependence shown in Fig. 7 is obtained. A condition       

for using these three equations can be specified with reference to Fig. 8, which is obtained     

by joining Figs. 4 and 7. If the following applies: 0.5  erlsmaller TT arg  1.0, Eqs. (11), (12), 

and (13) can be used for calculating lnT , or LMTD. In this case, the error will not be more 

than 4.0 %. This is also in accordance with 9] and 10]. 
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Using variables defined by Eqs. (7) and (8), Eq. (11) may be rewritten as follows: 
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This equation is similar to Eq. (6). For completeness, according to Eq. (1), and taking           

into account the above, the following equation can also be written:  
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It must be remembered that Eqs. (11) to (16) can be used only if the above condition is met, 

i.e., 0.5  erlsmaller TT arg  1.0. 
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Fig. 7 The dependence of erlsmaller TT arg

       on 

   
erlT argLMTD   for the double-tube 

countercurrent and the double-tube cocurrent 

heat exchanger if 
erl

smaller

T

T

arg


 ( 0.1;5.0 . 

Fig. 8 The dependence of erlsmaller TT arg

       on erlT argLMTD   for the double-tube 

countercurrent and the double-tube cocurrent 

heat exchanger. 
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4 Dimensionless mean temperature difference in the special cases of heat transfer 

Eq. (1) can be applied to any recuperative heat exchanger. However, in special cases,         

there is a problem that the value of one of the key variables (e.g.,  ) cannot be explicitly 

expressed from this equation. Figs. 9 to 12, which show the temperature profiles of heat 

exchangers, represent these special cases. 

The first special case is the situation when the mean heat capacities of both streams               

are identical (Fig. 9). If psph CC =  (i.e., 1min →R ), any stream heat capacity can be selected       

as minpC  (i.e., php CC =min , or psp CC =min ). In this case, Eq. (10) can be adapted to this form: 

)1(
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11
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TF
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−==
−


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−
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→
, (17) 

and in this case,
lnT  is determined from the equation ( ) ( )1221ln chch TTTTT −=−= . 

  
  

Fig. 9 The temperature profile scheme         

for the double-tube countercurrent            

heat exchanger without the phase          

change if 0.1min →R . 

Fig. 10 The temperature profile scheme                      

for the heat exchanger with the phase change 

occurring on the hot medium side (vapor 

condensation at the constant temperature). 

Another special case corresponds to a situation where one of the mean heat capacity                 

is infinitely large, i.e., 
( )
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(liquid boiling at constant temperature ccc TTT == 12 , Fig. 11). It then means that 0min →R .       

In this case, Eq. (1) can be easily adjusted to the form =
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== . However, the reason for classifying these cases as special is that, 

in these cases, F is always equal to one, i.e., 1=F  7]. This can also be demonstrated using 

the universal equation for calculating the heat efficiency of a recuperative heat exchanger 7], 

11]. Solving this universal equation gives: 1=Z  and 








−
=

min

min
1

1
lnNTU

P
. This means 

that in the equation for calculating the dimensionless mean temperature difference ( ),            

it must be true that 1=F . So for the second special case, the equation may be written: 
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If the condition 0.5  erlsmaller TT arg  1.0 is fulfilled, Eq. (18) may be replaced                             

by the following form of equation: 
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This equation is obtained similarly to Eq. (18) but the Eq. (16) is the source equation                       

for its creation. By these equations, Fig. 13 can be constructed. 

  
  

Fig. 11 The temperature profile scheme          

for the heat exchanger with the phase change 

occurring on the cold medium side (liquid 

boiling at the constant temperature). 

Fig. 12 The temperature profile scheme           

of the heat exchanger with the phase change     

of both media (vapor condensation           

and liquid boiling at the constant 

temperature). 

In Eqs. (18) and (19), the variable lnT  is again determined from Eqs. (5) and (11). If Eq. 

(18) represents condensation, then   ( ) ( ) 1221ln ln chchcc TTTTTTT −−−= , otherwise, in the 

case of evaporation   ( ) ( ) chchhh TTTTTTT −−−= 2121ln ln . In the case of Eq. (19), it applies 

similarly 
( ) 
2

2 12
ln

cch TTT
T

+−
=  (condensation) and 

( ) 
2

221
ln

chh TTT
T

−+
=  (evaporation). 

The penultimate situation (the third special situation) that may occur is that the mean heat 

capacities of the streams are the same as in the case represented by Eq. (17) but infinitely 

large (i.e., ==
→−→−

pc
TT

ph
TT

CC
cchh 00 1212

limlim ). In such a case, when hhh TTT == 12  (vapor 

condensation at T = const.) and ccc TTT == 12  (liquid boiling at T = const.) (Fig. 12)              

the equation for calculating lnT  has the form 11ln ch TTT −= and here also applies 0min →P , 

1min →R , and ( ) 0,,fNTU minminmin →= ppRP . Using the universal equation for calculating 

the heat efficiency of the recuperative heat exchangers 7], 11] it is again possible to prove 

that in the limit 1NTUminmin =P  if . If this is to be true, then in Eq. (10) it must be 

. In this penultimate situation, Eq. (1) takes a simple form given by the equation: 

1
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The double-tube countercurrent and the double-tube cocurrent heat exchanger represent         

the last special situation. For these heat exchangers, the mean temperature difference               

0min →P

1=F
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( T ) for different combinations of Pmin and Rmin is always determined by the equation 

LMTDln == TFT 10]. This justifies their inclusion among special cases. Taking into 

account the above, the equation for calculating the dimensionless mean temperature 

difference (  ) can be written as: 
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If the condition 0.5  erlsmaller TT arg  1.0 is fulfilled, the following equation may be used 

instead of Eq. (21) to calculate  : 
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Fig. 13 The dependence of minP                      

on 
minNTU  for any recuperative                 

heat exchanger if 0.0min →R . 

Eqs. (17) to (22) allow the calculation of the dimensionless mean temperature difference,        

or other variables (for example, minminNTU pCAk= ), in special cases if the conditions       

under which these equations have been compiled are fulfilled. If F = 1 (i.e., lnTT = ),          

the general rate equation of heat transfer (i.e., TAkQ = ) corresponds to the form: 

lnTAkQ = , (23) 

from which the value of the expression Ak  can be determined. This equation may be applied 

to the cases represented by Eqs. (18) to (20), as well as in the case of double-tube 

countercurrent heat exchanger. In the case of the double-tube cocurrent heat exchanger,        

the following equation must be used LMTD..AkQ = . In all other cases (i.e., F  1),              

the calculation of the recuperative heat exchangers can be based on Eq. (1) if F is known. 

CONCLUSION 

The main aim of the article is to state that in special cases it is possible to calculate              

any recuperative heat exchanger (key variables) without knowing the operating characteristic      

of the given heat exchanger. These cases are represented by Eqs. (18) to (22).Without             

the operating characteristic, the calculation of a heat exchanger is generally not possible          

to carry out by Eqs. (1) and (17). However, the knowledge of the operating characteristic          

is not necessary in certain circumstances (when F 1) 7]. Knowing the values of the key 

variables allows to determine the value of the expression Ak . By determining the value          
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of this expression, the calculation of the recuperative heat exchanger (calculation of the heat 

transfer area) then becomes relatively problem-free. 

General equation, Eq. (1), which must comply with any recuperative heat exchanger,              

is also presented in this article. This equation, as well as Fig. 6, is particularly useful             

for checking data obtained from the experimental measurements.  
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NOMENCLATURE 

Latin Letters 

A   – heat transfer area m2  difference K 

pc   – specific heat capacity at constant 

pressure J/(kgK) 

m  
NTU  

– mass flow rate kg/s 

– number of transfer units 1 

pC   – heat capacity flow rate at constant 

pressure W/K 

P   – dimensionless temperature 

change 1 
F   – logarithmic mean temperature 

difference correction factor 1 

Q   

R  

– heat flow rate W 

– heat capacity rate ratio 1 

k   – overall heat transfer coefficient 

W/(m2K) 

T   

Z  

– temperatureK 

– auxiliary parameter 1 
LMTD
 

– logarithmic mean temperature   

Greek Letters 

( )Thcond  – enthalpy of condensation              

at temperature T J/kg 
lnT

 

– logarithmic mean temperature 

difference for double-tube  

( )Thevap  – enthalpy of evaporation                    

at temperature T J/kg
 

 
  

countercurrent heat exchanger K 

– dimensionless temperature change  
T  – the temperature difference 

between two flowing media            

at the end or the start of the heat 

transfer area K 

 

  
  

1 

– heat efficiency 1 

– dimensionless mean temperature 

difference 1 

T  – mean temperature difference K   

 

Subscripts 

B  – point 2   – stronger stream 

i   – i-th medium '  – at the inlet 

smaller   – smaller "  – at the outlet 

larger   – larger h   – hot medium 

max   – stronger stream, maximum c   – cold medium 

min   – weaker stream, minimum C   – double-tube countercurrent heat 

  – mean value  exchanger 

1  – weaker stream CO   – double-tubecocurrent heat 

exchanger 
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