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Abstract: This paper presents a simple-to-use system for estimating non-measurable components of crane state 

vector considering parameter changes. To obtain them, it is possible to use a numerical derivative, where the 

measurement noise causes great inaccuracies, or the Luenberger observer and Kalman filter, which require 

knowledge of the dynamics of the controlled system, which is constantly changing with the crane. 
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1 Introduction 

Crane is in practice a very often used equipment. Its operation is not easy and brings many 

risks. Improper handling may result in the vibration load and consequently in a crash. 

Almost of controllers of the gantry and overhead crane are designed based on the 

linearized model. The reason for the suitability of the linearized model is given, for example 

in [1]. With use an intelligent crane control techniques is possible a simplified a nonlinear 

crane dynamic model to linear system with varying parameters, like a rope length and payload 

mass, which can be used as key variables useful in anti-sway system designing. Planar models 

are used most frequently. They are used also in articles [2-12]. They are relatively simple and 

provide usable results. 

One of the problems encountered in crane control is the measurement the swaying angle of 

load. Approaches to measuring the angle of vibration are generally discussed in [1]. Specific 

solutions for the laboratory crane are described in [2, 3, 5] and [8]. An innovative approach to 

estimate the vibration angle of load without measurement is given in [5]. For its 

computational demands in real time application requires crane modeling with PC. For the 

overhead crane or gantry crane, it is quite easy to measure the vibration angle because the 

length of the rope is relatively short. With a relatively small length displacement of the load, 

the vibration angle is significant. Articles [2, 3, 5] take the angle measurement for a short 

rope. In this article, the vibration angle is measured. It is therefore a well-known component 

of the state vector 

The main problem with crane control is the state vector estimate. Most modern control 

methods require its knowledge. The non-differentiate components of the state vector are the 

trolley displacement and the swaying angle of the load, in [8, 9, 12] and the length of the rope. 

Derivation of state variables are directly unmeasurable.  

This article discusses the hybrid estimation of individual derivations by means of 

operational amplifiers in the circuit as analog derivatives. These derivatives work in 

conjunction with a digital microcomputer, resulting in hybrid control. The advantage of this 
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solution is that knowledge of system dynamics is not required to estimate the derivation of the 

individual variables. Also, the derivation is performed analogously in real time without the 

need for numerical calculation. Therefore, numerical filters of measured quantities or state 

estimators are not used. The resulting state vector control then does not need a powerful 

microcomputer. Analog values are converted to digital using AD converter. Calculation of the 

action variable using vector of controller parameters or control gain matrix, as in articles [3, 4, 

18], then the calculation is very simple. The control of light damped systems, in this case 

beams, is also discussed in the publication [21]. Noise filtering issues are also discussed in 

[21]. The article [22] discusses the optimal control of a similar problem. 

2 Use of operating amplifiers when detecting derivatives of coordinates 

First, you need to analyze the planar dynamic crane model. From this model is further 

developed to define the state description and control proposal. The subject of the article is not 

to investigate the robustness of the proposed control, but to design a state vector estimation 

that is independent of the knowledge of the system parameters. Therefore, in crane model 

experiments, when changing parameters, the manual gain coefficients of the controller were 

changed, but the analog circuit settings used to estimate the state vector did not change.  

2.1 Planar crane model and its control using Pole Placement Method 

In articles [2, 5, 6, 7, 10, 11], the constant length of the rope is considered during the 

regulatory process. Thus, the length of the rope does not occur as a variable of the state 

vector. This exactly corresponds to the overhead crane, where the load is moved only on one 

of the axes. In other movements than lifting, the length of the rope does not change. 

The planar model is in Fig.1. The resistance to trolley motion is introduced as viscous due 

to the linear state description. This simplification is used in [6, 7, 11] and [9, 10, 12], any 

effect of resistance to movement of the trolley is neglected. In the real overhead crane, of 

course, motion resistance is composed of the rolling friction between the trolley`s wheels and 

the viscous damping in the gearbox. In this model, the viscous damping of the pendulum 

(load) is also considered, although it is not mentioned elsewhere. It is for the sake of 

discovering transient and impulsive responses that vibration does not go on indefinitely. 

The only way the crane can control is to act on the trolley by force. The effect of the 

disturbance on the system is possible by force acting on the load, as shown in Fig. In Fig.1. 

the individual markings are: 
1m  is the weight of the trolley, 

2m  is the weight of the load, l is 

the length of the rope,
rb  is the coefficient of the viscous damping during swaying, tb  is the 

coefficient of viscous damping in the trolley's translational movement, 𝑥 is the trolley's 

coordinates, another 𝑔 is a gravitational acceleration. Position of load is defined in (1): 

𝑥0 = 𝑥 + 𝑙 sin 𝜑 ≅ 𝑥 + 𝑙𝜑 (1) 

The following deduction of equations in the state description is similar to [6, 7, 10, 11]. To 

obtain the equations of motion using the Lagrange equations of the second order, it is 

necessary to describe it according to Fig.1, the kinetic energy 𝐸𝐾, the potential energy 𝐸𝑝, the 

dissipation energy 𝐸𝐷of dynamic model of the crane (2). 
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Fig. 1 Planar dynamic crane model 
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Lagrange`s equations of motion are described in (3): 

𝑑

𝑑𝑡
(

𝜕𝐸𝐾

𝜕𝑞̇𝑖
) −

𝜕𝐸𝐾
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+
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= 𝑄𝑖 (3) 

In equation (3) 𝑞𝑖 is the generalized coordinate taking 𝑥, 𝜑 and 𝑄𝑖 is the generalized force. 

Using the linearization assumptions for a small vibration angle, sin 𝜑 ≅ 𝜑, cos 𝜑 ≅ 1  and 

using Lagrange equations, the linearized motion equations of the system are (4): 

[
𝑚1 + 𝑚2 𝑚2𝑙

𝑚2𝑙 𝑚2𝑙2] [
𝑥̈(𝑡)

𝜑̈(𝑡)
] + [

𝑏𝑡 0
0 𝑏𝑟

] [
𝑥̇(𝑡)

𝜑̇(𝑡)
] + [

0 0
0 𝑚2𝑔𝑙

] [
𝑥(𝑡)

𝜑(𝑡)
]

= [
1 1
0 𝑙

] [
𝑢(𝑡)
𝑣(𝑡)

] 

(4) 

In equation (4), 𝑢(𝑡) is control force and 𝑣(𝑡) is failure force. The control force acts on the 

trolley and the failure force acts on the load. To write equations of motions in the form of a 

state description, it is appropriate to mark the individual components in (4) in the form (5), 

where 𝑴  is the mass matrix, 𝑩𝑓  is the damping and 𝑲  is the stiffness matrix 

𝑴𝒒̈(𝑡) + 𝑩𝑓𝒒̇(𝑡) + 𝑲𝒒(𝑡) = 𝑩𝑖𝒖(𝑡) (5) 

Equation (6) is then overwritten following the adjustment to the state description: 

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒖(𝑡) 

 
 

[
𝒒̇(𝑡)

𝒒̈(𝑡)
] = [

𝟎 𝟏
−𝑴−1𝑲 −𝑴−1𝑩𝑓

] [
𝒒(𝑡)

𝒒̇(𝑡)
] + [

𝟎
𝑴−1𝑩𝑖

] 𝒖(𝑡)  (6) 



36 ©2019 SjF STU Bratislava Volume 69, No. 4, (2019) 

 

As will be described below, the directly measured components of the state vector are 𝑥(𝑡) and 

𝜑(𝑡) therefore the output equation of the state description in the form (7):  

𝒚(𝑡) = 𝑪𝒙(𝑡) = [
1 0 0 0
0 1 0 0

] [𝑥(𝑡) 𝜑(𝑡) 𝑥̇(𝑡) 𝜑̇(𝑡)]𝑇 (7) 

The system described by equations (6) and (7) is controllable and observable for all 

practical parameters. Controllability and observability are described in [14, 15, 18]. 

The Pole Placement Method, which is described in [18], was chosen for the system design 

proposal. This method is used as the basis for adaptive control of the TSK (Takagi Sugeno 

Kang) [2, 4, 10]. In all these articles, the action variable is proportional to the difference 

between the desired and the current state vector. According to [18], the action variable is 

defined in the form (8): 

𝑢(𝑡) =   𝑲(𝒙𝒅(𝑡) − 𝒙(𝑡)) = 𝑲([𝑥𝑑 , 0, 0, 0] − [𝑥, 𝜑, 𝑥̇, 𝜑̇])𝑇 (8) 

Where 𝒙𝒅(𝑡) is the desired state vector and 𝑲 = [𝑘1, 𝑘2, 𝑘3, 𝑘4] controller gain matrix. To 

calculate the controller gain matrix, for control transmission, on the basis of stability, it is 

appropriate to specify 𝒙𝒅 = 𝟎  and also not to consider the effect of the disturbance force: 𝑣 =
0. Under these conditions, after fitting (8) to (6), a set of equations (9) is obtained: 

𝒙̇(𝑡) = (𝑨 − 𝑩𝑲)𝒙(𝑡)  (9) 

From the stability conditions of equations (9) a controller gain matrix 𝑲 can be designed. 

This matrix can be calculated using Ackermann equations using MATLAB environment or 

derived exact relations [20]. The matrix of amplification of the controller 𝑲 is different for 

each length of the rope and the weight of the load. The evolutionary optimization of the TSK 

of an adaptive controller that switches the individual controllers set for the boundary 

parameters is given in [2, 4]. It is no longer the subject of optimal control, therefore the 

experimentally selected poles in the stable region and the calculated gain matrix of the 

controller 𝑲. The selected poles are in (10) 

𝑝1 = −5.2 ;  𝑝2 = −6.2 ;  𝑝3 = −7,2; 𝑝4 = −8.2 (10) 

2.2 Experimental device 

This device is a direct implementation of a planar dynamic model. Thus, it is not possible 

to move the trolley after two axes, but only one Fig.2. The model used in this article was 

inspired by the planar laboratory scaled model used in Article [8]. 

Trolley movement is provided by a DC motor controlled by pulse-width modulation via 

the H-bridge. The engine acts on the trolley through the rope. The trolley moves on two steel 

smooth rods. The length of the path the trolley can move is 0.26 m. No rope is used to hang 

the load. But the rod. This is a limited vibration of load in the direction perpendicular to the 

trolley direction. The weighting container can be moved freely on the rod and contains a 

weight up to 0.7 kg. The length after which the container can be moved over the bar is from 

0.1 m to 0.45 m at a distance from the axis of rotation. In Tab.1 we present the physical 

parameters of the model shown in Fig.2, which corresponds to the dynamic model in Fig.1. 

The distance 𝑥(𝑡) from the starting position is determined using a specially designed 

potentiometer. The signal then enters the filtering and amplifying circuit, which provides an 

electrical voltage proportional to the position of the trolley in the range 0 to 5 V.  

The pendulum swaying angle 𝜑(𝑡) is measured by the low cost rotary encoder CALT 

P3022. The shaft of this sensor is mounted on rolling bearings with very low friction 

resistance. The pendulum is mounted directly on this sensor. This way, the swaying of the 
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load on the rope is properly imitated. At an initial displacement of 10 °, a visible vibration 

takes about 5 minutes. The use of such a sensor to measure the angle of vibration was based 

on the articles [3, 5, 7]. In [3, 5], however, the author uses a relatively large crane model with 

a load of 150 kg where the load is suspended on the rope and the rope rotates the sensor with 

a special lever with a cut. The sensor CALT P3022 has a voltage analogue output that is 

implemented with a 12-bit DA converter. The output voltage is in the range 0 ÷ 5 V. The 

maximum voltage corresponds to the 360 ° rotation. 

 
Fig. 2 Experimental crane model 

 

           Table 1. Values of physical parameters of laboratory scaled model by experiment 

Part of model Value 

𝑚1 0.205 𝑘𝑔 

𝑚2 0.250 𝑘𝑔 

𝑙 0.350 𝑚 

𝑏𝑡 approximately 0.1 𝑁𝑠𝑚−1 

𝑏𝑟 approxiamtely 0.001 𝑁𝑠𝑚 𝑟𝑎𝑑−1 

2.3 Analog estimation of trolley distance and swaying angle derivations 

First, motivation to solve the problem in an analogous way is required. The numerical 

microcomputer is selected for calculating the action value through (8). Standard low cost 8-bit 

microcomputers are usually equipped with a 10-bit AD converter. This also produces a noise 

in the range of ±1 output value of the AD converter, even with a stable analogue input signal. 

This is only about 0.1 % of the total range in the 
102  possible states the transducer takes. This 

deviation does not interfere with proportional operations or numerical integration. The 

problem occurs with a numerical derivation. The simplest is the numerical derivative 𝑥(𝑘𝑇) 

expressed in (11), where 𝑥(𝑘𝑇) is the deduced value from the AD converter at time𝑡 = 𝑘𝑇, 𝑇 

is the sampling period. 
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𝑥̇(𝑘𝑇) ≅
1

𝑇
(𝑥(𝑘𝑇) − 𝑥((𝑘 − 1)𝑇)) (11) 

If the sampling period of the mechanical process is equal to 0.01 s, as is also the case in [12], 

in the case of a transducer error ± 1 of the whole range, the derivation estimate is ± 100. Thus, 

if the analog input signal is in the range of 0 ÷ 5 V, then after the AD converter an estimate is 

obtained with an accuracy of ± 0.005 V. But in numerical derivation according to (11), the 

deviation from the real value is up to 0.5 V, which is 10 % of the measured signal range. 

Thus, it is not possible to estimate the course of the function derivation. It is possible to filter 

it with digital filters, but it provides a large phase delay for such noise. 

Another option to find derivatives is to use estimators. The derivation of these algorithms 

which detect unknown components of the state vector are e.g. in [14, 15]. Luenberger 

observer is defined in the form (12) where 𝒙𝒆𝒔𝒕 is an estimated state vector, 𝑳 is the observer 

gain matrix. 

𝒚𝒆𝒔𝒕 = 𝑪𝒙𝒆𝒔𝒕,  

  

𝒙̇𝑒𝑠𝑡 = 𝑨𝒙𝑒𝑠𝑡 + 𝑩𝒖 + 𝑳(𝒚 − 𝒚𝑒𝑠𝑡). (12) 

The disadvantage is that, on the design of the estimator in the form (12), it is necessary to 

know all the parameters of the system and, unlike the Kalman Filter, it does not consider 

uncertainties. When changing the parameters that are still in use while the crane is running, 

such an estimator provides incorrect outputs. Therefore, it is necessary to re-calculate the 

matrix 𝑳 with each parameter change and this is disadvantageous for real-time applications. 

Another frequently used option is the Kalman Filter and its modifications as the Extended 

Kalman Filter [13] and the Unscented Kalman Filter [8]. As this article deals with the use of a 

simple approach providing reasonable results. 

For these reasons, this work proposes an analog approach to estimating unknown 

derivations. An analog derivative in the simplest connection can not be used because it also 

derives signal source noise. For filtration, [16] there is a modified derivative connection that 

filters unwanted noise and only derives the carrier signal component. The connection is on 

Fig.3. 

 
Fig. 3 Analog differentiator with noise filtering 

In simple terms, the capacitor 𝐶1 and the resistor 𝑅2 provide the input signal derivation 

and the capacitor 𝐶2 with the resistor 𝑅1 to provide filtration of noise. For the direct and 

reverse connection branch on Fig.3. the individual impedances are (13):  
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𝑍1(𝑗𝜔) =
𝑅1𝐶1𝑗𝜔 + 1

𝐶1𝑗𝜔
;  𝑍2(𝑗𝜔) =

𝑅2

𝑅2𝐶2𝑗𝜔 + 1
 (13) 

Using the rules generally applicable to operational amplifiers and using the relationship 

𝑠 = 𝑗𝜔 the resulting transfer of the derivative (14) is obtained. 

𝐴(𝑠) =
𝑢2(𝑠)

𝑢1(𝑠)
= −

𝑅2𝐶1𝑠

(𝑅1𝐶1𝑠 + 1)(𝑅2𝐶2𝑠 + 1)
  (14) 

The values of passive components calculated according to (14) used for the constructor of 

the differentiator in Fig.3. are in Table 2.  

                     Table 2. Values of used parts 

Parts Values 

𝑅1 1.2 𝑘Ω 

𝑅2 33 𝑘Ω 

𝐶1 1 𝜇𝐹 

𝐶2 10 𝑛𝐹 

In relation (14) of the product 𝑅2 and 𝐶1, it expresses the amplification of the 

differentiator. This was experimentally determined at 0.33. The denominator of the expression 

(14) indicates that the resulting join is an ideal differentiator with added second order inertia. 

On Fig.4. is the Bode diagram of the described differentiator obtained using the MATLAB 

environment toolbox. 

Logarithm of the expression (14), followed by substituting asymptotic sub-transmission, 

and the summing can be approximately expressed extreme amplitude-frequency response of 

the equation (15). The chosen extreme amplitude-frequency characteristic is at 450 Hz. At this 

frequency, all of your own circuit noise is safely filtered out. 

1

2𝜋𝑅1𝐶1
≅

1

2𝜋𝑅2𝐶2
≅ 450 𝐻𝑧 (15) 

Values 
1R  and 

2C  in Table 2 are closest available to those calculated by (15). The 

proposed differentiator is implemented in the general inverting circuit of the operational 

amplifier. For this reason, the phase shift of the derivative is in the range of approximately 

270 ° to 90 °. After multiplying in a microcomputer with a value of -0.33, the estimate of the 

differentiator will be approximately equal to the real coordinate derivation and phase shift in 

the 90 ° to -90° range. 

The analogue output from the CALT P3022 sensor is realized by a zero order shaper form 

circuit. This causes the output signal to consist of "stairs". These do not appear at the output 

of the differentiator when the differentiator is involved. 

2.4 Simulations and experimental results 

The block diagram of the controlled system is in Fig. 5. The real crane is replaced by the 

linear model (6) and (7), the transfer functions of the derivatives are (14). 

Microcomputer on Fig. 5 serves to convert electrical voltages into states variables. They 

are multiplied by controller gain matrix 𝑲. The sampling period is selected T = 0.01 sec as in 

[12]. Subsequently, the action variable is converted to the PWM signal. 

The transport delay at the output of the microcomputer shows the delay caused by the zero-

order form factor and is according [18] big as 0.5T = 0.005 sec. In simulations and 

experiments, this transport delay has no impact. 
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Fig. 4 Bode diagram of differentiator with filtering with concrete used parts 

 

 

 

 
Fig. 5 Block diagram of controlled system in SIMULINK 
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Fig.6. Comparison of experimental and simulation results 

In Fig. 6 is a comparison of the simulation of controlling the ideal system with the known 

state vector (pink curve), controlling the ideal system with unknown derivatives estimated by 

the differentiators Fig. 5 (green curve), measured experiment data (blue curve). 

When the values of the components of the analogue differentiator are used, the phase shift 

and the amplitude decay are not more pronounced. Fig. 7 is a comparison of the estimate of a 

trolley position derived by an analog differentiator with a known derivative from the state 

vector. It is evident that the deviation between the derivation estimate and the derivation 

obtained from the state vector is minimal. The described component of the state vector and its 

estimation by the derivative are obtained from the simulation shown in Fig. 5. 

2.5 Used operational amplifier and microcomputer 

The operating amplifier was chosen by the Texas Instruments TLV246x. The choice of 

suitable operational amplifiers for various applications is initially addressed in the publication 

[17]. TLV246x have an input differential amplifier realized from FET transistors, i.e. the 

input bias current is practically negligible. Therefore, there is no need for a compensating 

resistor in the non-inverting input, as shown in Fig. 3. These operational amplifiers belong to 

the Rail-to-Rail category. The maximum allowed supply voltage is ± 3 V. For this reason, the 

operational amplifier can be directly connected to the microcontroller power supply. The 

disadvantage of TLV246x is too large a phase-frequency dependence. Capacitor 
1C  is a high 

quality roll with polypropylene dielectric. An electrolytic capacitor [16, 17] can not be used. 

In the experiment, the microcomputer used is Atmel AVR ATmega8 with a 16 MHz clock 

rate. 
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Fig.7. Comparison between analog estimated derivation of position of trolley 

 and derivation from state vector 

CONCLUSION 

The article describes a non-standard and easy-to-use state vector estimate for crane control. 

This estimate, with respect to the simple realization, yields acceptable results as shown in 

Fig.7. The assumption is that the vibration angle and distance cats are measurable, which 

according to [2, 3, 4, 5, 8] feasible. Unlike variations of Kalman filters, this approach does not 

account for the angle of the swaying and derivative components of the state vector, but the 

state estimate does not need to know the dynamics of the system. What is the benefit of using 

this estimate in conjunction with robust control. 

The described derivation estimate is also applicable to other systems, such as cranes. This 

estimate can also be used in conjunction with digital output measuring devices but with an 

integrated controller with DA converter. 

The implementation features used are low cost category and provide usable controllability 

of the laboratory scaled model of crane. What is the advantage of this solution compared to 

PLC systems. 
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